Khoshsimaye-Bargard, Maryam; Ashrafi, Ali A descent family of three-term conjugate gradient methods with global convergence for general functions. (English) Zbl 07613100 Pac. J. Optim. 18, No. 3, 529-543 (2022). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{M. Khoshsimaye-Bargard} and \textit{A. Ashrafi}, Pac. J. Optim. 18, No. 3, 529--543 (2022; Zbl 07613100) Full Text: Link OpenURL
Mirhoseini, Nasrin; Babaie-Kafaki, Saman; Aminifard, Zohre A nonmonotone scaled Fletcher-Reeves conjugate gradient method with application in image reconstruction. (English) Zbl 07610154 Bull. Malays. Math. Sci. Soc. (2) 45, No. 6, 2885-2904 (2022). MSC: 90C06 49M37 94A08 PDF BibTeX XML Cite \textit{N. Mirhoseini} et al., Bull. Malays. Math. Sci. Soc. (2) 45, No. 6, 2885--2904 (2022; Zbl 07610154) Full Text: DOI OpenURL
Yuan, Gonglin; Yang, Heshu; Zhang, Mengxiang Adaptive three-term PRP algorithms without gradient Lipschitz continuity condition for nonconvex functions. (English) Zbl 1496.65080 Numer. Algorithms 91, No. 1, 145-160 (2022). MSC: 65K05 90C26 90C52 PDF BibTeX XML Cite \textit{G. Yuan} et al., Numer. Algorithms 91, No. 1, 145--160 (2022; Zbl 1496.65080) Full Text: DOI OpenURL
Najm, Huda Y.; Ahmed, Huda I. A new investigation of the conjugate gradient method for solving unconstrained optimization problems. (English) Zbl 07555753 Int. J. Math. Comput. Sci. 17, No. 3, 1241-1250 (2022). MSC: 65K10 PDF BibTeX XML Cite \textit{H. Y. Najm} and \textit{H. I. Ahmed}, Int. J. Math. Comput. Sci. 17, No. 3, 1241--1250 (2022; Zbl 07555753) Full Text: Link OpenURL
Aminifard, Zohre; Babaie-Kafaki, Saman Dai-Liao extensions of a descent hybrid nonlinear conjugate gradient method with application in signal processing. (English) Zbl 1484.65132 Numer. Algorithms 89, No. 3, 1369-1387 (2022). MSC: 65K10 90C53 49M37 94A08 PDF BibTeX XML Cite \textit{Z. Aminifard} and \textit{S. Babaie-Kafaki}, Numer. Algorithms 89, No. 3, 1369--1387 (2022; Zbl 1484.65132) Full Text: DOI OpenURL
Hu, Qingjie; Zhang, Hongrun; Chen, Yu Global convergence of a descent PRP type conjugate gradient method for nonconvex optimization. (English) Zbl 1484.65122 Appl. Numer. Math. 173, 38-50 (2022). MSC: 65K05 90C30 90C52 90C06 90C26 PDF BibTeX XML Cite \textit{Q. Hu} et al., Appl. Numer. Math. 173, 38--50 (2022; Zbl 1484.65122) Full Text: DOI OpenURL
Dong, Xiao-Liang; Dai, Zhi-Feng; Ghanbari, Reza; Li, Xiang-Li An adaptive three-term conjugate gradient method with sufficient descent condition and conjugacy condition. (English) Zbl 1488.49058 J. Oper. Res. Soc. China 9, No. 2, 411-425 (2021). MSC: 49M37 65K05 90C53 PDF BibTeX XML Cite \textit{X.-L. Dong} et al., J. Oper. Res. Soc. China 9, No. 2, 411--425 (2021; Zbl 1488.49058) Full Text: DOI OpenURL
Sakai, Hiroyuki; Iiduka, Hideaki Sufficient descent Riemannian conjugate gradient methods. (English) Zbl 1472.65072 J. Optim. Theory Appl. 190, No. 1, 130-150 (2021). MSC: 65K05 90C26 57R35 PDF BibTeX XML Cite \textit{H. Sakai} and \textit{H. Iiduka}, J. Optim. Theory Appl. 190, No. 1, 130--150 (2021; Zbl 1472.65072) Full Text: DOI arXiv OpenURL
Huang, Yuanyuan Sufficient descent conjugate gradient methods for solving nondifferentiable convex optimization problem. (Chinese. English summary) Zbl 1474.65168 J. Henan Univ. Sci. Technol., Nat. Sci. 42, No. 2, 94-99 (2021). MSC: 65K05 90C25 PDF BibTeX XML Cite \textit{Y. Huang}, J. Henan Univ. Sci. Technol., Nat. Sci. 42, No. 2, 94--99 (2021; Zbl 1474.65168) Full Text: DOI OpenURL
Zhang, Keke; Liu, Hongwei; Liu, Zexian A new adaptive subspace minimization three-term conjugate gradient algorithm for unconstrained optimization. (English) Zbl 1474.90455 J. Comput. Math. 39, No. 2, 159-177 (2021). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{K. Zhang} et al., J. Comput. Math. 39, No. 2, 159--177 (2021; Zbl 1474.90455) Full Text: DOI OpenURL
