Liu, Qiao Number of singular points and energy equality for the co-rotational Beris-Edwards system modeling nematic liquid crystal flow. (English) Zbl 1516.35336 J. Math. Fluid Mech. 25, No. 3, Paper No. 60, 30 p. (2023). MSC: 35Q35 35Q30 76A15 76U05 35D30 PDF BibTeX XML Cite \textit{Q. Liu}, J. Math. Fluid Mech. 25, No. 3, Paper No. 60, 30 p. (2023; Zbl 1516.35336) Full Text: DOI
Cui, Xiufang Local \(\varepsilon\)-regularity criteria for the five dimensional stationary Navier-Stokes equations. (English) Zbl 1515.35181 Discrete Contin. Dyn. Syst. 43, No. 2, 715-746 (2023). MSC: 35Q30 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{X. Cui}, Discrete Contin. Dyn. Syst. 43, No. 2, 715--746 (2023; Zbl 1515.35181) Full Text: DOI arXiv
Kang, Kyungkeun; Nguyen, Dinh Duong Local regularity criteria in terms of one velocity component for the Navier-Stokes equations. (English) Zbl 1504.35229 J. Math. Fluid Mech. 25, No. 1, Paper No. 10, 15 p. (2023). MSC: 35Q30 76D03 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{K. Kang} and \textit{D. D. Nguyen}, J. Math. Fluid Mech. 25, No. 1, Paper No. 10, 15 p. (2023; Zbl 1504.35229) Full Text: DOI arXiv
Li, Shuai; Wang, Wendong Interior and boundary regularity criteria for the 6D steady Navier-Stokes equations. (English) Zbl 1501.35284 J. Differ. Equations 342, 418-440 (2023). MSC: 35Q30 76D03 76D05 35B65 35D30 28A78 PDF BibTeX XML Cite \textit{S. Li} and \textit{W. Wang}, J. Differ. Equations 342, 418--440 (2023; Zbl 1501.35284) Full Text: DOI arXiv
Guo, Zhengguang; Kucera, Petr; Skalak, Zdenek The local regularity conditions for the Navier-Stokes equations via one directional derivative of the velocity. (English) Zbl 1497.35343 Lith. Math. J. 62, No. 3, 333-348 (2022). MSC: 35Q30 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{Z. Guo} et al., Lith. Math. J. 62, No. 3, 333--348 (2022; Zbl 1497.35343) Full Text: DOI
Chen, Hui; Tsai, Tai-Peng; Zhang, Ting Remarks on local regularity of axisymmetric solutions to the 3D Navier-Stokes equations. (English) Zbl 1492.35219 Commun. Partial Differ. Equations 47, No. 8, 1680-1699 (2022); correction ibid. 48, No. 6, 987-988 (2023). MSC: 35Q35 35Q30 76D03 PDF BibTeX XML Cite \textit{H. Chen} et al., Commun. Partial Differ. Equations 47, No. 8, 1680--1699 (2022; Zbl 1492.35219) Full Text: DOI arXiv
Yang, Jiaqi Regularity of weak solutions for the fractional Camassa-Holm equations. (English) Zbl 1494.35060 Z. Angew. Math. Phys. 73, No. 4, Paper No. 165, 14 p. (2022). MSC: 35B65 35D30 35G25 35Q35 35R11 PDF BibTeX XML Cite \textit{J. Yang}, Z. Angew. Math. Phys. 73, No. 4, Paper No. 165, 14 p. (2022; Zbl 1494.35060) Full Text: DOI
Jarrín, Oscar Liouville theorems for a stationary and non-stationary coupled system of liquid crystal flows in local Morrey spaces. (English) Zbl 1490.35325 J. Math. Fluid Mech. 24, No. 2, Paper No. 50, 29 p. (2022). MSC: 35Q35 76A15 35B45 35B53 35Q30 76D05 PDF BibTeX XML Cite \textit{O. Jarrín}, J. Math. Fluid Mech. 24, No. 2, Paper No. 50, 29 p. (2022; Zbl 1490.35325) Full Text: DOI arXiv
Kwon, Hyunju; Ożański, Wojciech S. Local regularity of weak solutions of the hypodissipative Navier-Stokes equations. (English) Zbl 1487.35297 J. Funct. Anal. 282, No. 7, Article ID 109370, 77 p. (2022). MSC: 35Q30 76D05 35D30 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{H. Kwon} and \textit{W. S. Ożański}, J. Funct. Anal. 282, No. 7, Article ID 109370, 77 p. (2022; Zbl 1487.35297) Full Text: DOI arXiv
Kim, Jae-Myoung Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space. (English) Zbl 07543222 AIMS Math. 6, No. 3, 2440-2453 (2021). MSC: 35B65 76W05 PDF BibTeX XML Cite \textit{J.-M. Kim}, AIMS Math. 6, No. 3, 2440--2453 (2021; Zbl 07543222) Full Text: DOI
Liu, Qiao On partial regularity criterion for the co-rotational Beris-Edwards system modeling nematic liquid crystal flow. (English) Zbl 1481.35336 J. Differ. Equations 301, 300-329 (2021). MSC: 35Q35 76D03 76A15 76U05 35D30 35B65 PDF BibTeX XML Cite \textit{Q. Liu}, J. Differ. Equations 301, 300--329 (2021; Zbl 1481.35336) Full Text: DOI
Su, Jingrui Suitable weak solutions to the micropolar fluids model in a bounded domain. (English) Zbl 1486.35350 J. Math. Anal. Appl. 504, No. 2, Article ID 125406, 20 p. (2021). MSC: 35Q35 35D30 35A01 35A02 76A05 76U05 76N10 PDF BibTeX XML Cite \textit{J. Su}, J. Math. Anal. Appl. 504, No. 2, Article ID 125406, 20 p. (2021; Zbl 1486.35350) Full Text: DOI
Gong, Huajun; Wang, Changyou; Zhang, Xiaotao Partial regularity of suitable weak solutions of the Navier-Stokes-Planck-Nernst-Poisson equation. (English) Zbl 1472.35298 SIAM J. Math. Anal. 53, No. 3, 3306-3337 (2021). MSC: 35Q35 35K60 35D30 35B65 76D05 PDF BibTeX XML Cite \textit{H. Gong} et al., SIAM J. Math. Anal. 53, No. 3, 3306--3337 (2021; Zbl 1472.35298) Full Text: DOI arXiv
