×

Clocks and Fisher information. (English) Zbl 1255.81097

Theor. Math. Phys. 165, No. 2, 1552-1564 (2010) and Teor. Mat. Fiz. 165, No. 2, 370-384 (2010).
Summary: In a broad sense, any parametric family of quantum states can be viewed as a quantum clock. The time, which is the parameter, is encoded in the corresponding quantum states. The quality of such a clock depends on how precisely we can distinguish the states or, equivalently, estimate the parameter. In view of the quantum Cramér-Rao inequalities, the quality of quantum clocks can be characterized by the quantum Fisher information. We address the issue of quantum clock synchronization in terms of quantum Fisher information and demonstrate its fundamental difference from the classical paradigm. The key point is the superadditivity of Fisher information, which always holds in the classical case but can be violated in quantum mechanics. The violation can occur for both pure and mixed states. Nevertheless, we establish the superadditivity of quantum Fisher information for any classical-quantum state. We also demonstrate an alternative form of superadditivity and propose a weak form of superadditivity. The violation of superadditivity can be exploited to enhance quantum clock synchronization.

MSC:

81P50 Quantum state estimation, approximate cloning
94A17 Measures of information, entropy
81P05 General and philosophical questions in quantum theory
83A05 Special relativity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Janzing and T. Beth, IEEE Trans. Inform. Theory, 49, 230–240 (2003); arXiv:quant-ph/0112138v2 (2001). · Zbl 1063.94512 · doi:10.1109/TIT.2002.806162
[2] R. A. Fisher, Proc. Cambridge Philos. Soc, 22, 700–725 (1925). · JFM 51.0385.01 · doi:10.1017/S0305004100009580
[3] C. R. Rao, Bull. Calcutta Math. Soc, 37, 81–91 (1945).
[4] H. Cramér, Mathematical Methods of Statistics (Princeton Math. Ser., Vol. 9), Princeton Univ. Press, Princeton, N. J. (1946).
[5] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York (1991). · Zbl 0762.94001
[6] P. J. Huber, Robust Statistics, Wiley, New York (1981). · Zbl 0536.62025
[7] E. A. Carlen, J. Funct. Anal, 101, 194–211 (1991). · Zbl 0732.60020 · doi:10.1016/0022-1236(91)90155-X
[8] A. Kagan and Z. Landsman, Statist. Probab. Lett., 32, 175–179 (1997). · Zbl 0874.60002 · doi:10.1016/S0167-7152(96)00070-3
[9] C. W. Helstrom, Quantum Detection and Estimation Theory, Acad. Press, New York (1976). · Zbl 1332.81011
[10] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory [in Russian], Nauka, Moscow (1980); English transi. (North-Holland Ser. Statist. Probab., Vol. 1), North-Holland, Amsterdam (1982).
[11] S. L. Braunstein and C M. Caves, Phys. Rev. Lett., 72, 3439–3443 (1994). · Zbl 0973.81509 · doi:10.1103/PhysRevLett.72.3439
[12] D. Petz, Linear Algebra Appl, 244, 81–96 (1996). · Zbl 0856.15023 · doi:10.1016/0024-3795(94)00211-8
[13] E. P. Wigner and M. M. Yanase, Proc. Natl. Acad. Sci. USA, 49, 910–918 (1963). · Zbl 0128.14104 · doi:10.1073/pnas.49.6.910
[14] P. Gibilisco and T. Isola, J. Math. Phys., 44, 3752–3762 (2003); arXiv:math/0304170v1 (2003). · Zbl 1062.81019 · doi:10.1063/1.1598279
[15] S. Luo, Proc. Amer. Math. Soc, 132, 885–890 (2004). · Zbl 1119.62124 · doi:10.1090/S0002-9939-03-07175-2
[16] S. Luo and Q. Zhang, Phys. Rev. A, 69, 032106 (2004). · doi:10.1103/PhysRevA.69.032106
[17] S. Luo and Q. Zhang, IEEE Trans. Inform. Theory, 50, 1778–1782 (2004); 51, 4432 (2005). · Zbl 1171.94328 · doi:10.1109/TIT.2004.831853
[18] P. Chen and S. Luo, Front. Math. China, 2, 359–381 (2007). · Zbl 1145.81321 · doi:10.1007/s11464-007-0023-4
[19] F. Hansen, Proc. Natl. Acad. Sci. USA, 105, 9909–9916 (2008); arXiv:math-ph/0607049v6 (2006). · Zbl 1205.94058 · doi:10.1073/pnas.0803323105
[20] L. Cai, N. Li, and S. Luo, J. Phys. A, 41, 135301 (2008). · Zbl 1140.94007 · doi:10.1088/1751-8113/41/13/135301
[21] E. H. Lieb, Adv. Math., 11, 267–288 (1973). · Zbl 0267.46055 · doi:10.1016/0001-8708(73)90011-X
[22] E. H. Lieb and M. B. Ruskai, Phys. Rev. Lett., 30, 434–436 (1973). · doi:10.1103/PhysRevLett.30.434
[23] A. Uhlmann, Comm. Math. Phys., 54, 21–32 (1977). · Zbl 0358.46026 · doi:10.1007/BF01609834
[24] H. Kosaki, Comm. Math. Phys., 87, 315–329 (1982). · Zbl 0521.46064 · doi:10.1007/BF01206026
[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge (2000). · Zbl 1049.81015
[26] F. Hansen, J. Stat. Phys., 126, 643–648 (2007); arXiv:math-ph/0609019v2 (2006).
[27] S. Luo, J. Stat. Phys., 128, 1177–1188 (2007).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.