Aminifard, Zohre; Babaie-Kafaki, Saman Modified spectral conjugate gradient methods based on the quasi-Newton aspects. (English) Zbl 1457.90171 Pac. J. Optim. 16, No. 4, 581-594 (2020). MSC: 90C53 65K05 90C30 PDF BibTeX XML Cite \textit{Z. Aminifard} and \textit{S. Babaie-Kafaki}, Pac. J. Optim. 16, No. 4, 581--594 (2020; Zbl 1457.90171) Full Text: Link OpenURL
Faramarzi, Parvaneh; Amini, Keyvan A modified conjugate gradient method based on a modified secant equation. (English) Zbl 1474.90438 J. Math. Model. 8, No. 1, 1-20 (2020). MSC: 90C30 90C06 65K05 90C53 PDF BibTeX XML Cite \textit{P. Faramarzi} and \textit{K. Amini}, J. Math. Model. 8, No. 1, 1--20 (2020; Zbl 1474.90438) Full Text: DOI OpenURL
Arman, L.; Xu, Y.; Rostami, M.; Rahpeymaii, F. Some three-term conjugate gradient methods for solving unconstrained optimization problems. (English) Zbl 1454.65040 Pac. J. Optim. 16, No. 3, 461-472 (2020). MSC: 65K05 90C06 90C26 90C30 PDF BibTeX XML Cite \textit{L. Arman} et al., Pac. J. Optim. 16, No. 3, 461--472 (2020; Zbl 1454.65040) Full Text: Link OpenURL
Dong, Xiaoliang A modified nonlinear Polak-Ribière-Polyak conjugate gradient method with sufficient descent property. (English) Zbl 1451.90152 Calcolo 57, No. 3, Paper No. 30, 14 p. (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{X. Dong}, Calcolo 57, No. 3, Paper No. 30, 14 p. (2020; Zbl 1451.90152) Full Text: DOI OpenURL
Sellami, Badreddine; Chiheb Eddine Sellami, Mohamed Global convergence of a modified Fletcher-Reeves conjugate gradient method with Wolfe line search. (English) Zbl 1464.65058 Asian-Eur. J. Math. 13, No. 4, Article ID 2050081, 10 p. (2020). MSC: 65K05 90C25 90C26 90C27 90C30 PDF BibTeX XML Cite \textit{B. Sellami} and \textit{M. Chiheb Eddine Sellami}, Asian-Eur. J. Math. 13, No. 4, Article ID 2050081, 10 p. (2020; Zbl 1464.65058) Full Text: DOI OpenURL
Dong, Xiaoliang; Han, Deren A note on the optimal parameter of Babaie-Kafaki’s three-term conjugate gradient method. (English) Zbl 1455.65093 Pac. J. Optim. 15, No. 3, 359-377 (2019). MSC: 65K05 90C53 PDF BibTeX XML Cite \textit{X. Dong} and \textit{D. Han}, Pac. J. Optim. 15, No. 3, 359--377 (2019; Zbl 1455.65093) Full Text: Link OpenURL
Keshtegar, Behrooz; Zhu, Shun-Peng Three-term conjugate approach for structural reliability analysis. (English) Zbl 1481.90139 Appl. Math. Modelling 76, 428-442 (2019). MSC: 90B25 90C52 90C90 PDF BibTeX XML Cite \textit{B. Keshtegar} and \textit{S.-P. Zhu}, Appl. Math. Modelling 76, 428--442 (2019; Zbl 1481.90139) Full Text: DOI OpenURL
Faramarzi, Parvaneh; Amini, Keyvan A modified spectral conjugate gradient method with global convergence. (English) Zbl 1422.90053 J. Optim. Theory Appl. 182, No. 2, 667-690 (2019). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{P. Faramarzi} and \textit{K. Amini}, J. Optim. Theory Appl. 182, No. 2, 667--690 (2019; Zbl 1422.90053) Full Text: DOI OpenURL
Nakayama, Shummin; Narushima, Yasushi; Yabe, Hiroshi Memoryless quasi-Newton methods based on spectral-scaling Broyden family for unconstrained optimization. (English) Zbl 1438.90331 J. Ind. Manag. Optim. 15, No. 4, 1773-1793 (2019). MSC: 90C30 90C06 65K05 90C53 PDF BibTeX XML Cite \textit{S. Nakayama} et al., J. Ind. Manag. Optim. 15, No. 4, 1773--1793 (2019; Zbl 1438.90331) Full Text: DOI OpenURL
Aminifard, Zohre; Babaie-Kafaki, Saman A modified descent Polak-Ribiére-Polyak conjugate gradient method with global convergence property for nonconvex functions. (English) Zbl 1415.90147 Calcolo 56, No. 2, Paper No. 16, 11 p. (2019). MSC: 90C53 65K05 PDF BibTeX XML Cite \textit{Z. Aminifard} and \textit{S. Babaie-Kafaki}, Calcolo 56, No. 2, Paper No. 16, 11 p. (2019; Zbl 1415.90147) Full Text: DOI OpenURL
Amini, Keyvan; Faramarzi, Parvaneh; Pirfalah, Nasrin A modified Hestenes-Stiefel conjugate gradient method with an optimal property. (English) Zbl 1461.65114 Optim. Methods Softw. 34, No. 4, 770-782 (2019). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{K. Amini} et al., Optim. Methods Softw. 34, No. 4, 770--782 (2019; Zbl 1461.65114) Full Text: DOI OpenURL