Seregin, G. A note on weak solutions to the Navier-Stokes equations that are locally in \(L_\infty (L^{3,\infty })\). (English) Zbl 1464.35192 St. Petersbg. Math. J. 32, No. 3, 565-576 (2021) and Algebra Anal. 32, No. 3, 238-253 (2020). MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{G. Seregin}, St. Petersbg. Math. J. 32, No. 3, 565--576 (2021; Zbl 1464.35192) Full Text: DOI arXiv
Chen, Ya-zhou; Li, Hai-liang; Shi, Xiao-ding Partial regularity of suitable weak solutions to the system of the incompressible shear-thinning flow. (English) Zbl 1464.35214 Acta Math. Appl. Sin., Engl. Ser. 37, No. 2, 348-363 (2021). MSC: 35Q35 35B40 76N10 76A05 35B65 35D30 PDF BibTeX XML Cite \textit{Y.-z. Chen} et al., Acta Math. Appl. Sin., Engl. Ser. 37, No. 2, 348--363 (2021; Zbl 1464.35214) Full Text: DOI
Fernández-Dalgo, Pedro Gabriel; Jarrín, Oscar Weak-strong uniqueness in weighted \(L^2\) spaces and weak suitable solutions in local Morrey spaces for the MHD equations. (English) Zbl 1454.35255 J. Differ. Equations 271, 864-915 (2021). MSC: 35Q30 76D05 76W05 35D30 35A01 PDF BibTeX XML Cite \textit{P. G. Fernández-Dalgo} and \textit{O. Jarrín}, J. Differ. Equations 271, 864--915 (2021; Zbl 1454.35255) Full Text: DOI arXiv
Jang, Yunsoo; Kim, Dugyu Suitable weak solutions of the incompressible magnetohydrodynamic equations in time varying domains. (English) Zbl 1468.35139 Acta Appl. Math. 170, 709-730 (2020). MSC: 35Q35 35D30 76D05 76W05 35R37 PDF BibTeX XML Cite \textit{Y. Jang} and \textit{D. Kim}, Acta Appl. Math. 170, 709--730 (2020; Zbl 1468.35139) Full Text: DOI
Dong, Hongjie; Wang, Kunrui Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. (English) Zbl 1442.35299 Discrete Contin. Dyn. Syst. 40, No. 9, 5289-5323 (2020). MSC: 35Q30 35B65 76D05 76D03 35D30 PDF BibTeX XML Cite \textit{H. Dong} and \textit{K. Wang}, Discrete Contin. Dyn. Syst. 40, No. 9, 5289--5323 (2020; Zbl 1442.35299) Full Text: DOI arXiv
Dong, Hongjie; Wang, Kunrui Boundary \(\varepsilon \)-regularity criteria for the three-dimensional Navier-Stokes equations. (English) Zbl 1435.35276 SIAM J. Math. Anal. 52, No. 2, 1290-1309 (2020). MSC: 35Q30 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{H. Dong} and \textit{K. Wang}, SIAM J. Math. Anal. 52, No. 2, 1290--1309 (2020; Zbl 1435.35276) Full Text: DOI
Liu, Xiangao; Xia, Shusheng; Zhang, Xiaotao A local Serrin-type regularity criterion for a suitable weak solution to the incompressible liquid crystal system. (Chinese. English summary) Zbl 1499.35149 Sci. Sin., Math. 49, No. 7, 967-990 (2019). MSC: 35B65 35D30 35Q35 76A15 PDF BibTeX XML Cite \textit{X. Liu} et al., Sci. Sin., Math. 49, No. 7, 967--990 (2019; Zbl 1499.35149) Full Text: DOI
Mauro, Jmmy Alfonso Estimates in Morrey-Campanato spaces of a suitable weak solution of the Navier-Stokes equations, satifying an extra-condition. (English) Zbl 1449.76016 PLISKA, Stud. Math. 30, 127-146 (2019). Reviewer: Angela Slavova (Sofia) MSC: 76D05 35Q30 76D03 PDF BibTeX XML Cite \textit{J. A. Mauro}, PLISKA, Stud. Math. 30, 127--146 (2019; Zbl 1449.76016) Full Text: Link
Bulíček, Miroslav; Málek, Josef Large data analysis for Kolmogorov’s two-equation model of turbulence. (English) Zbl 1448.76094 Nonlinear Anal., Real World Appl. 50, 104-143 (2019). MSC: 76F60 35Q35 35A01 35D30 PDF BibTeX XML Cite \textit{M. Bulíček} and \textit{J. Málek}, Nonlinear Anal., Real World Appl. 50, 104--143 (2019; Zbl 1448.76094) Full Text: DOI arXiv
He, Cheng; Wang, Yanqing; Zhou, Daoguo New \(\varepsilon \)-regularity criteria of suitable weak solutions of the 3D Navier-Stokes equations at one scale. (English) Zbl 1427.35177 J. Nonlinear Sci. 29, No. 6, 2681-2698 (2019). MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{C. He} et al., J. Nonlinear Sci. 29, No. 6, 2681--2698 (2019; Zbl 1427.35177) Full Text: DOI arXiv
Wang, Yanqing; Yang, Minsuk Improved bounds for box dimensions of potential singular points to the Navier-Stokes equations. (English) Zbl 1425.76056 Nonlinearity 32, No. 12, 4817-4833 (2019). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{M. Yang}, Nonlinearity 32, No. 12, 4817--4833 (2019; Zbl 1425.76056) Full Text: DOI arXiv
Kim, Jae-Myoung Remark on local boundary regularity condition of suitable weak solutions to the 3D MHD equations. (English) Zbl 1438.35320 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 32, 11 p. (2019). MSC: 35Q35 35B65 35D30 76W05 PDF BibTeX XML Cite \textit{J.-M. Kim}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 32, 11 p. (2019; Zbl 1438.35320) Full Text: DOI
Liu, Qiao Regularity of weak solutions and the number of singular points to the 3D simplified nematic liquid crystal system. (English) Zbl 1423.76042 J. Funct. Anal. 277, No. 12, Article ID 108294, 33 p. (2019). MSC: 76A15 35B65 35Q35 PDF BibTeX XML Cite \textit{Q. Liu}, J. Funct. Anal. 277, No. 12, Article ID 108294, 33 p. (2019; Zbl 1423.76042) Full Text: DOI
