Guo, Boling Existence of the inertial manifold for generalized Kuramoto-Sivashinsky type equation. (Chinese. English summary) Zbl 0918.58066 J. Math. Study 29, No. 1, 38-51 (1996). Reviewer: Messoud Efendiev (Berlin) MSC: 35-XX PDF BibTeX XML Cite \textit{B. Guo}, J. Math. Study 29, No. 1, 38--51 (1996; Zbl 0918.58066) OpenURL
Robinson, James C. Inertial manifolds and the cone condition. (English) Zbl 0787.34036 Dyn. Syst. Appl. 2, No. 3, 311-330 (1993). MSC: 34C30 35B40 35G10 35K25 PDF BibTeX XML Cite \textit{J. C. Robinson}, Dyn. Syst. Appl. 2, No. 3, 311--330 (1993; Zbl 0787.34036) OpenURL
Kukavica, Igor An upper bound for the winding number for solutions of the Ginzburg- Landau equation. (English) Zbl 0793.35075 Indiana Univ. Math. J. 41, No. 3, 825-836 (1992). Reviewer: G.Boillat (Aubiere) MSC: 35Q35 35K55 37C70 PDF BibTeX XML Cite \textit{I. Kukavica}, Indiana Univ. Math. J. 41, No. 3, 825--836 (1992; Zbl 0793.35075) Full Text: DOI OpenURL
Foias, C.; Nicolaenko, B.; Sell, G. R.; Temam, R. Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension. (English) Zbl 0694.35028 J. Math. Pures Appl., IX. Sér. 67, No. 3, 197-226 (1988). Reviewer: Y.Suyama MSC: 35G05 35K35 35B10 PDF BibTeX XML Cite \textit{C. Foias} et al., J. Math. Pures Appl. (9) 67, No. 3, 197--226 (1988; Zbl 0694.35028) OpenURL