Zhang, Keke; Liu, Hongwei; Liu, Zexian A new Dai-Liao conjugate gradient method with optimal parameter choice. (English) Zbl 1411.90329 Numer. Funct. Anal. Optim. 40, No. 2, 194-215 (2019). MSC: 90C30 PDF BibTeX XML Cite \textit{K. Zhang} et al., Numer. Funct. Anal. Optim. 40, No. 2, 194--215 (2019; Zbl 1411.90329) Full Text: DOI OpenURL
Dong, Xiao-Liang; Liu, Ze-Xian; Liu, Hong-Wei; Li, Xiang-Li An efficient adaptive three-term extension of the Hestenes-Stiefel conjugate gradient method. (English) Zbl 1411.65081 Optim. Methods Softw. 34, No. 3, 546-559 (2019). MSC: 65K05 90C53 PDF BibTeX XML Cite \textit{X.-L. Dong} et al., Optim. Methods Softw. 34, No. 3, 546--559 (2019; Zbl 1411.65081) Full Text: DOI OpenURL
Sun, Zhongbo; Li, Hongyang; Wang, Jing; Tian, Yantao Two modified spectral conjugate gradient methods and their global convergence for unconstrained optimization. (English) Zbl 1499.65230 Int. J. Comput. Math. 95, No. 10, 2082-2099 (2018). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{Z. Sun} et al., Int. J. Comput. Math. 95, No. 10, 2082--2099 (2018; Zbl 1499.65230) Full Text: DOI OpenURL
Nakayama, Shummin A hybrid method of three-term conjugate gradient method and memoryless quasi-Newton method for unconstrained optimization. (English) Zbl 1422.90055 SUT J. Math. 54, No. 1, 79-98 (2018). MSC: 90C30 90C06 PDF BibTeX XML Cite \textit{S. Nakayama}, SUT J. Math. 54, No. 1, 79--98 (2018; Zbl 1422.90055) OpenURL
Dong, Xiaoliang; Li, Weijun Global convergence of a new Wei-Yao-Liu type conjugate gradient method. (Chinese. English summary) Zbl 1424.65080 J. Henan Norm. Univ., Nat. Sci. 46, No. 4, 107-112 (2018). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{X. Dong} and \textit{W. Li}, J. Henan Norm. Univ., Nat. Sci. 46, No. 4, 107--112 (2018; Zbl 1424.65080) Full Text: DOI OpenURL
Koorapetse, Mompati S.; Kaelo, P. Globally convergent three-term conjugate gradient projection methods for solving nonlinear monotone equations. (English) Zbl 1412.90142 Arab. J. Math. 7, No. 4, 289-301 (2018). MSC: 90C30 90C56 65K05 65K10 PDF BibTeX XML Cite \textit{M. S. Koorapetse} and \textit{P. Kaelo}, Arab. J. Math. 7, No. 4, 289--301 (2018; Zbl 1412.90142) Full Text: DOI OpenURL
Dong, XiaoLiang; Han, Deren; Dai, Zhifeng; Li, Lixiang; Zhu, Jianguang An accelerated three-term conjugate gradient method with sufficient descent condition and conjugacy condition. (English) Zbl 1402.90176 J. Optim. Theory Appl. 179, No. 3, 944-961 (2018). MSC: 90C30 PDF BibTeX XML Cite \textit{X. Dong} et al., J. Optim. Theory Appl. 179, No. 3, 944--961 (2018; Zbl 1402.90176) Full Text: DOI OpenURL
Nakayama, Shummin; Narushima, Yasushi; Yabe, Hiroshi A memoryless symmetric rank-one method with sufficient descent property for unconstrained optimization. (English) Zbl 1391.90493 J. Oper. Res. Soc. Japan 61, No. 1, 53-70 (2018). MSC: 90C26 90C30 90C53 PDF BibTeX XML Cite \textit{S. Nakayama} et al., J. Oper. Res. Soc. Japan 61, No. 1, 53--70 (2018; Zbl 1391.90493) Full Text: DOI OpenURL
Keshtegar, Behrooz; Hao, Peng A hybrid self-adjusted mean value method for reliability-based design optimization using sufficient descent condition. (English) Zbl 1443.74062 Appl. Math. Modelling 41, 257-270 (2017). MSC: 74-10 74P05 PDF BibTeX XML Cite \textit{B. Keshtegar} and \textit{P. Hao}, Appl. Math. Modelling 41, 257--270 (2017; Zbl 1443.74062) Full Text: DOI OpenURL
Ding, Yanyun; Xiao, Yunhai; Li, Jianwei A class of conjugate gradient methods for convex constrained monotone equations. (English) Zbl 1383.90037 Optimization 66, No. 12, 2309-2328 (2017). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{Y. Ding} et al., Optimization 66, No. 12, 2309--2328 (2017; Zbl 1383.90037) Full Text: DOI OpenURL
