×

An interpolation-based parametric reduced order model combined with component mode synthesis. (English) Zbl 1439.65094

Summary: This paper presents an efficient interpolation-based parametric reduced order model with component mode synthesis. The off-line sampling of a large-scale structural dynamic system containing many parameters requires many computations to investigate the parameter-dependency of a dynamical system. Therefore, we introduce a dynamic substructuring scheme to execute off-line sampling in the subdomain level. In addition, we suggest discriminating the interpolation of the subsystem depending on the characteristics of each substructural mode. We synthesize the substructures, and we then construct a two-level, semi-parametrized ROM by reducing the degrees of freedom of the interface in the on-line stage. We then demonstrate the efficiency and accuracy of the present method by computing the relative eigenvalue errors and the transient responses of the system with random values for the parameters, and we conduct the design optimization of large-scale systems under dynamic loading conditions. A comparison of the present method with the full order model and a conventional reduced order model indicates that the present method is useful in carrying out an efficient analysis and design optimization for various large-scale structural dynamic systems.

MSC:

65L99 Numerical methods for ordinary differential equations

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amsallem, D.; Farhat, C.; Haasdonk, B., Special issue on model reduction, Int. J. Numer. Methods Eng., 102, 5, 931-932 (2015) · Zbl 1351.65001
[2] Bathe, K.-J.; Wilson, E. L., Numerical Methods in Finite Element Analysis (1976), Prentice-Hall Englewood Cliffs, NJ · Zbl 0387.65069
[3] Noor, A. K., Recent advances and applications of reduction methods, Appl. Mech. Rev., 47, 5, 125-146 (1994)
[4] Craig, R. R., Coupling of substructures for dynamic analyses: an overview, (Proceedings of AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit (2000)), 1573-1584
[5] Craig, R. R.; Kurdila, A. J., Fundamentals of Structural Dynamics (2006), John Wiley & Sons · Zbl 1118.70001
[6] de Klerk, D.; Rixen, D. J.; Voormeeren, S. N., General framework for dynamic substructuring: history, review and classification of techniques, AIAA J., 46, 5, 1169-1181 (2008)
[7] Amsallem, D.; Farhat, C., Interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J., 46, 7, 1803-1813 (2008)
[8] Amsallem, D.; Cortial, J.; Carlberg, K.; Farhat, C., A method for interpolating on manifolds structural dynamics reduced-order models, Int. J. Numer. Methods Eng., 80, 9, 1241-1258 (2009) · Zbl 1176.74077
[9] Amsallem, D.; Cortial, J.; Farhat, C., Towards real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information, AIAA J., 48, 9, 2029-2037 (2010)
[10] Amsallem, D.; Farhat, C., An online method for interpolating linear parametric reduced-order models, SIAM J. Sci. Comput., 33, 5, 2169-2198 (2011) · Zbl 1269.65059
[11] Lohmann, B.; Eid, R., Efficient order reduction of parametric and nonlinear models by superposition of locally reduced models, (Methoden und Anwendungen der Regelungstechnik. Erlangen-Münchener Workshops (2007)), 27-36
[12] Panzer, H.; Mohring, J.; Eid, R.; Lohmann, B., Parametric model order reduction by matrix interpolation, AT - Automat. Tech.: Methods Appl. Control, Reg. Infor. Tech., 58, 8, 475-484 (2010)
[13] Mazzucco, M., A reduced-order matrices fitting scheme with Log-Euclidean metrics for fast approximation of dynamic response of parametric structural systems, Comput. Methods Appl. Mech. Engrg., 269, 1-19 (2014) · Zbl 1296.74086
[14] Queipo, N. V.; Haftka, R. T.; Shyy, W.; Goel, T.; Vaidyanathan, R.; Tucker, P. K., Surrogate-based analysis and optimization, Prog. Aerosp. Sci., 41, 1, 1-28 (2005)
[15] Forrester, A. I.; Keane, A. J., Recent advances in surrogate-based optimization, Prog. Aerosp. Sci., 45, 1, 50-79 (2009)
[16] Carlberg, K.; Farhat, C., A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems, Int. J. Numer. Methods Eng., 86, 3, 381-402 (2011) · Zbl 1235.74352