Ożański, Wojciech S. The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness. (English) Zbl 1441.35004 Advances in Mathematical Fluid Mechanics. Lecture Notes in Mathematical Fluid Mechanics. Cham: Birkhäuser (ISBN 978-3-030-26660-8/pbk; 978-3-030-26661-5/ebook). vi, 138 p. (2019). Reviewer: Florin Catrina (New York) MSC: 35-02 35B65 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{W. S. Ożański}, The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness. Cham: Birkhäuser (2019; Zbl 1441.35004) Full Text: DOI
Wang, Yanqing; Wu, Gang; Zhou, Daoguo A regularity criterion at one scale without pressure for suitable weak solutions to the Navier-Stokes equations. (English) Zbl 1452.76039 J. Differ. Equations 267, No. 8, 4673-4704 (2019). MSC: 76D03 76D05 35B33 35Q35 35D30 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Differ. Equations 267, No. 8, 4673--4704 (2019; Zbl 1452.76039) Full Text: DOI
Chen, Fei; Guo, Boling The suitable weak solution for the Cauchy problem of the double-diffusive convection system. (English) Zbl 1417.35114 Appl. Anal. 98, No. 9, 1724-1740 (2019). MSC: 35Q35 35D30 76D03 35B65 PDF BibTeX XML Cite \textit{F. Chen} and \textit{B. Guo}, Appl. Anal. 98, No. 9, 1724--1740 (2019; Zbl 1417.35114) Full Text: DOI
Jiu, Quansen; Wang, Yanqing; Zhou, Daoguo On Wolf’s regularity criterion of suitable weak solutions to the Navier-Stokes equations. (English) Zbl 1411.76022 J. Math. Fluid Mech. 21, No. 2, Paper No. 22, 16 p. (2019). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{Q. Jiu} et al., J. Math. Fluid Mech. 21, No. 2, Paper No. 22, 16 p. (2019; Zbl 1411.76022) Full Text: DOI arXiv
Chen, Ya-zhou; He, Qiao-lin; Shi, Xiao-ding; Wang, Teng; Wang, Xiao-ping On the motion of shear-thinning heat-conducting incompressible fluid-rigid system. (English) Zbl 1403.35202 Acta Math. Appl. Sin., Engl. Ser. 34, No. 3, 534-552 (2018). MSC: 35Q30 35M10 76U05 35D30 76A05 35A01 PDF BibTeX XML Cite \textit{Y.-z. Chen} et al., Acta Math. Appl. Sin., Engl. Ser. 34, No. 3, 534--552 (2018; Zbl 1403.35202) Full Text: DOI
Ren, Wei; Wang, Yanqing; Wu, Gang Remarks on the singular set of suitable weak solutions for the three-dimensional Navier-Stokes equations. (English) Zbl 1401.35244 J. Math. Anal. Appl. 467, No. 2, 807-824 (2018). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q30 35D30 76D05 PDF BibTeX XML Cite \textit{W. Ren} et al., J. Math. Anal. Appl. 467, No. 2, 807--824 (2018; Zbl 1401.35244) Full Text: DOI
Wang, Wendong; Zhang, Liqun; Zhang, Zhifei On the interior regularity criteria of the 3-D Navier-Stokes equations involving two velocity components. (English) Zbl 1397.35184 Discrete Contin. Dyn. Syst. 38, No. 5, 2609-2627 (2018). MSC: 35Q30 35B65 76D05 35B44 35D30 PDF BibTeX XML Cite \textit{W. Wang} et al., Discrete Contin. Dyn. Syst. 38, No. 5, 2609--2627 (2018; Zbl 1397.35184) Full Text: DOI arXiv
Lai, Baishun; Ma, Wenya On the interior regularity criteria for liquid crystal flows. (English) Zbl 1382.35226 Nonlinear Anal., Real World Appl. 40, 1-13 (2018). MSC: 35Q35 76A15 35B65 35D30 PDF BibTeX XML Cite \textit{B. Lai} and \textit{W. Ma}, Nonlinear Anal., Real World Appl. 40, 1--13 (2018; Zbl 1382.35226) Full Text: DOI
Liu, Jitao; Wang, Wendong Boundary regularity criteria for the 6D steady Navier-Stokes and MHD equations. (English) Zbl 1378.35221 J. Differ. Equations 264, No. 3, 2351-2376 (2018). MSC: 35Q30 76D03 35D30 76W05 76D05 PDF BibTeX XML Cite \textit{J. Liu} and \textit{W. Wang}, J. Differ. Equations 264, No. 3, 2351--2376 (2018; Zbl 1378.35221) Full Text: DOI arXiv
Kim, Jaemyoung Local regularity criteria of a suitable weak solution to MHD equations. (English) Zbl 1399.35111 Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 4, 1033-1047 (2017). MSC: 35B65 35D30 35Q35 76W05 PDF BibTeX XML Cite \textit{J. Kim}, Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 4, 1033--1047 (2017; Zbl 1399.35111) Full Text: DOI
Badia, Santiago; Gutiérrez-Santacreu, Juan Vicente Convergence to suitable weak solutions for a finite element approximation of the Navier-Stokes equations with numerical subgrid scale modeling. (English) Zbl 1387.35444 J. Sci. Comput. 71, No. 1, 386-413 (2017). MSC: 35Q30 65N30 76N10 35D30 35B45 35A15 76F65 PDF BibTeX XML Cite \textit{S. Badia} and \textit{J. V. Gutiérrez-Santacreu}, J. Sci. Comput. 71, No. 1, 386--413 (2017; Zbl 1387.35444) Full Text: DOI arXiv
Kim, Jae-Myoung Interior condition on suitable weak solutions to the 3D MHD equations via pressure. (English) Zbl 1384.35091 Acta Appl. Math. 152, No. 1, 83-91 (2017). MSC: 35Q35 76W05 35B65 35D30 PDF BibTeX XML Cite \textit{J.-M. Kim}, Acta Appl. Math. 152, No. 1, 83--91 (2017; Zbl 1384.35091) Full Text: DOI