Kobayashi, Hiroshi; Narushima, Yasushi; Yabe, Hiroshi Descent three-term conjugate gradient methods based on secant conditions for unconstrained optimization. (English) Zbl 1375.90283 Optim. Methods Softw. 32, No. 6, 1313-1329 (2017). MSC: 90C30 90C06 PDF BibTeX XML Cite \textit{H. Kobayashi} et al., Optim. Methods Softw. 32, No. 6, 1313--1329 (2017; Zbl 1375.90283) Full Text: DOI OpenURL
Dong, Xiaoliang; He, Yubo; Kong, Xiangyu; Li, Weijun A new conjugate gradient method with strongly global convergence and sufficient descent condition. (English) Zbl 1389.90301 J. Math., Wuhan Univ. 37, No. 2, 231-238 (2017). MSC: 90C30 65K10 PDF BibTeX XML Cite \textit{X. Dong} et al., J. Math., Wuhan Univ. 37, No. 2, 231--238 (2017; Zbl 1389.90301) OpenURL
Dong, Xiao-Liang; Han, De-Ren; Ghanbari, Reza; Li, Xiang-Li; Dai, Zhi-Feng Some new three-term Hestenes-Stiefel conjugate gradient methods with affine combination. (English) Zbl 1375.90281 Optimization 66, No. 5, 759-776 (2017). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{X.-L. Dong} et al., Optimization 66, No. 5, 759--776 (2017; Zbl 1375.90281) Full Text: DOI OpenURL
Andrei, Neculai Accelerated adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update. (English) Zbl 1365.65158 J. Comput. Appl. Math. 325, 149-164 (2017). MSC: 65K05 90C06 PDF BibTeX XML Cite \textit{N. Andrei}, J. Comput. Appl. Math. 325, 149--164 (2017; Zbl 1365.65158) Full Text: DOI OpenURL
Andrei, Neculai Eigenvalues versus singular values study in conjugate gradient algorithms for large-scale unconstrained optimization. (English) Zbl 1368.49057 Optim. Methods Softw. 32, No. 3, 534-551 (2017). MSC: 49R05 90C06 49M15 65K15 PDF BibTeX XML Cite \textit{N. Andrei}, Optim. Methods Softw. 32, No. 3, 534--551 (2017; Zbl 1368.49057) Full Text: DOI OpenURL
Dong, Xiao-Liang; Liu, Hong-Wei; Li, Xiang-Li; He, Yu-Bo; Liu, Ze-Xian A modified nonmonotone hestenes-Stiefel type conjugate gradient methods for large-scale unconstrained problems. (English) Zbl 1362.90341 Numer. Funct. Anal. Optim. 38, No. 1, 39-50 (2017). MSC: 90C30 90C06 90C52 90C53 PDF BibTeX XML Cite \textit{X.-L. Dong} et al., Numer. Funct. Anal. Optim. 38, No. 1, 39--50 (2017; Zbl 1362.90341) Full Text: DOI OpenURL
Huang, Yuanyuan; Liu, Changhe Dai-Kou type conjugate gradient methods with a line search only using gradient. (English) Zbl 1362.65062 J. Inequal. Appl. 2017, Paper No. 66, 17 p. (2017). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{Y. Huang} and \textit{C. Liu}, J. Inequal. Appl. 2017, Paper No. 66, 17 p. (2017; Zbl 1362.65062) Full Text: DOI OpenURL
Dong, Xiao Liang; Li, Wei Jun; He, Yu Bo Some modified Yabe-Takano conjugate gradient methods with sufficient descent condition. (English) Zbl 1358.49027 RAIRO, Oper. Res. 51, No. 1, 67-77 (2017). MSC: 49M37 65K05 90C53 PDF BibTeX XML Cite \textit{X. L. Dong} et al., RAIRO, Oper. Res. 51, No. 1, 67--77 (2017; Zbl 1358.49027) Full Text: DOI OpenURL
Dong, XiaoLiang; Liu, Hongwei; He, Yubo; Babaie-Kafaki, Saman; Ghanbari, Reza A new three-term conjugate gradient method with descent direction for unconstrained optimization. (English) Zbl 1488.49059 Math. Model. Anal. 21, No. 3, 399-411 (2016). MSC: 49M37 65K05 90C53 PDF BibTeX XML Cite \textit{X. Dong} et al., Math. Model. Anal. 21, No. 3, 399--411 (2016; Zbl 1488.49059) Full Text: DOI OpenURL
Ghani, Nur Hamizah Abdul; Rivaie, Mohd.; Mamat, Mustafa A modified form of conjugate gradient method for unconstrained optimization problems. (English) Zbl 1468.90145 Chen, Chuei Yee (ed.) et al., Innovations through mathematical and statistical research. Proceedings of the 2nd international conference on mathematical sciences and statistics, ICMSS2016, Kuala Lumpur, Malaysia, January 26–28, 2016. Melville, NY: American Institute of Physics (AIP). AIP Conf. Proc. 1739, Article ID 020076, 8 p. (2016). MSC: 90C52 90C30 PDF BibTeX XML Cite \textit{N. H. A. Ghani} et al., AIP Conf. Proc. 1739, Article ID 020076, 8 p. (2016; Zbl 1468.90145) Full Text: DOI OpenURL