[17] Zahr, M. J.; Farhat, C., Progressive construction of a parametric reduced-order model for PDE-constrained optimization, Int. J. Numer. Methods Eng., 102, 5, 1111-1135 (2015) · Zbl 1352.49029
[18] Amsallem, D.; Zahr, M.; Choi, Y.; Farhat, C., Design optimization using hyper-reduced-order models, Struct. Multidiscip. Optim., 51, 4, 919-940 (2015)
[19] Schuhmacher, G.; Murra, I.; Wang, L.; Laxander, A.; O’ Leary, O. J.; Herold, Michael, Multidisciplinary design optimization of a regional aircraft wing box, (9th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta (2002))
[20] Schuhmacher, G.; Stettner, M.; Zotemantel, R.; O’ Leary, O. J.; Wagner, M., Optimization assisted structural design of a new military transport aircraft, (10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, New York (2004))
[21] Craig, R. R.; Bampton, M. C.C., Coupling of substructures for dynamic analyses, AIAA J., 6, 7, 1313-1319 (1968) · Zbl 0159.56202
[22] MacNeal, R. H., A hybrid method of component mode synthesis, Comput. Struct., 1, 4, 581-601 (1971)
[23] Rubin, S., Improved component-mode representation for structural dynamic analysis, AIAA J., 13, 8, 995-1006 (1975) · Zbl 0334.70014
[24] Park, K. C.; Park, Y. H., Partitioned component mode synthesis via a flexibility approach, AIAA J., 42, 6, 1236-1245 (2004)
[25] Rixen, D. J., A dual Craig-Bampton method for dynamic substructuring, J. Comput. Appl. Math., 168, 1, 383-391 (2004) · Zbl 1107.70303
[26] Castanier, M. P.; Tan, Y.-C.; O., C., Characteristic constraint modes for component mode synthesis, AIAA J., 39, 6, 1182-1187 (2001)
[27] Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, S. P.-A., A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics, Comput. Methods Appl. Mech. Engrg., 256, 169-188 (2013) · Zbl 1352.74285
[28] Corigliano, A.; Dossi, M.; Mariani, S., Model order reduction and domain decomposition strategies for the solution of the dynamic elastic-plastic structural problem, Comput. Methods Appl. Mech. Engrg., 290, 127-155 (2015) · Zbl 1423.74874
[29] Hong, S.-K.; Epureanu, B. I.; Castanier, M. P.; Gorsich, D. J., Parametric reduced-order models for predicting the vibration response of complex structures with component damage and uncertainties, J. Sound Vib., 330, 6, 1091-1110 (2011)
[30] Papadimitriou, C.; Papadioti, D.-C., Component mode synthesis techniques for finite element model updating, Comput. Struct., 126, 15-28 (2013)
[31] Hong, S.-K.; Epureanu, B. I.; Castanier, M. P., Next-generation parametric reduced-order models, Mech. Syst. Signal Process., 37, 1, 403-421 (2013)
[32] Golub, G. H.; Van Loan, C. F., Matrix Computations (2012), JHU Press
[33] Dvorkin, E. N.; Bathe, K.-J., A continuum mechanics based four-node shell element for general non-linear analysis, Eng. Comput., 1, 1, 77-88 (1984)
[34] Macneal, R. H.; Harder, R. L., A refined four-noded membrane element with rotational degrees of freedom, Comput. Struct., 28, 1, 75-84 (1988) · Zbl 0631.73064
[35] W.C. Hurty, A criterion for selecting realistic natural modes of a structure, Technical Memorandum, 1967, pp. 33-364; W.C. Hurty, A criterion for selecting realistic natural modes of a structure, Technical Memorandum, 1967, pp. 33-364
[36] Balmès, E., Parametric families of reduced finite element models. Theory and applications, Mech. Syst. Signal Processing, 10, 4, 381-394 (1996)
[37] Kim, J.-G.; Lee, P.-S., An enhanced Craig-Bampton method, Int. J. Numer. Methods Eng., 103, 2, 79-93 (2015) · Zbl 1352.74378
[38] Kim, J.-G.; Boo, S.-H.; Lee, P.-S., An enhanced AMLS method and its performance, Comput. Methods Appl. Mech. Engrg., 287, 15, 90-111 (2015) · Zbl 1425.65116
[39] MATLAB Documentation: Optimization Toolbox User’s Guide (2013)
[40] J. Weatherson, Brawn gp front wing, http://grabcad.com; J. Weatherson, Brawn gp front wing, http://grabcad.com
[41] Fourie, P. C.; Groenwold, A. A., The particle swarm optimization algorithm in size and shape optimization, Struct. Multidiscip. Optim., 23, 4, 259-267 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.