Guo, Xiao Li; Men, Yue Yang On partial regularity of suitable weak solutions to the stationary fractional Navier-Stokes equations in dimension four and five. (English) Zbl 1378.76019 Acta Math. Sin., Engl. Ser. 33, No. 12, 1632-1646 (2017). MSC: 76D03 76D05 35B30 35Q35 PDF BibTeX XML Cite \textit{X. L. Guo} and \textit{Y. Y. Men}, Acta Math. Sin., Engl. Ser. 33, No. 12, 1632--1646 (2017; Zbl 1378.76019) Full Text: DOI
Li, Yuan The Minkowski dimension of interior singular points of suitable weak solutions of the three dimensional of incompressible Boussinesq equations. (Chinese. English summary) Zbl 1389.35259 J. Hubei Univ., Nat. Sci. 39, No. 3, 241-247 (2017). MSC: 35Q35 35B65 35D30 PDF BibTeX XML Cite \textit{Y. Li}, J. Hubei Univ., Nat. Sci. 39, No. 3, 241--247 (2017; Zbl 1389.35259) Full Text: DOI
Choe, Hi Jun; Jang, Yunsoo; Yang, Minsuk Existence of suitable weak solutions to the Navier-Stokes equations in time varying domains. (English) Zbl 1386.35145 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 163, 163-176 (2017). MSC: 35K20 35A01 35D30 PDF BibTeX XML Cite \textit{H. J. Choe} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 163, 163--176 (2017; Zbl 1386.35145) Full Text: DOI
Fang, Daoyuan; Liu, Chun; Qian, Chenyin On partial regularity problem for 3D Boussinesq equations. (English) Zbl 1372.35233 J. Differ. Equations 263, No. 7, 4156-4221 (2017). MSC: 35Q35 76B03 76D03 35B65 35D30 PDF BibTeX XML Cite \textit{D. Fang} et al., J. Differ. Equations 263, No. 7, 4156--4221 (2017; Zbl 1372.35233) Full Text: DOI
Crispo, Francesca; Maremonti, Paolo A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. (English) Zbl 1360.35139 Discrete Contin. Dyn. Syst. 37, No. 3, 1283-1294 (2017). MSC: 35Q30 35B65 76D03 PDF BibTeX XML Cite \textit{F. Crispo} and \textit{P. Maremonti}, Discrete Contin. Dyn. Syst. 37, No. 3, 1283--1294 (2017; Zbl 1360.35139) Full Text: DOI arXiv
Miao, Changxing; Wang, Yanqing Regularity conditions for suitable weak solutions of the Navier-Stokes system from its rotation form. (English) Zbl 1364.35243 Pac. J. Math. 288, No. 1, 189-215 (2017). MSC: 35Q30 35B65 35D30 76U05 76D05 PDF BibTeX XML Cite \textit{C. Miao} and \textit{Y. Wang}, Pac. J. Math. 288, No. 1, 189--215 (2017; Zbl 1364.35243) Full Text: DOI
Luo, Wei; Yin, Zhaoyang The Liouville theorem and the \(L^{2}\) decay for the FENE dumbbell model of polymeric flows. (English) Zbl 1366.35134 Arch. Ration. Mech. Anal. 224, No. 1, 209-231 (2017). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35B53 35Q84 82C31 76D05 35D30 35D35 PDF BibTeX XML Cite \textit{W. Luo} and \textit{Z. Yin}, Arch. Ration. Mech. Anal. 224, No. 1, 209--231 (2017; Zbl 1366.35134) Full Text: DOI arXiv
Chae, Dongho; Lee, Jihoon On the geometric regularity conditions for the 3D Navier-Stokes equations. (English) Zbl 1358.35089 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 151, 265-273 (2017). MSC: 35Q30 76D03 76D05 35B65 35D30 35B44 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Lee}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 151, 265--273 (2017; Zbl 1358.35089) Full Text: DOI arXiv
Berselli, Luigi C.; Spirito, Stefano Suitable weak solutions to the 3D Navier-Stokes equations are constructed with the Voigt approximation. (English) Zbl 1371.35191 J. Differ. Equations 262, No. 5, 3285-3316 (2017). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 35Q30 35A35 35D30 35B65 35B45 76D05 PDF BibTeX XML Cite \textit{L. C. Berselli} and \textit{S. Spirito}, J. Differ. Equations 262, No. 5, 3285--3316 (2017; Zbl 1371.35191) Full Text: DOI arXiv
Wang, Yanqing; Wu, Gang Anisotropic regularity conditions for the suitable weak solutions to the 3D Navier-Stokes equations. (English) Zbl 1359.35136 J. Math. Fluid Mech. 18, No. 4, 699-716 (2016). MSC: 35Q30 35A02 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{G. Wu}, J. Math. Fluid Mech. 18, No. 4, 699--716 (2016; Zbl 1359.35136) Full Text: DOI arXiv
Wang, Yanqing; Wu, Gang; Zhou, Daoguo Refined regularity class of suitable weak solutions to the 3D magnetohydrodynamics equations with an application. (English) Zbl 1354.76037 Z. Angew. Math. Phys. 67, No. 6, Article ID 136, 22 p. (2016). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{Y. Wang} et al., Z. Angew. Math. Phys. 67, No. 6, Article ID 136, 22 p. (2016; Zbl 1354.76037) Full Text: DOI
Ren, Wei; Wang, Yanqing; Wu, Gang Partial regularity of suitable weak solutions to the multi-dimensional generalized magnetohydrodynamics equations. (English) Zbl 1348.76047 Commun. Contemp. Math. 18, No. 6, Article ID 1650018, 38 p. (2016). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{W. Ren} et al., Commun. Contemp. Math. 18, No. 6, Article ID 1650018, 38 p. (2016; Zbl 1348.76047) Full Text: DOI arXiv
Yu, Huan Partial regularity criteria for suitable weak solutions of the three-dimensional liquid crystals flow. (English) Zbl 1347.35060 Math. Methods Appl. Sci. 39, No. 14, 4196-4207 (2016). MSC: 35B65 76A15 35Q35 35D30 PDF BibTeX XML Cite \textit{H. Yu}, Math. Methods Appl. Sci. 39, No. 14, 4196--4207 (2016; Zbl 1347.35060) Full Text: DOI