Andrei, Neculai A new adaptive conjugate gradient algorithm for large-scale unconstrained optimization. (English) Zbl 1354.90072 Goldengorin, Boris (ed.), Optimization and applications in control and data sciences. In honor of Boris T. Polyak’s 80th birthday. Selected papers based on the presentations at the international conference, Moscow, Russia, May, 13–15, 2015. Cham: Springer (ISBN 978-3-319-42054-7/hbk; 978-3-319-42056-1/ebook). Springer Optimization and Its Applications 115, 1-16 (2016). MSC: 90C06 PDF BibTeX XML Cite \textit{N. Andrei}, Springer Optim. Appl. 115, 1--16 (2016; Zbl 1354.90072) Full Text: DOI OpenURL
Dong, Xlaoliang; He, Yubo A modified THREECG conjugate gradient method with sufficient descent condition and adaptive conjugacy condition. (Chinese. English summary) Zbl 1363.90191 Acta Math. Appl. Sin. 39, No. 1, 58-70 (2016). MSC: 90C26 65K05 PDF BibTeX XML Cite \textit{X. Dong} and \textit{Y. He}, Acta Math. Appl. Sin. 39, No. 1, 58--70 (2016; Zbl 1363.90191) OpenURL
Dong, XiaoLiang Comment on “A new three-term conjugate gradient method for unconstrained problem”. (English) Zbl 1346.90765 Numer. Algorithms 72, No. 1, 173-179 (2016). MSC: 90C30 PDF BibTeX XML Cite \textit{X. Dong}, Numer. Algorithms 72, No. 1, 173--179 (2016; Zbl 1346.90765) Full Text: DOI OpenURL
Dong, Xiao Liang; Liu, Hong Wei; He, Yu Bo New version of the three-term conjugate gradient method based on spectral scaling conjugacy condition that generates descent search direction. (English) Zbl 1410.90195 Appl. Math. Comput. 269, 606-617 (2015). MSC: 90C30 65K10 90C52 PDF BibTeX XML Cite \textit{X. L. Dong} et al., Appl. Math. Comput. 269, 606--617 (2015; Zbl 1410.90195) Full Text: DOI OpenURL
Dong, Xiaoliang; Yang, Ximei; Huang, Yuanyuan Global convergence of a new conjugate gradient method with Armijo search. (Chinese. English summary) Zbl 1349.90778 J. Henan Norm. Univ., Nat. Sci. 43, No. 6, 25-29 (2015). MSC: 90C31 65K05 PDF BibTeX XML Cite \textit{X. Dong} et al., J. Henan Norm. Univ., Nat. Sci. 43, No. 6, 25--29 (2015; Zbl 1349.90778) Full Text: DOI OpenURL
Wu, Xuesha Global convergence of a hybrid conjugate gradient method. (English) Zbl 1349.90771 Chin. Q. J. Math. 30, No. 3, 408-415 (2015). MSC: 90C30 65K05 90C31 PDF BibTeX XML Cite \textit{X. Wu}, Chin. Q. J. Math. 30, No. 3, 408--415 (2015; Zbl 1349.90771) Full Text: DOI OpenURL
Saman, Babaiekafaki A modified three-term conjugate gradient method with sufficient descent property. (English) Zbl 1349.90786 Appl. Math., Ser. B (Engl. Ed.) 30, No. 3, 263-272 (2015). MSC: 90C31 65K05 PDF BibTeX XML Cite \textit{B. Saman}, Appl. Math., Ser. B (Engl. Ed.) 30, No. 3, 263--272 (2015; Zbl 1349.90786) Full Text: DOI OpenURL
Babaie-Kafaki, Saman; Ghanbari, Reza An extended three-term conjugate gradient method with sufficient descent property. (English) Zbl 1340.65118 Miskolc Math. Notes 16, No. 1, 45-55 (2015). MSC: 65K05 90C53 90C30 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki} and \textit{R. Ghanbari}, Miskolc Math. Notes 16, No. 1, 45--55 (2015; Zbl 1340.65118) OpenURL
Dong, Xiao Liang; Liu, Hongwei; Xu, Yin Ling; Yang, Xi Mei Some nonlinear conjugate gradient methods with sufficient descent condition and global convergence. (English) Zbl 1332.90344 Optim. Lett. 9, No. 7, 1421-1432 (2015). MSC: 90C52 PDF BibTeX XML Cite \textit{X. L. Dong} et al., Optim. Lett. 9, No. 7, 1421--1432 (2015; Zbl 1332.90344) Full Text: DOI OpenURL
Dong, XiaoLiang; Liu, Hongwei; He, Yubo A self-adjusting conjugate gradient method with sufficient descent condition and conjugacy condition. (English) Zbl 1322.90094 J. Optim. Theory Appl. 165, No. 1, 225-241 (2015). MSC: 90C30 PDF BibTeX XML Cite \textit{X. Dong} et al., J. Optim. Theory Appl. 165, No. 1, 225--241 (2015; Zbl 1322.90094) Full Text: DOI OpenURL
