×

Model-implied instrumental variable-generalized method of moments (MIIV-GMM) estimators for latent variable models. (English) Zbl 1284.62690

Summary: The common maximum likelihood (ML) estimator for structural equation models (SEMs) has optimal asymptotic properties under ideal conditions (e.g., correct structure, no excess kurtosis, etc.) that are rarely met in practice. This paper proposes model-implied instrumental variable-generalized method of moments (MIIV-GMM) estimators for latent variable SEMs that are more robust than ML to violations of both the model structure and distributional assumptions. Under less demanding assumptions, the MIIV-GMM estimators are consistent, asymptotically unbiased, asymptotically normal, and have an asymptotic covariance matrix. They are “distribution-free”, robust to heteroscedasticity, and have overidentification goodness-of-fit \(J\)-tests with asymptotic chi-square distributions. In addition, MIIV-GMM estimators are “scalable” in that they can estimate and test the full model or any subset of equations, and hence allow better pinpointing of those parts of the model that fit and do not fit the data. An empirical example illustrates MIIV-GMM estimators. Two simulation studies explore their finite sample properties and find that they perform well across a range of sample sizes.

MSC:

62P15 Applications of statistics to psychology

Software:

gmm; Mplus; LISREL; miivfind; Stata
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, J.C., & Gerbing, D. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155–173. · doi:10.1007/BF02294170
[2] Anderson, T.W., & Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions. The Annals of Statistics, 16, 759–771. · Zbl 0646.62051 · doi:10.1214/aos/1176350834
[3] Angrist, J.D., & Pischke, J. (2009). Mostly harmless econometrics: an empiricist’s companion. Princeton: Princeton University Press. · Zbl 1159.62090
[4] Bauldry, S. (forthcoming). miivfind: a program for identifying model-implied instrumental variables (MIIVs) for structural equation models in Stata. Stata Journal.
[5] Bentler, P.M. (1982). Confirmatory factor analysis via noniterative estimation: a fast, inexpensive method. Journal of Marketing Research, 19, 417–424. · doi:10.2307/3151715
[6] Bentler, P.M., & Yuan, K. (1999). Structural equation modeling with small samples: test statistics. Multivariate Behavioral Research, 34, 181–197. · doi:10.1207/S15327906Mb340203
[7] Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley. · Zbl 0731.62159
[8] Bollen, K.A. (1996a). An alternative Two Stage Least Squares (2SLS) estimator for latent variable equations. Psychometrika, 61, 109–121. · Zbl 0875.62369 · doi:10.1007/BF02296961
[9] Bollen, K.A. (1996b). A limited information estimator for LISREL models with and without heteroscedasticity. In G.A. Marcoulides & R.E. Schumacker (Eds.), Advanced structural equation modeling (pp. 227–241). Mahwah: Erlbaum. · Zbl 0935.62068
[10] Bollen, K.A. (2001). Two-stage least squares and latent variable models: simultaneous estimation and robustness to misspecifications. In: R. Cudeck, S.D. Toit, & D. Sörbom (Eds.), Structural equation modeling: present and future, a festschrift in honor of Karl Jöreskog (pp. 119–138). Lincolnwood: Scientific Software International.
[11] Bollen, K.A. (2012). Instrumental variables in sociology and the social sciences. Annual Review of Sociology, 38, 37–72. · doi:10.1146/annurev-soc-081309-150141
[12] Bollen, K.A., & Bauer, D.J. (2004). Automating the selection of model-implied instrumental variables. Sociological Methods & Research, 32, 425–452. · doi:10.1177/0049124103260341
[13] Bollen, K.A., Kirby, J.B., Curran, P.J., Paxton, P.M., & Chen, F. (2007). Latent variable models under misspecification: two-stage least squares (2SLS) and maximum likelihood (ML) estimators. Sociological Methods & Research, 36, 48–86. · doi:10.1177/0049124107301947
