×

A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations. (English) Zbl 0697.76100

Summary: [For part VII, see the authors, ibid. 65, 85-96 (1987; Zbl 0635.76067).]
Galerkin/least-squares finite element methods are presented for advective-diffusive equations. Galerkin/least-squares represents a conceptual simplification of SUPG, and is in fact applicable to a wide variety of other problem types. A convergence analysis and error estimates are presented.

MSC:

76R50 Diffusion
65Z05 Applications to the sciences
76M99 Basic methods in fluid mechanics

Citations:

Zbl 0635.76067
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[2] Franca, L. P.; Hughes, T. J.R., Two classes of mixed finite element methods, Comput. Meths. Appl. Mech. Engrg., 69, 89-129 (1988) · Zbl 0651.65078
[3] Franca, L. P.; Hughes, T. J.R.; Loula, A. F.D.; Miranda, I., A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation, Numer. Math., 53, 123-141 (1988) · Zbl 0656.73036
[4] Hughes, T. J.R.; Franca, L. P.; Harari, I.; Mallet, M.; Shakib, F.; Spelce, T. E., Finite element method for high-speed flows: Consistent calculation of boundary flux, (AIAA 25th Aerospace Sciences Meeting. AIAA 25th Aerospace Sciences Meeting, Reno, NV. AIAA 25th Aerospace Sciences Meeting. AIAA 25th Aerospace Sciences Meeting, Reno, NV, AIAA-87-0556 (1987))
[5] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0634.73056
[6] Hughes, T. J.R., Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations, Internat. J. Numer. Meths. Fluids, 7, 1261-1275 (1987) · Zbl 0638.76080
[7] Hughes, T. J.R.; Franca, L. P., A new finite element method for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces, Comput. Meths. Appl. Mech. Engrg., 65, 85-96 (1987) · Zbl 0635.76067
[8] Hughes, T. J.R.; Franca, L. P., A mixed finite element formulation for Reissner-Mindlin plate theory: Uniform convergence of all high-order spaces, Comput. Meths. Appl. Mech. Engrg., 67, 223-240 (1988) · Zbl 0611.73077
[9] Hughes, T. J.R.; Franca, L. P.; Mallet, M., A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems, Comput. Meths. Appl. Mech. Engrg., 63, 97-112 (1987) · Zbl 0635.76066
[10] Hughes, T. J.R.; Hulbert, G. M., Space-time finite element methods for elastodynamics: Formulations and error estimates, Comput. Meths. Appl. Mech. Engrg., 66, 339-363 (1988) · Zbl 0616.73063
[11] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advection-diffusion systems, Comput. Meths. Appl. Mech. Engrg., 58, 305-328 (1986) · Zbl 0622.76075
[12] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Meths. Appl. Mech. Engrg., 58, 329-336 (1986) · Zbl 0587.76120
[13] Hughes, T. J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Meths. Appl. Mech. Engrg., 54, 341-355 (1986) · Zbl 0622.76074
[14] Johnson, C., Streamline diffusion methods for problems in fluid mechanics, (Gallagher, R. H.; Carey, G. F.; Oden, J. T.; Zienkiewicz, O. C., Finite Elements in Fluids, Vol. 6 (1986), Wiley: Wiley Chichester), 251-261
[15] Johnson, C., Numerical Solutions of Partial Differential Equations by the Finite Element Method (1987), Cambridge University Press: Cambridge University Press Cambridge
[16] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. Meths. Appl. Mech. Engrg., 45, 285-312 (1984) · Zbl 0526.76087
[17] Johnson, C.; Szepessy, A., On the convergence of streamline diffusion finite element methods for hyperbolic conservation laws, (Tezduyar, T. E.; Hughes, T. J.R., Numerical Methods for Compressible Flows—Finite Difference, Element and Volume Techniques. Numerical Methods for Compressible Flows—Finite Difference, Element and Volume Techniques, AMD-78 (1986), ASME: ASME New York) · Zbl 0685.65086
[18] Johnson, C.; Szepessy, A.; Hansbo, P., On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, (Tech. Rept. No. 1987-21 (1987), Mathematics Department, Chalmers University of Technology: Mathematics Department, Chalmers University of Technology Göteborg) · Zbl 0685.65086
[19] Loula, A. F.D.; Franca, L. P.; Hughes, T. J.R.; Miranda, I., Stability, convergence and accuracy of a new finite element method for the circular arch problem, Comput. Meths. Appl. Mech. Engrg., 63, 281-303 (1987) · Zbl 0607.73077
[20] Loula, A. F.D.; Hughes, T. J.R.; Franca, L. P.; Miranda, I., Mixed Petrov-Galerkin methods for the Timoshenko beam, Comput. Meths. Appl. Mech. Engrg., 63, 133-154 (1987) · Zbl 0607.73076
[21] Loula, A. F.D.; Miranda, I.; Hughes, T. J.R.; Franca, L. P., A successful mixed formulation for axisymmetric shell analysis employing discontinuous stress field of the same order as the displacement field, (Proceedings of the Fourth Brazilian Symposium on Piping and Pressure Vessels, Vol. 2 (1987)), 581-599, Salvador, Brazil
[22] Nävert, U., A finite element method for convection-diffusion problems, (Ph.D. Thesis (1982), Department of Computer Science, Chalmers University of Technology: Department of Computer Science, Chalmers University of Technology Göteborg, Sweden)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.