Dong, Xiao Liang; Liu, Hong Wei; He, Yu Bo; Yang, Xi Mei A modified Hestenes-Stiefel conjugate gradient method with sufficient descent condition and conjugacy condition. (English) Zbl 1309.65074 J. Comput. Appl. Math. 281, 239-249 (2015). MSC: 65K10 90C53 65F10 PDF BibTeX XML Cite \textit{X. L. Dong} et al., J. Comput. Appl. Math. 281, 239--249 (2015; Zbl 1309.65074) Full Text: DOI OpenURL
Al-Baali, Mehiddin; Narushima, Yasushi; Yabe, Hiroshi A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization. (English) Zbl 1315.90051 Comput. Optim. Appl. 60, No. 1, 89-110 (2015). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{M. Al-Baali} et al., Comput. Optim. Appl. 60, No. 1, 89--110 (2015; Zbl 1315.90051) Full Text: DOI OpenURL
Huang, Hai; Lin, Suihua A modified Wei-Yao-Liu conjugate gradient method for unconstrained optimization. (English) Zbl 1410.90245 Appl. Math. Comput. 231, 179-186 (2014). MSC: 90C52 90C26 65K05 PDF BibTeX XML Cite \textit{H. Huang} and \textit{S. Lin}, Appl. Math. Comput. 231, 179--186 (2014; Zbl 1410.90245) Full Text: DOI OpenURL
Wu, Xuesha Global convergence of a modified conjugate gradient method. (English) Zbl 1372.90086 J. Inequal. Appl. 2014, Paper No. 248, 12 p. (2014). MSC: 90C26 65H10 PDF BibTeX XML Cite \textit{X. Wu}, J. Inequal. Appl. 2014, Paper No. 248, 12 p. (2014; Zbl 1372.90086) Full Text: DOI OpenURL
Narushima, Yasushi; Yabe, Hiroshi A survey of sufficient descent conjugate gradient methods for unconstrained optimization. (English) Zbl 1329.90142 SUT J. Math. 50, No. 2, 167-203 (2014). MSC: 90C30 90C06 65K05 PDF BibTeX XML Cite \textit{Y. Narushima} and \textit{H. Yabe}, SUT J. Math. 50, No. 2, 167--203 (2014; Zbl 1329.90142) OpenURL
Babaie-Kafaki, Saman On the sufficient descent condition of the Hager-Zhang conjugate gradient methods. (English) Zbl 1307.65084 4OR 12, No. 3, 285-292 (2014). Reviewer: Hans Benker (Merseburg) MSC: 65K05 90C30 90C06 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki}, 4OR 12, No. 3, 285--292 (2014; Zbl 1307.65084) Full Text: DOI OpenURL
Babaie-Kafaki, Saman; Ghanbari, Reza Two modified three-term conjugate gradient methods with sufficient descent property. (English) Zbl 1309.90097 Optim. Lett. 8, No. 8, 2285-2297 (2014). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki} and \textit{R. Ghanbari}, Optim. Lett. 8, No. 8, 2285--2297 (2014; Zbl 1309.90097) Full Text: DOI OpenURL
Dan, Bin; Zhang, Yang New conjugate gradient-like methods for unconstrained optimization. (English) Zbl 1308.65090 Optim. Methods Softw. 29, No. 6, 1302-1316 (2014). Reviewer: Guoqiang Wang (Shanghai) MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{B. Dan} and \textit{Y. Zhang}, Optim. Methods Softw. 29, No. 6, 1302--1316 (2014; Zbl 1308.65090) Full Text: DOI OpenURL
Babaie-Kafaki, Saman Two modified scaled nonlinear conjugate gradient methods. (English) Zbl 1278.65086 J. Comput. Appl. Math. 261, 172-182 (2014). MSC: 65K05 90C53 49M37 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki}, J. Comput. Appl. Math. 261, 172--182 (2014; Zbl 1278.65086) Full Text: DOI OpenURL
Babaie-Kafaki, Saman An eigenvalue study on the sufficient descent property of a modified Polak-Ribière-Polyak conjugate gradient method. (English) Zbl 1308.65088 Bull. Iran. Math. Soc. 40, No. 1, 235-242 (2014). Reviewer: Guoqiang Wang (Shanghai) MSC: 65K05 90C53 90C30 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki}, Bull. Iran. Math. Soc. 40, No. 1, 235--242 (2013; Zbl 1308.65088) Full Text: Link OpenURL
Dong, Xiaoliang; Gao, Yuelin; He, Yubo A hybrid HS-PRP conjugate gradient method with Armijo line search. (Chinese. English summary) Zbl 1299.65117 Chin. J. Eng. Math. 30, No. 3, 370-376 (2013). MSC: 65K05 90C30 90C52 90C06 PDF BibTeX XML Cite \textit{X. Dong} et al., Chin. J. Eng. Math. 30, No. 3, 370--376 (2013; Zbl 1299.65117) Full Text: DOI OpenURL