[14] Bollen, K.A., & Pearl, J. (2013). Eight myths about causality and structural equation models. In S. Morgan (Ed.), Handbook of causal analysis for social research, New York: Springer.
[15] Bollen, K.A., & Stine, R. (1990). Direct and indirect effects: classical and bootstrap estimates of variability. Sociological Methodology, 20, 115–140. · doi:10.2307/271084
[16] Bollen, K.A., & Stine, R. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21, 205–229. · doi:10.1177/0049124192021002004
[17] Boomsma, A., & Hoogland, J.J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S.D. Toit, & D. Sörbom (Eds.), Structural equation modeling: present and future, a festschrift in honor of Karl Jöreskog (pp. 139–168). Lincolnwood: Scientific Software International.
[18] Browne, M.W. (1984). Asymptotically distribution-free methods for the analysis of the covariance structures. British Journal of Mathematical & Statistical Psychology, 37, 62–83. · Zbl 0561.62054 · doi:10.1111/j.2044-8317.1984.tb00789.x
[19] Browne, M.W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K.A. Bollen & J.S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park: Sage.
[20] Chausse, P. (2012). gmm: generalized method of moments and generalized empirical likelihood (R package). http://cran.r-project.org/web/packages/gmm/index.html .
[21] Cragg, J.G. (1968). Some effects of incorrect specification on the small sample properties of several simultaneous equation estimators. International Economic Review, 9, 63–86. · doi:10.2307/2525614
[22] Davidson, R., & MacKinnon, J.G. (1993). Estimation and inference in econometrics. New York: Oxford University Press. · Zbl 1009.62596
[23] Foster, E.M. (1997). Instrumental variables for logistic regression: an illustration. Social Science Research, 26, 487–504. · doi:10.1006/ssre.1997.0606
[24] Glanville, J.L., & Paxton, P. (2007). How do we learn to trust? A confirmatory tetrad analysis of the sources of generalized trust. Social Psychology Quarterly, 70, 230–242. · doi:10.1177/019027250707000303
[25] Godambe, V.P., & Thompson, M. (1978). Some aspects of the theory of estimating equations. Journal of Statistical Planning and Inference, 2, 95–104. · Zbl 0374.62005 · doi:10.1016/0378-3758(78)90026-5
[26] Hall, A.R. (2005). Generalized method of moments. Oxford: Oxford University Press. · Zbl 1076.62118
[27] Hägglund, G. (1982). Factor analysis by instrumental variables. Psychometrika, 47, 209–222. · Zbl 0494.62062 · doi:10.1007/BF02296276
[28] Hansen, L.P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50, 1029–1054. · Zbl 0502.62098 · doi:10.2307/1912775
[29] Hu, L.T., Bentler, P.M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351–362. · doi:10.1037/0033-2909.112.2.351
[30] Ihara, M., & Kano, Y. (1986). A new estimator of the uniqueness in factor analysis. Psychometrika, 51, 563–566. · Zbl 0653.62047 · doi:10.1007/BF02295595
[31] Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202. · doi:10.1007/BF02289343
[32] Jöreskog, K.G. (1973). A general method for estimating a linear structural equation system. In: A.S. Goldberger & O.D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). New York: Academic Press.
[33] Jöreskog, K.G. (1977). Structural equation models in the social sciences: specification, estimation, and testing. in: P.R. Krishnaiah (Ed.), Applications of statistics (pp. 265–287). Amsterdam: North-Holland.
[34] Jöreskog, K.G. (1983). Factor analysis as an error-in-variables model. In: Wainer, H. & Messick, S. (Eds.) Principles of Modern Psychological Measurement (pp. 185–196). Hillsdale: Erlbaum.
[35] Kirby, J.B., & Bollen, K.A. (2009). Using instrumental variable tests to evaluated model specification in latent variable structural equation models. Sociological Methodology, 39, 327–355. · doi:10.1111/j.1467-9531.2009.01217.x