Jiu, Quansen; Wang, Yanqing; Wu, Gang Partial regularity of the suitable weak solutions to the multi-dimensional incompressible Boussinesq equations. (English) Zbl 1342.35255 J. Dyn. Differ. Equations 28, No. 2, 567-591 (2016). Reviewer: Piotr Biler (Wrocław) MSC: 35Q35 35B65 35D30 PDF BibTeX XML Cite \textit{Q. Jiu} et al., J. Dyn. Differ. Equations 28, No. 2, 567--591 (2016; Zbl 1342.35255) Full Text: DOI
Bae, Hyeong-Ohk; Kang, Kyungkeun; Kim, Myeonghyeon Local regularity criteria of the Navier-Stokes equations with slip boundary conditions. (English) Zbl 1341.35097 J. Korean Math. Soc. 53, No. 3, 597-621 (2016). MSC: 35Q30 35D30 76D05 35B65 PDF BibTeX XML Cite \textit{H.-O. Bae} et al., J. Korean Math. Soc. 53, No. 3, 597--621 (2016; Zbl 1341.35097) Full Text: DOI Link
Crispo, F.; Maremonti, P. On the spatial asymptotic decay of a suitable weak solution to the Navier-Stokes Cauchy problem. (English) Zbl 1342.35212 Nonlinearity 29, No. 4, 1355-1383 (2016); corrigendum ibid. 29, No. 12, C3 (2016). MSC: 35Q30 35B35 35B65 76D03 35D30 35B40 PDF BibTeX XML Cite \textit{F. Crispo} and \textit{P. Maremonti}, Nonlinearity 29, No. 4, 1355--1383 (2016; Zbl 1342.35212) Full Text: DOI arXiv
Wang, Yanqing; Wu, Gang Local regularity criteria of the 3D Navier-Stokes and related equations. (English) Zbl 1335.35188 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 140, 130-144 (2016). MSC: 35Q30 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{G. Wu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 140, 130--144 (2016; Zbl 1335.35188) Full Text: DOI
Kim, Jae-Myoung Local regularity of the magnetohydrodynamics equations near the curved boundary. (English) Zbl 1329.35233 Commun. Pure Appl. Anal. 15, No. 2, 507-517 (2016). MSC: 35Q30 35K15 PDF BibTeX XML Cite \textit{J.-M. Kim}, Commun. Pure Appl. Anal. 15, No. 2, 507--517 (2016; Zbl 1329.35233) Full Text: DOI
Chae, Dongho; Wolf, Jörg On partial regularity for the steady Hall magnetohydrodynamics system. (English) Zbl 1328.35165 Commun. Math. Phys. 339, No. 3, 1147-1166 (2015). Reviewer: Bernard Ducomet (Bruyères le Châtel) MSC: 35Q35 76W05 35B65 35D30 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Wolf}, Commun. Math. Phys. 339, No. 3, 1147--1166 (2015; Zbl 1328.35165) Full Text: DOI arXiv
Wolf, Jörg On the local regularity of suitable weak solutions to the generalized Navier-Stokes equations. (English) Zbl 1323.35135 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61, No. 1, 149-171 (2015). Reviewer: Gheorghe Moroşanu (Budapest) MSC: 35Q30 76D05 35B65 76N10 76A05 PDF BibTeX XML Cite \textit{J. Wolf}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61, No. 1, 149--171 (2015; Zbl 1323.35135) Full Text: DOI
Neustupa, Jiří A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations. (English) Zbl 1349.35276 Math. Bohem. 139, No. 4, 685-698 (2014). MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{J. Neustupa}, Math. Bohem. 139, No. 4, 685--698 (2014; Zbl 1349.35276) Full Text: Link
Kang, Kyungkeun; Kim, Jae-Myoung Boundary regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. (English) Zbl 1299.35236 J. Funct. Anal. 266, No. 1, 99-120 (2014). MSC: 35Q35 76W05 PDF BibTeX XML Cite \textit{K. Kang} and \textit{J.-M. Kim}, J. Funct. Anal. 266, No. 1, 99--120 (2014; Zbl 1299.35236) Full Text: DOI arXiv
Neustupa, Jiří A refinement of the local Serrin-type regularity criterion for a suitable weak solution to the Navier-Stokes equations. (English) Zbl 1304.35502 Arch. Ration. Mech. Anal. 214, No. 2, 525-544 (2014). Reviewer: Cheng He (Beijing) MSC: 35Q30 35D30 76D05 35B65 PDF BibTeX XML Cite \textit{J. Neustupa}, Arch. Ration. Mech. Anal. 214, No. 2, 525--544 (2014; Zbl 1304.35502) Full Text: DOI arXiv
Wang, Wendong; Zhang, Zhifei On the interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations. (English) Zbl 1284.35104 SIAM J. Math. Anal. 45, No. 5, 2666-2677 (2013). Reviewer: Cheng He (Beijing) MSC: 35B65 35Q35 76W05 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Z. Zhang}, SIAM J. Math. Anal. 45, No. 5, 2666--2677 (2013; Zbl 1284.35104) Full Text: DOI
Feireisl, Eduard; Novotný, Antonín; Petzeltová, Hana Suitable weak solutions: From compressible viscous to incompressible inviscid fluid flows. (English) Zbl 1287.35068 Math. Ann. 356, No. 2, 683-702 (2013). Reviewer: Cheng He (Beijing) MSC: 35Q35 76N99 35B25 PDF BibTeX XML Cite \textit{E. Feireisl} et al., Math. Ann. 356, No. 2, 683--702 (2013; Zbl 1287.35068) Full Text: DOI
Feireisl, Eduard; Jin, Bum Ja; Novotný, Antonín Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. (English) Zbl 1256.35054 J. Math. Fluid Mech. 14, No. 4, 717-730 (2012). MSC: 35Q30 35D30 76N10 PDF BibTeX XML Cite \textit{E. Feireisl} et al., J. Math. Fluid Mech. 14, No. 4, 717--730 (2012; Zbl 1256.35054) Full Text: DOI arXiv
