×

Numerical dissipation vs. subgrid-scale modelling for large eddy simulation. (English) Zbl 1415.76394

Summary: This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
65Z05 Applications to the sciences
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

incompact3d
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Geurts, B., Elements of Direct and Large-Eddy Simulation (2004), Edwards
[2] Sagaut, P., Large Eddy Simulation of Incompressible Flow: An Introduction (2005), Springer-Verlag
[3] Lesieur, M.; Métais, O.; Comte, P., Large-Eddy Simulation of Turbulence (2005), Cambridge University Press
[4] Ghosal, S.; Moin, P., The basic equations for the large eddy simulation of turbulent flows in complex geometry, J. Comput. Phys., 118, 24-37 (1995) · Zbl 0822.76069
[5] Ghosal, S., An analysis of numerical errors in large-eddy simulations of turbulence, J. Comput. Phys., 125, 187-206 (1996) · Zbl 0848.76043
[6] Moin, P.; Mahesh, K., Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech., 30, 539-578 (1998) · Zbl 1398.76073
[7] Chow, F. K.; Moin, P., A further study of numerical errors in large-eddy simulations, J. Comput. Phys., 184, 366-380 (2003) · Zbl 1047.76034
[8] Geurts, B. J.; van der Bos, F., Numerically induced high-pass dynamics in large-eddy simulation, Phys. Fluids, 17, Article 125103 pp. (2005) · Zbl 1188.76056
[9] Berland, J.; Bogey, C.; Bailly, C., A study of differentiation errors in large-eddy simulations based on the EDQNM theory, J. Comput. Phys., 227, 8314-8340 (2008) · Zbl 1256.76041
[10] Park, N.; Mahesh, K., Analysis of numerical errors in large eddy simulation using statistical closure theory, J. Comput. Phys., 222, 194-216 (2007) · Zbl 1216.76028
[11] Vreman, A. W.; Sandham, N. D.; Luo, K. H., Compressible mixing layer growth rate and turbulence characteristics, J. Fluid Mech., 320, 235-258 (1996) · Zbl 0875.76159
[12] Meyers, J.; Geurts, B. J.; Baelmans, M., Database analysis of errors in large-eddy simulation, Phys. Fluids, 15, 9, 2740-2755 (2003) · Zbl 1186.76371
[13] Meyers, J.; Geurts, B. J.; Baelmans, M., Optimality of the dynamic procedure for large-eddy simulation, Phys. Fluids, 17, Article 045108 pp. (2005) · Zbl 1187.76349
[14] Meyers, J.; Geurts, B. J.; Sagaut, P., A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model, J. Comput. Phys., 227, 156-173 (2007) · Zbl 1280.76012
[15] Maître, O. L.; Knio, O. M., Spectral Methods for Uncertainty Quantification (2010), Springer · Zbl 1193.76003
[16] Najm, H. N., Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics, Annu. Rev. Fluid Mech., 41, 35-52 (2009) · Zbl 1168.76041
[17] Boris, J.; Grinstein, F.; Oran, E.; Kolbe, R., New insights into large-eddy simulation, Fluid Dyn. Res., 10, 199-228 (1992)
[18] Fureby, C.; Grinstein, F. F., Large eddy simulation of high-Reynolds-number free and wall-bounded flows, J. Comput. Phys., 181, 1, 68-97 (2002) · Zbl 1051.76579
[19] Margolin, L. G.; Rider, W. J.; Grinstein, F. F., Modeling turbulent flow with implicit LES, J. Turbul., 7, 15, 1-28 (2006) · Zbl 1273.76213
[20] Thornber, B.; Mosedale, A.; Drikakis, D., On the implicit large eddy simulations of homogeneous decaying turbulence, J. Comput. Phys., 226, 1902-1929 (2007) · Zbl 1219.76027
[21] Drikakis, D.; Hahn, M.; Mosedale, A.; Thornber, B., Large eddy simulation using high-resolution and high-order methods, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 367, 1899, 2985-2997 (2009) · Zbl 1185.76719
[22] Kokkinakis, I. W.; Drikakis, D., Implicit large eddy simulation of weakly-compressible turbulent channel flow, Comput. Methods Appl. Mech. Eng., 287, 229-261 (2015) · Zbl 1423.76159
[23] A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, AIAA paper 1981-1259.; A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, AIAA paper 1981-1259.