Babaie-Kafaki, Saman A modified scaled memoryless BFGS preconditioned conjugate gradient method for unconstrained optimization. (English) Zbl 1292.65061 4OR 11, No. 4, 361-374 (2013). MSC: 65K05 90C53 49M37 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki}, 4OR 11, No. 4, 361--374 (2013; Zbl 1292.65061) Full Text: DOI OpenURL
Babaie-Kafaki, Saman Erratum to: scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization. (English) Zbl 1271.90080 Optim. Methods Softw. 28, No. 1, 217-219 (2013). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki}, Optim. Methods Softw. 28, No. 1, 217--219 (2013; Zbl 1271.90080) Full Text: DOI OpenURL
Babaie-Kafaki, Saman On the sufficient descent property of the Shanno’s conjugate gradient method. (English) Zbl 1269.90106 Optim. Lett. 7, No. 4, 831-837 (2013). MSC: 90C30 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki}, Optim. Lett. 7, No. 4, 831--837 (2013; Zbl 1269.90106) Full Text: DOI OpenURL
Babaie-Kafaki, Saman A new proof for the sufficient descent condition of Andrei’s scaled conjugate gradient algorithms. (English) Zbl 1261.65060 Pac. J. Optim. 9, No. 1, 23-28 (2013). MSC: 65K05 90C30 90C52 90C06 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki}, Pac. J. Optim. 9, No. 1, 23--28 (2013; Zbl 1261.65060) Full Text: Link OpenURL
Babaie-Kafaki, Saman A note on the global convergence theorem of the scaled conjugate gradient algorithms proposed by Andrei. (English) Zbl 1269.90105 Comput. Optim. Appl. 52, No. 2, 409-414 (2012). MSC: 90C30 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki}, Comput. Optim. Appl. 52, No. 2, 409--414 (2012; Zbl 1269.90105) Full Text: DOI OpenURL
Zhang, Yang; Wang, Kairong A new general form of conjugate gradient methods with guaranteed descent and strong global convergence properties. (English) Zbl 1245.65069 Numer. Algorithms 60, No. 1, 135-152 (2012). Reviewer: Guoqiang Wang (Shanghai) MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{K. Wang}, Numer. Algorithms 60, No. 1, 135--152 (2012; Zbl 1245.65069) Full Text: DOI OpenURL
Hu, Juanjuan; Zhu, Zhibin; Wang, Shuo; Qing, Qian A new conjugate gradient method for modified Fletcher-Reeves formula. (English) Zbl 1269.90107 Pioneer J. Adv. Appl. Math. 1, No. 1, 59-66 (2011). MSC: 90C30 PDF BibTeX XML Cite \textit{J. Hu} et al., Pioneer J. Adv. Appl. Math. 1, No. 1, 59--66 (2011; Zbl 1269.90107) OpenURL
Dong, Xiaoliang; Gao, Yuelin; He, Yubo Global convergence of an improved DY conjugate gradient method with Armijo line search. (Chinese. English summary) Zbl 1265.90268 J. Numer. Methods Comput. Appl. 32, No. 4, 253-258 (2011). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{X. Dong} et al., J. Numer. Methods Comput. Appl. 32, No. 4, 253--258 (2011; Zbl 1265.90268) OpenURL
Andrei, Neculai A modified Polak-Ribière-Polyak conjugate gradient algorithm for unconstrained optimization. (English) Zbl 1233.90255 Optimization 60, No. 10-12, 1457-1471 (2011). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{N. Andrei}, Optimization 60, No. 10--12, 1457--1471 (2011; Zbl 1233.90255) Full Text: DOI OpenURL
Narushima, Yasushi; Yabe, Hiroshi; Ford, John A. A three-term conjugate gradient method with sufficient descent property for unconstrained optimization. (English) Zbl 1250.90087 SIAM J. Optim. 21, No. 1, 212-230 (2011). Reviewer: Lai-Jiu Lin (Changhua) MSC: 90C30 90C06 90C55 PDF BibTeX XML Cite \textit{Y. Narushima} et al., SIAM J. Optim. 21, No. 1, 212--230 (2011; Zbl 1250.90087) Full Text: DOI Link OpenURL
Lu, Sha; Wei, Zengxin; Mo, Liliu Some global convergence properties of the Wei-Yao-Liu conjugate gradient method with inexact line search. (English) Zbl 1217.65108 Appl. Math. Comput. 217, No. 17, 7132-7137 (2011). MSC: 65K05 PDF BibTeX XML Cite \textit{S. Lu} et al., Appl. Math. Comput. 217, No. 17, 7132--7137 (2011; Zbl 1217.65108) Full Text: DOI OpenURL
