Arce-Nazario, R.; Castro, F.; Figueroa, R. On the number of solutions of \(\sum^{11}_{i=1}\frac {1}{x_i}=1\) in distinct odd natural numbers. (English) Zbl 1270.11033 J. Number Theory 133, No. 6, 2036-2046 (2013). Reviewer: Christian Elsholtz (Graz) MSC: 11D68 11D72 PDF BibTeX XML Cite \textit{R. Arce-Nazario} et al., J. Number Theory 133, No. 6, 2036--2046 (2013; Zbl 1270.11033) Full Text: DOI
Browning, T. D.; Elsholtz, C. The number of representations of rationals as a sum of unit fractions. (English) Zbl 1306.11029 Ill. J. Math. 55, No. 2, 685-696 (2011). Reviewer: András Bazsó (Debrecen) MSC: 11D68 PDF BibTeX XML Cite \textit{T. D. Browning} and \textit{C. Elsholtz}, Ill. J. Math. 55, No. 2, 685--696 (2011; Zbl 1306.11029) Full Text: Euclid
Burshtein, Nechemia All the solutions of the equation \(\sum ^{11}_{i=1} \frac{1}{x_i}= 1\) in distinct integers of the form \(x_i \in 3^{\alpha} 5^{\beta} 7^{\gamma}\). (English) Zbl 1169.11016 Discrete Math. 308, No. 18, 4286-4292 (2008). Reviewer: Wolfgang Schwarz (Frankfurt / Main) MSC: 11D68 PDF BibTeX XML Cite \textit{N. Burshtein}, Discrete Math. 308, No. 18, 4286--4292 (2008; Zbl 1169.11016) Full Text: DOI
Sándor, Cs. On the number of solutions of the Diophantine equation \(\sum_{i=1}^n\frac{1}{i}=1\). (English) Zbl 1047.11031 Period. Math. Hung. 47, No. 1-2, 215-219 (2003). Reviewer: Lajos Hajdu (Debrecen) MSC: 11D68 PDF BibTeX XML Cite \textit{Cs. Sándor}, Period. Math. Hung. 47, No. 1--2, 215--219 (2003; Zbl 1047.11031) Full Text: DOI
Zhang, Xinli; Chen, Chunguang Ancient Egyptian unit fractions and their calculation. (Chinese. English summary) Zbl 1003.01003 J. Liaoning Norm. Univ., Nat. Sci. 23, No. 3, 257-262 (2000). MSC: 01A16 11D68 11-03 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{C. Chen}, J. Liaoning Norm. Univ., Nat. Sci. 23, No. 3, 257--262 (2000; Zbl 1003.01003)
Yokota, Hisashi The largest integer expressible as a sum of reciprocal of integers. (English) Zbl 0926.11020 J. Number Theory 76, No. 2, 206-216 (1999). Reviewer: Wolfgang Schwarz (Frankfurt am Main) MSC: 11D68 PDF BibTeX XML Cite \textit{H. Yokota}, J. Number Theory 76, No. 2, 206--216 (1999; Zbl 0926.11020) Full Text: DOI
Ahmadi, M. H.; Bleicher, M. N. On the conjectures of Erdős and Straus, and Sierpiński on Egyptian fractions. (English) Zbl 0919.11027 Int. J. Math. Stat. Sci. 7, No. 2, 169-185 (1998). Reviewer: Wolfgang Schwarz (Frankfurt am Main) MSC: 11D68 11N35 PDF BibTeX XML Cite \textit{M. H. Ahmadi} and \textit{M. N. Bleicher}, Int. J. Math. Stat. Sci. 7, No. 2, 169--185 (1998; Zbl 0919.11027)
Izhboldin, O.; Kurliandchik, L. Unit fractions. (English) Zbl 0874.11036 Ladyzhenskaya, O. A. (ed.), Proceedings of the St. Petersburg Mathematical Society. Vol. III. Transl. ed. by A. B. Sosinsky. Providence, RI: American Mathematical Society. Transl., Ser. 2, Am. Math. Soc. 166, 193-200 (1995). Reviewer: E.J.Barbeau (Toronto) MSC: 11D68 11B25 PDF BibTeX XML Cite \textit{O. Izhboldin} and \textit{L. Kurliandchik}, Transl., Ser. 2, Am. Math. Soc. 166, 193--200 (1995; Zbl 0874.11036)