[24] Tam, C. K.W.; Webb, J. C.; Dong, Z., A study of the short wave components in computational acoustics, J. Comput. Acoust., 1, 1, 1-30 (1993) · Zbl 1360.76303
[25] Bogey, C.; Bailly, C., Large eddy simulations of transitional round jets: influence of the Reynolds number on flow development and energy dissipation, Phys. Fluids, 18, 6, 1-14 (2006)
[26] Bogey, C.; Bailly, C., Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering, Comput. Fluids, 35, 1344-1358 (2006) · Zbl 1177.76372
[27] Bogey, C.; Bailly, C., Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation, J. Fluid Mech., 627, 129-160 (2009) · Zbl 1171.76396
[28] Berland, J.; Lafon, P.; Daude, F.; Crouzet, F.; Bogey, C.; Bailly, C., Filter shape dependence and effective scale separation in large-eddy simulations based on relaxation filtering, Comput. Fluids, 47, 65-74 (2014) · Zbl 1271.76124
[29] Aubard, G.; Volpiani, P. S.; Gloerfelt, X.; Robinet, J.-C., Comparison of subgrid-scale viscosity models and selective filtering strategy for large-eddy simulations, Flow Turbul. Combust., 91, 3, 497-518 (2013)
[30] Mathew, J.; Lechner, R.; Foysi, H.; Sesterhenn, J.; Friedrich, R., An explicit filtering method for large eddy simulation of compressible flows, Phys. Fluids, 15, 8, 2279-2289 (2003) · Zbl 1186.76355
[31] Schlatter, P.; Stolz, S.; Kleiser, L., Analysis of the SGS energy budget for deconvolution- and relaxation-based models in channel flow, (Lamballais, E.; Friedrich, R.; Geurts, B. J.; Métais, O., Direct and Large-eddy Simulation VI. Direct and Large-eddy Simulation VI, ERCOFTAC Series (2006), Springer), 135-142
[32] Domaradzki, J. A.; Adams, N. A., Direct modelling of subgrid scales of turbulence in large eddy simulations, J. Turbul., 3, Article N24 pp. (2002)
[33] Hickel, S.; Adams, N. A.; Domaradzki, J. A., An adaptive local deconvolution method for implicit LES, J. Comput. Phys., 213, 1, 413-436 (2006) · Zbl 1146.76607
[34] Hickel, S.; Adams, N. A., On implicit subgrid-scale modeling in wall bounded flows, Phys. Fluids, 19, 10, 1-13 (2007) · Zbl 1182.76317
[35] Domaradzki, J. A., Large eddy simulations without explicit eddy viscosity models, Int. J. Comput. Fluid Dyn., 24, 10, 435-447 (2010) · Zbl 1271.76128
[36] (Grinstein, F. F.; Margolin, L. G.; Rider, W. J., Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics (2007), Cambridge Univ. Press) · Zbl 1135.76001
[37] Kraichnan, R. H., Eddy viscosity in two and three dimensions, J. Atmos. Sci., 33, 1521-1536 (1976)
[38] Chollet, J. P.; Lesieur, M., Parameterization of small scales of the three-dimensional isotropic turbulence utilizing spectral closures, J. Atmos. Sci., 38, 2747-2757 (1981)
[39] Lesieur, M., Turbulence in Fluids (2008), Springer · Zbl 1138.76004
[40] Hirt, C. W., Computer studies of time-dependent turbulent flows, Phys. Fluids, 12, 12, II-219-II-227 (1969) · Zbl 0296.76028
[41] Margolin, L. G.; Rider, W. J., Numerical regularization: the numerical analysis of implicit subgrid models, (Grinstein, F. F.; Margolin, L. G.; Rider, W. J., Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics (2007), Cambridge Univ. Press), 195-221
[42] Garnier, E.; Mossi, M.; Sagaut, P.; Comte, P.; Deville, M., On the use of shock-capturing schemes for large-eddy simulation, J. Comput. Phys., 153, 2, 273-311 (1999) · Zbl 0949.76042
[43] Pasquetti, R.; Xu, C. J., High-order algorithms for large-eddy simulation of incompressible flows, J. Sci. Comput., 17, 1, 273-284 (2002) · Zbl 1036.76026