[36] Kolenikov, S. (2011). Biases of parameter estimates in misspecified structural equation models. Sociological Methodology, 41, 119–157. · doi:10.1111/j.1467-9531.2011.01236.x
[37] Kolenikov, S., & Bollen, K.A. (2012). Testing negative error variances: is a Heywood case a symptom of misspecification? Sociological Methods & Research, 41, 124–167. · doi:10.1177/0049124112442138
[38] Lawley, D.N. (1940). The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, 60, 64–82. · Zbl 0027.23503
[39] Madansky, A. (1964). Instrumental variables in factor analysis. Psychometrika, 29, 105–113. · Zbl 0147.19601 · doi:10.1007/BF02289693
[40] Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519–530. · Zbl 0214.46302 · doi:10.1093/biomet/57.3.519
[41] Mátyás, L. (Ed.) (1999). Generalized method of moments estimation. Cambridge: Cambridge University Press.
[42] Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 1, 156–166. · doi:10.1037/0033-2909.105.1.156
[43] Muthén, L.K., & Muthén, B. (1998–2010). Mplus user’s guide. Los Angeles: Muthén & Muthén.
[44] Nevitt, J., & Hancock, G.R. (2004). Evaluating small sample approaches for model test statistics in structural equation modeling. Multivariate Behavioral Research, 39, 439–478. · doi:10.1207/S15327906MBR3903_3
[45] Newey, W.K., & McFadden, D. (1986). Large sample estimation and hypothesis testing. In R.F. Engle & D. McFadden (Eds.), Handbook of Econometrics (Vol. 4, 1st ed., pp. 2111–2245). Amsterdam: Elsevier.
[46] Paxton, P.M., Curran, P., Bollen, K.A., Kirby, J., & Chen, F. (2001). Monte Carlo simulations in structural equation models. Structural Equation Modeling, 8, 287–312. · doi:10.1207/S15328007SEM0802_7
[47] Pew Research Center (1998). Trust and citizen engagement in metropolitan Philadelphia: a case study. Washington: The Pew Research Center for the People and the Press.
[48] Sargan, J.D. (1958). The estimation of economic relationships using instrumental variables. Econometrica, 26, 393–415. · Zbl 0101.36804 · doi:10.2307/1907619
[49] Satorra, A. (1990). Robustness issues in structural equation modeling: a review of recent developments. Quality and Quantity, 24, 367–386. · doi:10.1007/BF00152011
[50] Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C.C. Clogg (Eds.), Latent variable analysis (pp. 399–419). Thousand Oaks: Sage.
[51] Searle, S.R. (1982). Matrix algebra useful for statistics (1st ed.). New York: Wiley. · Zbl 0555.62002
[52] Skrondal, A., & Hesketh, S.R. (2004). Generalized latent variable modeling. Boca Raton: Chapman & Hall/CRC. · Zbl 1274.62034
[53] Staiger, D., & Stock, J.H. (1997). Instrumental variables regression with weak instruments. Econometrica, 65, 557–586. · Zbl 0871.62101 · doi:10.2307/2171753
[54] StataCorp (2011). Stata statistical software: release 12. College Station: StataCorp.
[55] Stock, J.H., & Yogo, M. (2005). Testing for weak instruments in linear IV regression. In D.W.K. Andrews (Ed.), Identification and Inference for Econometric Models (pp. 80–108). New York: Cambridge University Press. · Zbl 1121.62066
[56] Stock, J.H., Wright, J.H., & Yogo, M. (2002). A survey of weak instruments and weak identification in generalized method of moments. Journal of Business & Economic Statistics, 20, 518–529. · doi:10.1198/073500102288618658
[57] van der Vaart, A.W. (1998). Asymptotic statistics. New York: Wiley. · Zbl 0910.62001
[58] Wooldrige, J.M. (2010). Econometric analysis of cross section and panel data. Cambridge: MIT Press.
[59] Yuan, K., & Hayashi, K. (2006). Standard errors in covariance structure models: asymptotic versus bootstrap. British Journal of Mathematical & Statistical Psychology, 59, 397–417. · doi:10.1348/000711005X85896
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.