Kikuchi, Yoko; Katayama, Shin-Ichi Some remarks on Egyptian fractions. (English) Zbl 0832.11014 Math. Jap. 42, No. 1, 127-130 (1995). Reviewer: E.J.Barbeau (Toronto) MSC: 11D68 PDF BibTeX XML Cite \textit{Y. Kikuchi} and \textit{S.-I. Katayama}, Math. Japon. 42, No. 1, 127--130 (1995; Zbl 0832.11014)
Friedman, Charles N. Sums of divisors and Egyptian fractions. (English) Zbl 0781.11015 J. Number Theory 44, No. 3, 328-339 (1993). Reviewer: T.Tonkov (Sofia) MSC: 11D68 11A25 PDF BibTeX XML Cite \textit{C. N. Friedman}, J. Number Theory 44, No. 3, 328--339 (1993; Zbl 0781.11015) Full Text: DOI
Beeckmans, Laurent The splitting algorithm for Egyptian fractions. (English) Zbl 0772.11008 J. Number Theory 43, No. 2, 173-185 (1993). Reviewer: T.Tonkov (Sofia) MSC: 11D68 11A55 PDF BibTeX XML Cite \textit{L. Beeckmans}, J. Number Theory 43, No. 2, 173--185 (1993; Zbl 0772.11008) Full Text: DOI
O’Reilly, Declan Back to the future: Investigating Egyptian fractions with the aid of a computer. (English) Zbl 0764.11001 Bull., Inst. Math. Appl. 28, No. 6-8, 107-111 (1992). Reviewer: J.Sándor (Jud.Harghita) MSC: 11-01 11D68 11-04 PDF BibTeX XML Cite \textit{D. O'Reilly}, Bull., Inst. Math. Appl. 28, No. 6--8, 107--111 (1992; Zbl 0764.11001)
Lixăndroiu, Dorin Algorithms for decomposition into unit fractions. (Romanian) Zbl 0706.11006 Gaz. Mat., Perfecţ. Metod. Metodol. Mat. Inf. 10, No. 3, 133-134 (1989). MSC: 11A67 11D68 PDF BibTeX XML Cite \textit{D. Lixăndroiu}, Gaz. Mat., Perfecţ. Metod. Metodol. Mat. Inf. 10, No. 3, 133--134 (1989; Zbl 0706.11006)
Yokota, Hisashi On a problem of Bleicher and Erdős. (English) Zbl 0652.10015 J. Number Theory 30, No. 2, 198-207 (1988). Reviewer: Ke Zhao (Chengdu) MSC: 11D68 PDF BibTeX XML Cite \textit{H. Yokota}, J. Number Theory 30, No. 2, 198--207 (1988; Zbl 0652.10015) Full Text: DOI
Broman, Arne Algebraic sums of unit fractions. (Swedish. English summary) Zbl 0596.10018 Normat 34, 69-74 (1986). Reviewer: E.S.Selmer MSC: 11D61 PDF BibTeX XML Cite \textit{A. Broman}, Normat 34, 69--74 (1986; Zbl 0596.10018)
Brenner, J. L. Asymptotic solution of the problems of Erdős and Sierpiński concerning m/n. (English) Zbl 0568.10010 Pi Mu Epsilon J. 8, 24-28 (1984). Reviewer: Delang Li MSC: 11D61 PDF BibTeX XML Cite \textit{J. L. Brenner}, Pi Mu Epsilon J. 8, 24--28 (1984; Zbl 0568.10010)
Sós, E. The diophantine equation \(\frac 1x = \frac 1{x_1} +\frac 1{x_2}+\cdots + \frac 1{x_n}\). (Die diophantische Gleichung \(\frac 1x = \frac 1{x_1} +\frac 1{x_2}+\cdots + \frac 1{x_n}\).) (German) JFM 36.0271.03 Zs. f. math. u. naturw. Unterr. 36, 97-102 (1905). Reviewer: Lampe, Prof. (Berlin) MSC: 11D68 PDF BibTeX XML