Han, Pigong; He, Cheng Partial regularity of suitable weak solutions to the four-dimensional incompressible magneto-hydrodynamic equations. (English) Zbl 1256.35081 Math. Methods Appl. Sci. 35, No. 11, 1335-1355 (2012). MSC: 35Q35 35D30 35B65 PDF BibTeX XML Cite \textit{P. Han} and \textit{C. He}, Math. Methods Appl. Sci. 35, No. 11, 1335--1355 (2012; Zbl 1256.35081) Full Text: DOI
Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan From suitable weak solutions to entropy viscosity. (English) Zbl 1303.76007 Salvetti, Maria Vittoria (ed.) et al., Quality and reliability of large-eddy simulations II. Selected papers based on the presentations at the 2nd workshop (QLES 2009), Pisa, Italy, September 9–11, 2009. Dordrecht: Springer (ISBN 978-94-007-0230-1/hbk; 978-94-007-0231-8/ebook; 978-94-007-3415-9/pbk). ERCOFTAC Series 16, 373-390 (2011). MSC: 76D03 76F65 35Q30 PDF BibTeX XML Cite \textit{J.-L. Guermond} et al., ERCOFTAC Ser. 16, 373--390 (2011; Zbl 1303.76007) Full Text: DOI
Feireisl, Eduard; Novotný, Antonín; Sun, Yongzhong Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids. (English) Zbl 1248.35143 Indiana Univ. Math. J. 60, No. 2, 611-632 (2011). Reviewer: Zhigang Wu (Hangzhou) MSC: 35Q30 35B65 35D30 PDF BibTeX XML Cite \textit{E. Feireisl} et al., Indiana Univ. Math. J. 60, No. 2, 611--632 (2011; Zbl 1248.35143) Full Text: DOI Link Link
Consiglieri, Luisa Partial regularity for the Navier-Stokes-Fourier system. (English) Zbl 1249.76022 Acta Math. Sci., Ser. B, Engl. Ed. 31, No. 5, 1653-1670 (2011). MSC: 76D03 76D05 35Q30 PDF BibTeX XML Cite \textit{L. Consiglieri}, Acta Math. Sci., Ser. B, Engl. Ed. 31, No. 5, 1653--1670 (2011; Zbl 1249.76022) Full Text: DOI arXiv
Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan From suitable weak solutions to entropy viscosity. (English) Zbl 1432.76080 J. Sci. Comput. 49, No. 1, 35-50 (2011). MSC: 76D05 35D30 35Q30 PDF BibTeX XML Cite \textit{J.-L. Guermond} et al., J. Sci. Comput. 49, No. 1, 35--50 (2011; Zbl 1432.76080) Full Text: DOI
Seregin, Gregory A. Weak solutions to the Navier-Stokes equations with bounded scale-invariant quantities. (English) Zbl 1229.35191 Bhatia, Rajendra (ed.) et al., Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19–27, 2010. Vol. III: Invited lectures. Hackensack, NJ: World Scientific; New Delhi: Hindustan Book Agency (ISBN 978-981-4324-33-5/hbk; 978-81-85931-08-3/hbk; 978-981-4324-30-4/set; 978-981-4324-35-9/ebook). 2105-2127 (2011). MSC: 35Q30 76D05 35D30 PDF BibTeX XML Cite \textit{G. A. Seregin}, in: Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19--27, 2010. Vol. III: Invited lectures. Hackensack, NJ: World Scientific; New Delhi: Hindustan Book Agency. 2105--2127 (2011; Zbl 1229.35191) Full Text: Link
Bulíček, M.; Ulrych, O. Planar flows of incompressible heat-conducting shear-thinning fluids - existence analysis. (English) Zbl 1224.35312 Appl. Math., Praha 56, No. 1, 7-38 (2011). MSC: 35Q30 35D30 76D03 76A05 PDF BibTeX XML Cite \textit{M. Bulíček} and \textit{O. Ulrych}, Appl. Math., Praha 56, No. 1, 7--38 (2011; Zbl 1224.35312) Full Text: DOI EuDML
Spirito, Stefano Solutions of the Navier-Stokes equations constructed by artificial compressibility approximation are suitable. (English) Zbl 1215.35121 Riv. Mat. Univ. Parma (N.S.) 1, No. 1, 219-230 (2010). MSC: 35Q30 35D30 76N10 76D05 35B45 35A22 35A35 PDF BibTeX XML Cite \textit{S. Spirito}, Riv. Mat. Univ. Parma (N.S.) 1, No. 1, 219--230 (2010; Zbl 1215.35121) Full Text: Link
Romito, Marco Existence of martingale and stationary suitable weak solutions for a stochastic Navier-Stokes system. (English) Zbl 1277.76012 Stochastics 82, No. 1-3, 327-337 (2010). MSC: 76D03 35D30 35Q35 35R60 76D05 76M35 PDF BibTeX XML Cite \textit{M. Romito}, Stochastics 82, No. 1--3, 327--337 (2010; Zbl 1277.76012) Full Text: DOI arXiv
Kim, Jaewoo; Kim, Myeonghyeon Local regularity of the Navier-Stokes equations near the curved boundary. (English) Zbl 1178.35293 J. Math. Anal. Appl. 363, No. 1, 161-173 (2010). MSC: 35Q30 76D05 76D03 PDF BibTeX XML Cite \textit{J. Kim} and \textit{M. Kim}, J. Math. Anal. Appl. 363, No. 1, 161--173 (2010; Zbl 1178.35293) Full Text: DOI
Caffarelli, Luis; Lin, Fanghua Nonlocal heat flows preserving the \(L^2\) energy. (English) Zbl 1154.35364 Discrete Contin. Dyn. Syst. 23, No. 1-2, 49-64 (2009). MSC: 35K05 35K55 49N60 PDF BibTeX XML Cite \textit{L. Caffarelli} and \textit{F. Lin}, Discrete Contin. Dyn. Syst. 23, No. 1--2, 49--64 (2009; Zbl 1154.35364) Full Text: DOI
Mahalov, A.; Nicolaenko, B.; Seregin, G. New sufficient conditions of local regularity for solutions to the Navier-Stokes equations. (English) Zbl 1162.76325 J. Math. Fluid Mech. 10, No. 1, 106-125 (2008). MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{A. Mahalov} et al., J. Math. Fluid Mech. 10, No. 1, 106--125 (2008; Zbl 1162.76325) Full Text: DOI
