×

The \(R^{\ast}\)-operation for Feynman graphs with generic numerators. (English) Zbl 1380.81133

Summary: The \(R^{\ast}\)-operation by Chetyrkin, Tkachov, and Smirnov is a generalisation of the BPHZ \(R\)-operation, which subtracts both ultraviolet and infrared divergences of Euclidean Feynman graphs with non-exceptional external momenta. It can be used to compute the divergent parts of such Feynman graphs from products of simpler Feynman graphs of lower loops. In this paper we extend the \(R^{\ast}\)-operation to Feynman graphs with arbitrary numerators, including tensors. We also provide a novel way of defining infrared counterterms which closely resembles the definition of its ultraviolet counterpart. We further express both infrared and ultraviolet counterterms in terms of scaleless vacuum graphs with a logarithmic degree of divergence. By exploiting symmetries, integrand and integral relations, which the counterterms of scaleless vacuum graphs satisfy, we can vastly reduce their number and complexity. A FORM implementation of this method was used to compute the five loop beta function in QCD for a general gauge group. To illustrate the procedure, we compute the poles in the dimensional regulator of all top-level propagator graphs at five loops in four dimensional \(\phi^3\) theory.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81T17 Renormalization group methods applied to problems in quantum field theory
81V05 Strong interaction, including quantum chromodynamics

Software:

FORM; Reduze; AIR; Forcer; RStar
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys.3 (1962) 650 [INSPIRE]. · Zbl 0118.44501 · doi:10.1063/1.1724268
[2] T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev.133 (1964) B1549. · doi:10.1103/PhysRev.133.B1549
[3] C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim.B 12 (1972) 20 [INSPIRE].
[4] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
[5] A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett.B 254 (1991) 158 [INSPIRE]. · doi:10.1016/0370-2693(91)90413-K
[6] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089
[7] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE]. · doi:10.1103/PhysRevLett.110.251601
[8] V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett.B 460 (1999) 397 [hep-ph/9905323] [INSPIRE].
[9] J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett.B 469 (1999) 225 [hep-ph/9909506] [INSPIRE]. · Zbl 0987.81500
[10] C. Anastasiou and A. Daleo, Numerical evaluation of loop integrals, JHEP10 (2006) 031 [hep-ph/0511176] [INSPIRE].
[11] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun.175 (2006) 559 [hep-ph/0511200] [INSPIRE]. · Zbl 1196.81054
[12] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys.B 585 (2000) 741 [hep-ph/0004013] [INSPIRE]. · Zbl 1042.81565
[13] M. Roth and A. Denner, High-energy approximation of one loop Feynman integrals, Nucl. Phys.B 479 (1996) 495 [hep-ph/9605420] [INSPIRE]. · Zbl 1378.81150
[14] K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization, Commun. Math. Phys.2 (1966) 301 [INSPIRE]. · Zbl 1222.81219 · doi:10.1007/BF01773358
[15] E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales, JHEP03 (2014) 071 [arXiv:1401.4361] [INSPIRE]. · doi:10.1007/JHEP03(2014)071
[16] A. von Manteuffel, E. Panzer and R.M. Schabinger, A quasi-finite basis for multi-loop Feynman integrals, JHEP02 (2015) 120 [arXiv:1411.7392] [INSPIRE]. · Zbl 1388.81378 · doi:10.1007/JHEP02(2015)120
[17] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[18] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP07 (2004) 046 [hep-ph/0404258] [INSPIRE].
[19] C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun.181 (2010) 1293 [arXiv:0912.2546] [INSPIRE]. · Zbl 1219.81133 · doi:10.1016/j.cpc.2010.03.012
[20] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE]. · Zbl 1219.81133
[21] A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP10 (2008) 107 [arXiv:0807.3243] [INSPIRE]. · Zbl 1245.81033 · doi:10.1088/1126-6708/2008/10/107
[22] N.N. Bogoliubov and O.S. Parasiuk, On the multiplication of the causal function in the quantum theory of fields, Acta Math.97 (1957) 227. · Zbl 0081.43302 · doi:10.1007/BF02392399
[23] W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum space, Commun. Math. Phys.15 (1969) 208 [INSPIRE]. · Zbl 0192.61203 · doi:10.1007/BF01645676
[24] G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys.B 61 (1973) 455 [INSPIRE].
[25] W.E. Caswell and A.D. Kennedy, A simple approach to renormalization theory, Phys. Rev.D 25 (1982) 392 [INSPIRE]. · Zbl 1267.81251
[26] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys.2 (1998) 303 [q-alg/9707029] [INSPIRE]. · Zbl 1041.81087
[27] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. 1. The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys.210 (2000) 249 [hep-th/9912092] [INSPIRE]. · Zbl 1032.81026 · doi:10.1007/s002200050779
[28] K.G. Chetyrkin and F.V. Tkachov, Infrared R operation and ultraviolet counterterms in the MS scheme, Phys. Lett.B 114 (1982) 340 [INSPIRE]. · doi:10.1016/0370-2693(82)90358-6
[29] K.G. Chetyrkin and V.A. Smirnov, R*operation corrected, Phys. Lett.B 144 (1984) 419 [INSPIRE]. · doi:10.1016/0370-2693(84)91291-7
[30] V.A. Smirnov and K.G. Chetyrkin, R*operation in the minimal subtraction scheme, Theor. Math. Phys.63 (1985) 462 [INSPIRE]. · doi:10.1007/BF01017902
[31] A.A. Vladimirov, Method for computing renormalization group functions in dimensional renormalization scheme, Theor. Math. Phys.43 (1980) 417 [INSPIRE]. · doi:10.1007/BF01018394
[32] K.G. Chetyrkin, Combinatorics ofR-,R−1- andR*-operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, arXiv:1701.08627 [INSPIRE]. · Zbl 1388.81378
[33] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-loop running of the QCD coupling constant, Phys. Rev. Lett.118 (2017) 082002 [arXiv:1606.08659] [INSPIRE]. · doi:10.1103/PhysRevLett.118.082002
[34] F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP02 (2017) 090 [arXiv:1701.01404] [INSPIRE]. · Zbl 1377.81103 · doi:10.1007/JHEP02(2017)090
[35] K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Five loop calculations in the gϕ4model and the critical index η, Phys. Lett.B 99 (1981) 147 [Erratum ibid.B 101 (1981) 457] [INSPIRE].
[36] S.G. Gorishnii, S.A. Larin, F.V. Tkachov and K.G. Chetyrkin, Five loop renormalization group calculations in the gϕ4in four-dimensions theory, Phys. Lett.B 132 (1983) 351 [INSPIRE]. · doi:10.1016/0370-2693(83)90324-6
[37] H. Kleinert, J. Neu, V. Schulte-Frohlinde, K.G. Chetyrkin and S.A. Larin, Five loop renormalization group functions of O(n) symmetric ϕ4theory and ϵ-expansions of critical exponents up to ϵ5, Phys. Lett.B 272 (1991) 39 [Erratum ibid.B 319 (1993) 545] [hep-th/9503230] [INSPIRE]. · Zbl 1219.81133
[38] M. Kompaniets and E. Panzer, Renormalization group functions of ϕ4theory in the MS-scheme to six loops, PoS(LL2016)038 [arXiv:1606.09210] [INSPIRE].
[39] D.V. Batkovich, K.G. Chetyrkin and M.V. Kompaniets, Six loop analytical calculation of the field anomalous dimension and the critical exponent η in O(n)-symmetric φ4model, Nucl. Phys.B 906 (2016) 147 [arXiv:1601.01960] [INSPIRE]. · Zbl 1334.81061 · doi:10.1016/j.nuclphysb.2016.03.009
[40] P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Vector correlator in massless QCD at order O(αs4) and the QED β-function at five loop, JHEP07 (2012) 017 [arXiv:1206.1284] [INSPIRE]. · doi:10.1007/JHEP07(2012)017
[41] P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, CompleteOαs \[4 \mathcal{O}\left({\alpha}_s^4\right)\] QCD corrections to hadronic Z-decays, Phys. Rev. Lett.108 (2012) 222003 [arXiv:1201.5804] [INSPIRE]. · doi:10.1103/PhysRevLett.108.222003
[42] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Quark mass and field anomalous dimensions toOαs \[5 \mathcal{O}\left({\alpha}_s^5\right) \], JHEP10 (2014) 076 [arXiv:1402.6611] [INSPIRE]. · doi:10.1007/JHEP10(2014)076
[43] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators, JHEP04 (2017) 119 [arXiv:1702.01458] [INSPIRE]. · Zbl 1378.81150 · doi:10.1007/JHEP04(2017)119
[44] P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Scalar correlator at O(αs4), Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett.96 (2006) 012003 [hep-ph/0511063] [INSPIRE].
[45] H. Kleinert and V. Schulte-Frohlinde, Critical properties of ϕ4-theories, World Scientific, Singapore (2001). · Zbl 1033.81007 · doi:10.1142/4733
[46] S. Larin and P. van Nieuwenhuizen, The infrared R*operation, hep-th/0212315 [INSPIRE]. · Zbl 0118.44501
[47] D.V. Batkovich and M. Kompaniets, Toolbox for multiloop Feynman diagrams calculations using R*operation, J. Phys. Conf. Ser.608 (2015) 012068 [arXiv:1411.2618] [INSPIRE]. · doi:10.1088/1742-6596/608/1/012068
[48] E.R. Speer, Contraction anomalies in dimensional renormalization, Nucl. Phys.B 134 (1978) 175 [INSPIRE]. · doi:10.1016/0550-3213(78)90494-7
[49] J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
[50] T. Ueda, B. Ruijl and J.A.M. Vermaseren, Forcer: a FORM program for 4-loop massless propagators, PoS(LL2016)070 [arXiv:1607.07318] [INSPIRE].
[51] T. Ueda, B. Ruijl and J.A.M. Vermaseren, Calculating four-loop massless propagators with Forcer, J. Phys. Conf. Ser.762 (2016) 012060 [arXiv:1604.08767] [INSPIRE]. · doi:10.1088/1742-6596/762/1/012060
[52] B. Ruijl, T. Ueda and J.A.M. Vermaseren, Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams, arXiv:1704.06650. · Zbl 1343.81104
[53] P.A. Baikov and K.G. Chetyrkin, Four loop massless propagators: an algebraic evaluation of all master integrals, Nucl. Phys.B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE]. · Zbl 1206.81087 · doi:10.1016/j.nuclphysb.2010.05.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.