Wei, Zengxin; Huang, Haidong; Tao, Yanrong A modified Hestenes-Stiefel conjugate gradient method and its convergence. (English) Zbl 1240.90414 J. Math. Res. Expo. 30, No. 2, 297-308 (2010). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{Z. Wei} et al., J. Math. Res. Expo. 30, No. 2, 297--308 (2010; Zbl 1240.90414) Full Text: DOI OpenURL
Dong, Xiaoliang; Li, Chenliang; He, Yubo Global convergence of a modified DY conjugate gradient method. (Chinese. English summary) Zbl 1240.65184 J. Numer. Methods Comput. Appl. 31, No. 1, 1-7 (2010). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{X. Dong} et al., J. Numer. Methods Comput. Appl. 31, No. 1, 1--7 (2010; Zbl 1240.65184) OpenURL
Andrei, Neculai New accelerated conjugate gradient algorithms as a modification of Dai-Yuan’s computational scheme for unconstrained optimization. (English) Zbl 1407.65060 J. Comput. Appl. Math. 234, No. 12, 3397-3410 (2010). MSC: 65K05 90C30 90C52 PDF BibTeX XML Cite \textit{N. Andrei}, J. Comput. Appl. Math. 234, No. 12, 3397--3410 (2010; Zbl 1407.65060) Full Text: DOI OpenURL
Andrei, Neculai Another nonlinear conjugate gradient algorithm for unconstrained optimization. (English) Zbl 1154.90586 Optim. Methods Softw. 24, No. 1, 89-104 (2009). MSC: 90C30 65K05 90C52 90C06 PDF BibTeX XML Cite \textit{N. Andrei}, Optim. Methods Softw. 24, No. 1, 89--104 (2009; Zbl 1154.90586) Full Text: DOI OpenURL
Andrei, Neculai A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization. (English) Zbl 1165.90683 Appl. Math. Lett. 21, No. 2, 165-171 (2008). MSC: 90C52 90C30 PDF BibTeX XML Cite \textit{N. Andrei}, Appl. Math. Lett. 21, No. 2, 165--171 (2008; Zbl 1165.90683) Full Text: DOI OpenURL
Shengwei, Yao; Wei, Zengxin; Huang, Hai A note about WYL’s conjugate gradient method and its applications. (English) Zbl 1193.90213 Appl. Math. Comput. 191, No. 2, 381-388 (2007). MSC: 90C52 65F10 PDF BibTeX XML Cite \textit{Y. Shengwei} et al., Appl. Math. Comput. 191, No. 2, 381--388 (2007; Zbl 1193.90213) Full Text: DOI OpenURL
Huang, Hai; Wei, Zengxin; Shengwei, Yao The proof of the sufficient descent condition of the Wei-Yao-Liu conjugate gradient method under the strong Wolfe-Powell line search. (English) Zbl 1131.65049 Appl. Math. Comput. 189, No. 2, 1241-1245 (2007). Reviewer: Efstratios Rappos (Athens) MSC: 65K05 90C52 90C30 PDF BibTeX XML Cite \textit{H. Huang} et al., Appl. Math. Comput. 189, No. 2, 1241--1245 (2007; Zbl 1131.65049) Full Text: DOI OpenURL
Llanas, B.; Fernandez De Sevilla, M.; Feliu, V. Minimum distance between the faces of two convex polyhedra: A sufficient condition. (English) Zbl 1033.90089 J. Glob. Optim. 26, No. 4, 361-385 (2003). MSC: 90C26 PDF BibTeX XML Cite \textit{B. Llanas} et al., J. Glob. Optim. 26, No. 4, 361--385 (2003; Zbl 1033.90089) Full Text: DOI OpenURL
Drezner, Zvi; Wesolowsky, George O. Minimax and maximin facility location problems on a sphere. (English) Zbl 0535.90033 Nav. Res. Logist. Q. 30, 305-312 (1983). Reviewer: K.Mosler MSC: 90B05 90C90 65K05 90C30 PDF BibTeX XML Cite \textit{Z. Drezner} and \textit{G. O. Wesolowsky}, Nav. Res. Logist. Q. 30, 305--312 (1983; Zbl 0535.90033) Full Text: DOI OpenURL
Polyakova, L. N. Necessary conditions for an extremum of quasi-differentiable functions. (English) Zbl 0468.90067 Vestn. Leningr. Univ., Math. 13, 241-247 (1981). MSC: 90C30 PDF BibTeX XML Cite \textit{L. N. Polyakova}, Vestn. Leningr. Univ., Math. 13, 241--247 (1981; Zbl 0468.90067) OpenURL
Polyakova, L. N. Necessary conditions for an extremum of quasi-differentiable functions. (Russian) Zbl 0452.90062 Vestn. Leningr. Univ. 1980, No. 13, Mat. Mekh. Astron. 1980, No. 3, 57-62 (1980). MSC: 90C30 PDF BibTeX XML Cite \textit{L. N. Polyakova}, Vestn. Leningr. Univ., Mat. Mekh. Astron. 1980, No. 3, 57--62 (1980; Zbl 0452.90062) OpenURL
Ben-Israel, A.; Ben-Tal, A.; Zlobec, S. Optimality conditions in convex programming. (English) Zbl 0446.90068 Survey of mathematical programming, Proc. int. Symp., Vol. 1, Budapest 1976, 153-169 (1980). MSC: 90C25 65K05 PDF BibTeX XML OpenURL