Chen, Chiun-Chuan; Strain, Robert M.; Yau, Horng-Tzer; Tsai, Tai-Peng Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations. (English) Zbl 1154.35068 Int. Math. Res. Not. 2008, Article ID rnn016, 31 p. (2008). Reviewer: Pavel Burda (Praha) MSC: 35Q30 35B05 76D05 76D03 35B65 35D10 PDF BibTeX XML Cite \textit{C.-C. Chen} et al., Int. Math. Res. Not. 2008, Article ID rnn016, 31 p. (2008; Zbl 1154.35068) Full Text: DOI arXiv
Gustafson, Stephen; Kang, Kyungkeun; Tsai, Tai-Peng Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations. (English) Zbl 1126.35042 Commun. Math. Phys. 273, No. 1, 161-176 (2007). Reviewer: Il’ya Sh. Mogilevskij (Tver’) MSC: 35Q30 35B65 76D03 76D05 PDF BibTeX XML Cite \textit{S. Gustafson} et al., Commun. Math. Phys. 273, No. 1, 161--176 (2007; Zbl 1126.35042) Full Text: DOI arXiv
Biryuk, Andrei; Craig, Walter; Ibrahim, Slim Construction of suitable weak solutions of the Navier-Stokes equations. (English) Zbl 1205.35187 Chen, Gui-Qiang (ed.) et al., Stochastic analysis and partial differential equations. Emphasis year 2004–2005 on stochastic analysis and partial differential equations, Evanston, IL, USA. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-4059-7/pbk). Contemporary Mathematics 429, 1-18 (2007). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 35Q30 76D03 35D30 PDF BibTeX XML Cite \textit{A. Biryuk} et al., Contemp. Math. 429, 1--18 (2007; Zbl 1205.35187)
Seregin, G. Navier-Stokes equations: almost \(L_{3,\infty}\)-case. (English) Zbl 1128.35085 J. Math. Fluid Mech. 9, No. 1, 34-43 (2007). Reviewer: Il’ya Sh. Mogilevskij (Tver’) MSC: 35Q30 76D03 76D05 35D10 PDF BibTeX XML Cite \textit{G. Seregin}, J. Math. Fluid Mech. 9, No. 1, 34--43 (2007; Zbl 1128.35085) Full Text: DOI arXiv
Suzuki, Tomoyuki Interior regularity criterion via pressure on weak solutions to the Navier-Stokes equations. (English) Zbl 1184.35250 Math. Nachr. 280, No. 1-2, 221-230 (2007). Reviewer: Oleg Titow (Berlin) MSC: 35Q30 76D03 PDF BibTeX XML Cite \textit{T. Suzuki}, Math. Nachr. 280, No. 1--2, 221--230 (2007; Zbl 1184.35250) Full Text: DOI
Mikhaĭlov, A. S.; Shilkin, T. N. \(L_{3,\infty}\)-solutions to the 3D-Navier-Stokes system in the domain with a curved boundary. (English) Zbl 1178.35296 J. Math. Sci., New York 143, No. 2, 2924-2935 (2007); reprinted from Zap. Nauchn. Semin. POMI 336, 133-152 (2006). Reviewer: Jana Stará (Praha) MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{A. S. Mikhaĭlov} and \textit{T. N. Shilkin}, Zap. Nauchn. Semin. POMI 336, 133--152 (2006; Zbl 1178.35296) Full Text: DOI Link
Zajaczkowski, W.; Seregin, G. A. A sufficient condition of local regularity for the Navier-Stokes equations. (English) Zbl 1137.35056 Zap. Nauchn. Semin. POMI 336, 46-54 (2006) and J. Math. Sci., New York 143, No. 2, 2869-2874 (2007). Reviewer: Jürgen Socolowsky (Brandenburg an der Havel) MSC: 35Q30 35B65 76D03 76D05 PDF BibTeX XML Cite \textit{W. Zajaczkowski} and \textit{G. A. Seregin}, Zap. Nauchn. Semin. POMI 336, 46--54 (2006; Zbl 1137.35056) Full Text: Link
Romito, Marco Some examples of singular fluid flows. (English) Zbl 1146.35400 NoDEA, Nonlinear Differ. Equ. Appl. 13, No. 1, 67-89 (2006). MSC: 35Q35 35D05 76D03 76D05 PDF BibTeX XML Cite \textit{M. Romito}, NoDEA, Nonlinear Differ. Equ. Appl. 13, No. 1, 67--89 (2006; Zbl 1146.35400) Full Text: DOI arXiv
Gustafson, Stephen; Kang, Kyungkeun; Tsai, Tai-Peng Regularity criteria for suitable weak solutions of the Navier-Stokes equations near the boundary. (English) Zbl 1159.35396 J. Differ. Equations 226, No. 2, 594-618 (2006). MSC: 35Q30 35B65 35D10 76D03 76D05 PDF BibTeX XML Cite \textit{S. Gustafson} et al., J. Differ. Equations 226, No. 2, 594--618 (2006; Zbl 1159.35396) Full Text: DOI arXiv
Guermond, J.-L. Finite-element-based Faedo-Galerkin weak solutions to the Navier–Stokes equations in the three-dimensional torus are suitable. (English) Zbl 1094.35091 J. Math. Pures Appl., IX. Sér. 85, No. 3, 451-464 (2006). MSC: 35Q30 76M10 65N35 76D05 PDF BibTeX XML Cite \textit{J. L. Guermond}, J. Math. Pures Appl. (9) 85, No. 3, 451--464 (2006; Zbl 1094.35091) Full Text: DOI
Seregin, G.; Šverák, V. On smoothness of suitable weak solutions to the Navier-Stokes equations. (English) Zbl 1148.35344 J. Math. Sci., New York 130, No. 4, 4884-4892 (2005); and Zap. Nauchn. Semin. POMI 306, 186-198 (2003). MSC: 35Q30 76D03 76D05 35D10 PDF BibTeX XML Cite \textit{G. Seregin} and \textit{V. Šverák}, J. Math. Sci., New York 130, No. 4, 4884--4892 (2005; Zbl 1148.35344) Full Text: DOI
Guermond, Jean-Luc Finite-element-based Faedo-Galerkin weak solution to the Navier-Stokes equation in the three-dimensional torus are suitable. (Les solutions élements finis des équations de Navier-Stokes périodiques en dimension trois sont “appropriées”.) (French) Zbl 1081.35077 C. R., Math., Acad. Sci. Paris 341, No. 8, 491-496 (2005). MSC: 35Q30 76M10 35D10 PDF BibTeX XML Cite \textit{J.-L. Guermond}, C. R., Math., Acad. Sci. Paris 341, No. 8, 491--496 (2005; Zbl 1081.35077) Full Text: DOI