[44] Dairay, T.; Fortuné, V.; Lamballais, E.; Brizzi, L., LES of a turbulent jet impinging on a heated wall using high-order numerical schemes, Int. J. Heat Fluid Flow, 50, 177-187 (2014)
[45] Smagorinsky, J., General circulation experiments with the primitive equations, Mon. Weather Rev., 91, 3, 99-164 (1963)
[46] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 7, 1760-1765 (1991) · Zbl 0825.76334
[47] Nicoud, F.; Ducros, F., Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow Turbul. Combust., 62, 3, 183-200 (1999) · Zbl 0980.76036
[48] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-order Methods for Incompressible Fluid Flow (2002), Cambridge University Press · Zbl 1007.76001
[49] Karniadakis, G.; Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics (2005), Oxford Science Publications · Zbl 1116.76002
[50] Xu, C. J.; Pasquetti, R., Stabilized spectral element computations of high Reynolds number incompressible flows, J. Comput. Phys., 196, 680-704 (2004) · Zbl 1109.76342
[51] Pasquetti, R., Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters, J. Turbul., 6, 12, 1-14 (2005)
[52] Kirby, S. J.S. R.M., Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics modelling, Comput. Methods Appl. Mech. Eng., 195, 3128-3144 (2006) · Zbl 1115.76060
[53] Pasquetti, R., Spectral vanishing viscosity method for large-eddy simulation of turbulent flows, J. Sci. Comput., 27, 1-3, 365-375 (2006) · Zbl 1101.76028
[54] Pasquetti, R.; Séverac, E.; Bontoux, P.; Shäfer, M., From stratified wakes to rotor-stator flows by an SVV-LES method, Theor. Comput. Fluid Dyn., 22, 261-273 (2008) · Zbl 1161.76499
[55] Séverac, E.; Serre, E., A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities, J. Comput. Phys., 226, 1234-1255 (2007) · Zbl 1173.76322
[56] Viazzo, S.; Poncet, S.; Serre, E.; Randriamampianina, A.; Bontoux, P., High-order large eddy simulations of confined rotor-stator flows, Flow Turbul. Combust., 88, 63-75 (2012) · Zbl 1303.76073
[57] Lombard, J.-E. W.; Moxey, D.; Sherwin, S. J.; Hoessler, J. F.A.; Dhandapani, S.; Taylor, M. J., Implicit large-eddy simulation of a wingtip vortex, AIAA J., 54, 2, 506-518 (2016)
[58] Hughes, T.; Jansen, L. M.K., Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3, 1, 47-59 (2000) · Zbl 0998.76040
[59] Hughes, T.; Mazzei, L.; Oberai, A.; Wray, A., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys. Fluids, 13, 2, 505-512 (2001) · Zbl 1184.76236
[60] Hughes, T.; Oberai, A.; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys. Fluids, 13, 6, 1784-1799 (2001) · Zbl 1184.76237
[61] Gravemeier, V., The variational multiscale method for laminar and turbulent flow, Arch. Comput. Methods Eng., 13, 2, 249-324 (2006) · Zbl 1177.76341
[62] Drikakis, D.; Fureby, C.; Grinstein, F.; Youngs, D., Simulation of transition and turbulence decay in the Taylor-Green vortex, J. Turbul., 8, 20, 1-12 (2007)
[63] Aspden, A.; Nikiforakis, N.; Dalziel, S.; Bell, J., Analysis of implicit LES methods, Commun. Appl. Math. Comput. Sci., 3, 1, 103-126 (2008) · Zbl 1162.76024
[64] Fauconnier, D.; Langhe, C. D.; Dick, E., Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor-Green vortex, J. Comput. Phys., 228, 21, 8053-8084 (2009) · Zbl 1172.76019
[65] Fauconnier, D.; Bogey, C.; Dick, E., On the performance of relaxation filtering for large-eddy simulation, J. Turbul., 14, 1, 22-49 (2013) · Zbl 1273.76194