Guermond, J.-L.; Prudhomme, S. On the construction of suitable solutions to the Navier-Stokes equations and questions regarding the definition of large eddy simulation. (English) Zbl 1078.35086 Physica D 207, No. 1-2, 64-78 (2005). MSC: 35Q30 76F35 65N35 PDF BibTeX XML Cite \textit{J. L. Guermond} and \textit{S. Prudhomme}, Physica D 207, No. 1--2, 64--78 (2005; Zbl 1078.35086) Full Text: DOI
Neustupa, Jiří; Penel, Patrick Regularity of a weak solution to the Navier-Stokes equation in dependence on eigenvalues and eigenvectors of the rate of deformation tensor. (English) Zbl 1078.35088 Rodrigues, José F. (ed.) et al., Trends in partial differential equations of mathematical physics. Selected papers of the international conference held on the occasion of the 70th birthday of V. A. Solonnikov, Óbidos, Portugal, June 7–10, 2003. Basel: Birkhäuser (ISBN 3-7643-7165-X/hbk). Progress in Nonlinear Differential Equations and their Applications 61, 197-212 (2005). Reviewer: Milan Pokorný (Praha) MSC: 35Q30 76D03 35D10 PDF BibTeX XML Cite \textit{J. Neustupa} and \textit{P. Penel}, Prog. Nonlinear Differ. Equ. Appl. 61, 197--212 (2005; Zbl 1078.35088)
Seregin, G. A. Remarks on the regularity of weak solutions to the Navier-Stokes equations near the boundary. (English. Russian original) Zbl 1083.35098 J. Math. Sci., New York 127, No. 2, 1915-1922 (2005); translation from Zap. Nauchn. Semin. POMI 295, 168-179 (2003). Reviewer: Il’ya Sh. Mogilevskij (Tver’) MSC: 35Q30 35D10 76D03 76D05 PDF BibTeX XML Cite \textit{G. A. Seregin}, J. Math. Sci., New York 127, No. 2, 1915--1922 (2003; Zbl 1083.35098); translation from Zap. Nauchn. Semin. POMI 295, 168--179 (2003) Full Text: DOI
Skalák, Zdeněk Conditions of Prodi-Serrin’s type for local regularity of suitable weak solutions to the Navier-Stokes equations. (English) Zbl 1090.35148 Commentat. Math. Univ. Carol. 43, No. 4, 619-639 (2002). Reviewer: Milan Pokorný (Praha) MSC: 35Q35 35B65 76D05 PDF BibTeX XML Cite \textit{Z. Skalák}, Commentat. Math. Univ. Carol. 43, No. 4, 619--639 (2002; Zbl 1090.35148) Full Text: EuDML EMIS
Nečas, Jindřich; Neustupa, Jiří New conditions for local regularity of a suitable weak solution to the Navier-Stokes equation. (English) Zbl 1010.35081 J. Math. Fluid Mech. 4, No. 3, 237-256 (2002). MSC: 35Q30 76D03 35B65 PDF BibTeX XML Cite \textit{J. Nečas} and \textit{J. Neustupa}, J. Math. Fluid Mech. 4, No. 3, 237--256 (2002; Zbl 1010.35081) Full Text: DOI
Seregin, G. A. Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary. (English) Zbl 0997.35044 J. Math. Fluid Mech. 4, No. 1, 1-29 (2002). Reviewer: Il’ya Sh. Mogilevskii (Tver) MSC: 35Q30 76D03 35D30 PDF BibTeX XML Cite \textit{G. A. Seregin}, J. Math. Fluid Mech. 4, No. 1, 1--29 (2002; Zbl 0997.35044) Full Text: DOI
Seregin, G. A. On the number of singular points of weak solutions to the Navier-Stokes equations. (English) Zbl 1030.35133 Commun. Pure Appl. Math. 54, No. 8, 1019-1028 (2001). Reviewer: Vasile Ionescu (Bucureşti) MSC: 35Q30 35A20 76D03 76D05 35D99 PDF BibTeX XML Cite \textit{G. A. Seregin}, Commun. Pure Appl. Math. 54, No. 8, 1019--1028 (2001; Zbl 1030.35133) Full Text: DOI
Farwig, R.; Sohr, H. Global estimates in weighted spaces of weak solutions of the Navier-Stokes equations in exterior domains. (English) Zbl 0855.35099 Arch. Math. 67, No. 4, 319-330 (1996). Reviewer: R.Farwig (Darmstadt) MSC: 35Q30 76D05 76D07 PDF BibTeX XML Cite \textit{R. Farwig} and \textit{H. Sohr}, Arch. Math. 67, No. 4, 319--330 (1996; Zbl 0855.35099) Full Text: DOI
Guo, Boling; Yuan, Gangwei On the suitable weak solutions for the Cauchy problem of the Boussinesq equations. (English) Zbl 0859.35098 Nonlinear Anal., Theory Methods Appl. 26, No. 8, 1367-1385 (1996). Reviewer: F.Rosso (Firenze) MSC: 35Q35 35B40 35D05 PDF BibTeX XML Cite \textit{B. Guo} and \textit{G. Yuan}, Nonlinear Anal., Theory Methods Appl. 26, No. 8, 1367--1385 (1996; Zbl 0859.35098) Full Text: DOI
Farwig, Reinhard; Sohr, Hermann Weighted energy inequalities for the Navier-Stokes equations in exterior domains. (English) Zbl 0833.35107 Appl. Anal. 58, No. 1-2, 157-173 (1995). Reviewer: R.Farwig (Darmstadt) MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{R. Farwig} and \textit{H. Sohr}, Appl. Anal. 58, No. 1--2, 157--173 (1995; Zbl 0833.35107) Full Text: DOI
Bäcker, Manfred; Dressler, Klaus A kinetic method for strictly nonlinear conservation laws. (English) Zbl 0751.35026 Z. Angew. Math. Phys. 42, No. 2, 243-256 (1991). Reviewer: J.Sprekels (Essen) MSC: 35L65 65M99 65N99 35A15 PDF BibTeX XML Cite \textit{M. Bäcker} and \textit{K. Dressler}, Z. Angew. Math. Phys. 42, No. 2, 243--256 (1991; Zbl 0751.35026) Full Text: DOI