[66] Chapelier, J.-B.; de la Llave Plata, M.; Renac, F.; Lamballais, E., Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows, Comput. Fluids, 95, 210-226 (2014) · Zbl 1391.76209
[67] Zhou, Y.; Grinstein, F. F.; Wachtor, A. J.; Haines, B. M., Estimating the effective Reynolds number in implicit large-eddy simulation, Phys. Rev. E, 013303, Article 1 pp. (2014)
[68] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[69] Laizet, S.; Lamballais, E., High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy, J. Comput. Phys., 228, 5989-6015 (2009) · Zbl 1185.76823
[70] Laizet, S.; Lamballais, E.; Vassilicos, J. C., A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence, Comput. Fluids, 39, 3, 471-484 (2010) · Zbl 1242.76078
[71] Laizet, S.; Li, N., Incompact3d: a powerful tool to tackle turbulence problems with up to \(o(10^5)\) computational cores, Int. J. Numer. Methods Fluids, 67, 11, 1735-1757 (2011) · Zbl 1419.76481
[72] Kravchenko, A. G.; Moin, P., On the effect of numerical errors in large eddy simulation of turbulent flows, J. Comput. Phys., 131, 310-322 (1997) · Zbl 0872.76074
[73] Germano, M., Turbulence: the filtering approach, J. Fluid Mech., 238, 325-336 (1992) · Zbl 0756.76034
[74] Lilly, D. K., A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, 4, 3, 633-635 (1992)
[75] Lamballais, E.; Fortuné, V.; Laizet, S., Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation, J. Comput. Phys., 230, 3270-3275 (2011) · Zbl 1316.76043
[76] Borue, V.; Orszag, S. A., Local energy flux and subgrid-scale statistics in three-dimensional turbulence, J. Fluid Mech., 366, 1-31 (1998) · Zbl 0924.76035
[77] Haugen, N. E.; Brandenburg, A., Inertial range scaling in numerical turbulence with hyperviscosity, Phys. Rev. E, 70, 1-7 (2004)
[78] Lamorgese, A. G.; Caughey, D. A.; Pope, S. B., Direct numerical simulation of homogeneous turbulence with hyperviscosity, Phys. Fluids, 17, 1, 1-10 (2005) · Zbl 1187.76294
[79] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., 26, 1, 1-30 (1989) · Zbl 0667.65079
[80] Maday, Y.; Tadmor, E., Analysis of the spectral vanishing viscosity method for periodic conservation laws, SIAM J. Numer. Anal., 26, 4, 854-870 (1989) · Zbl 0678.65066
[81] Karamanos, G.-S.; Karniadakis, G. E., A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., 163, 11, 22-50 (2000) · Zbl 0984.76036
[82] Kolmogorov, A. N.; Kolmogorov, A. N., Dissipation of energy in the locally isotropic turbulence, Dokl. Akad. Nauk SSSR, 32, 1 (1991) · Zbl 1142.76390
[83] Pao, Y.-H., Structure of turbulent velocity and scalar fields at large wavenumbers, Phys. Fluids, 8, 6, 1063-1075 (1965)
[84] Kolmogorov, A. N., The local structure of turbulence in an incompressible fluid with very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30, 301-305 (1941) · JFM 67.0850.06
[85] Goto, S.; Vassilicos, J., Local equilibrium hypothesis and Taylor’s dissipation law, Fluid Dyn. Res., 48, 2 (2016)
[86] Brachet, M.; Meiron, D.; Orszag, S.; Nickel, B.; Morf, R.; Frisch, U., Small-scale structure of the Taylor-Green vortex, J. Fluid Mech., 130, 411-452 (1983) · Zbl 0517.76033
[87] Frisch, U.; Kurien, S.; Pandit, R.; Pauls, W.; Ray, S. S.; Wirth, A.; Zhu, J.-Z., Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence, Phys. Rev. Lett., 101, 14, 1-4 (2008)
[88] Cichowlas, C.; Bonaïti, P.; Debbasch, F.; Brachet, M., Effective dissipation and turbulence in spectrally truncated Euler flows, Phys. Rev. Lett., 95, Article 264502 pp. (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.