Manivannan, Varadha Raj; Anandam, Victor A perturbed averaging operator on finite graphs. (English) Zbl 07766179 Linear Algebra Appl. 680, 208-219 (2024). MSC: 31C20 31C05 15A18 05C81 PDF BibTeX XML Cite \textit{V. R. Manivannan} and \textit{V. Anandam}, Linear Algebra Appl. 680, 208--219 (2024; Zbl 07766179) Full Text: DOI
Engliš, Miroslav; Youssfi, El-Hassan \(M\)-harmonic reproducing kernels on the ball. (English) Zbl 07765648 J. Funct. Anal. 286, No. 1, Article ID 110187, 54 p. (2024). MSC: 32A36 33C55 31C05 33C70 PDF BibTeX XML Cite \textit{M. Engliš} and \textit{E.-H. Youssfi}, J. Funct. Anal. 286, No. 1, Article ID 110187, 54 p. (2024; Zbl 07765648) Full Text: DOI arXiv
Kalaj, David Gaussian curvature of minimal graphs in \(M \times \mathbb{R} \). (English) Zbl 07739945 J. Math. Anal. Appl. 529, No. 1, Article ID 127589, 22 p. (2024). MSC: 31C05 53A10 PDF BibTeX XML Cite \textit{D. Kalaj}, J. Math. Anal. Appl. 529, No. 1, Article ID 127589, 22 p. (2024; Zbl 07739945) Full Text: DOI arXiv
Reséndis O., Lino F.; Tovar S., Luis M.; Bravo O., Yesenia Conjugate complex harmonic functions. (English) Zbl 07773298 Arab. J. Math. 12, No. 3, 667-684 (2023). MSC: 30G35 31B05 32A30 PDF BibTeX XML Cite \textit{L. F. Reséndis O.} et al., Arab. J. Math. 12, No. 3, 667--684 (2023; Zbl 07773298) Full Text: DOI OA License
Krushkal, Samuel L. Teichmüller spaces and coefficient problems for univalent holomorphic functions. Previously published in the journal Analysis and Mathematical Physics, Special issue: Harmonic analysis and partial differential equations 10, No. 4 (2020), 11, No. 1–4 (2021) and 12, No. 2 (2022). (English) Zbl 07767916 Golberg, Anatoly (ed.) et al., Harmonic analysis and partial differential equations. In honor of Vladimir Maz’ya. Selected papers based on the presentations at the international conference, Holon, Israel, May 26–31, 2019. Cham: Birkhäuser. 161-179 (2023). MSC: 30C50 30C75 30F60 30C55 30C62 31A05 32L05 32Q45 PDF BibTeX XML Cite \textit{S. L. Krushkal}, in: Harmonic analysis and partial differential equations. In honor of Vladimir Maz'ya. Selected papers based on the presentations at the international conference, Holon, Israel, May 26--31, 2019. Cham: Birkhäuser. 161--179 (2023; Zbl 07767916) Full Text: DOI
Chen, Shaolin; Hamada, Hidetaka On (Fejér-)Riesz type inequalities, Hardy-Littlewood type theorems and smooth moduli. (English) Zbl 07767768 Math. Z. 305, No. 4, Paper No. 64, 30 p. (2023). MSC: 42A50 42B30 46E15 31B05 31C10 32U05 PDF BibTeX XML Cite \textit{S. Chen} and \textit{H. Hamada}, Math. Z. 305, No. 4, Paper No. 64, 30 p. (2023; Zbl 07767768) Full Text: DOI arXiv
Benoist, Yves Positive harmonic functions on the Heisenberg group. I. (English) Zbl 07763390 Hujdurović, Ademir (ed.) et al., European congress of mathematics. Proceedings of the 8th congress, 8ECM, Portorož, Slovenia, June 20–26, 2021. Berlin: European Mathematical Society (EMS). 181-198 (2023). MSC: 31C05 20F18 PDF BibTeX XML Cite \textit{Y. Benoist}, in: European congress of mathematics. Proceedings of the 8th congress, 8ECM, Portorož, Slovenia, June 20--26, 2021. Berlin: European Mathematical Society (EMS). 181--198 (2023; Zbl 07763390) Full Text: DOI arXiv
Shirokova, E. A.; Ivanshin, P. N. On Cauchy problem solution for a harmonic function in a simply connected domain. (English) Zbl 07758817 Probl. Anal. Issues Anal. 12(30), No. 2, 87-96 (2023). MSC: 31A05 35J05 30E20 PDF BibTeX XML Cite \textit{E. A. Shirokova} and \textit{P. N. Ivanshin}, Probl. Anal. Issues Anal. 12(30), No. 2, 87--96 (2023; Zbl 07758817) Full Text: DOI MNR
Hadi, Sarem H.; Darus, Maslina A class of harmonic \((p,q)\)-starlike functions involving a generalized \((p,q)\)-Bernardi integral operator. (English) Zbl 07758813 Probl. Anal. Issues Anal. 12(30), No. 2, 17-36 (2023). MSC: 31A05 30C45 PDF BibTeX XML Cite \textit{S. H. Hadi} and \textit{M. Darus}, Probl. Anal. Issues Anal. 12(30), No. 2, 17--36 (2023; Zbl 07758813) Full Text: DOI MNR
Viet Hung Hoang Discrete harmonic functions in a quadrant. (English) Zbl 07756081 Münster: Univ. Münster, Mathematisch-Naturwissenschaftliche Fakultät (Diss.). 189 p. (2023). MSC: 31-02 39-02 31C05 39A12 PDF BibTeX XML Cite \textit{Viet Hung Hoang}, Discrete harmonic functions in a quadrant. Münster: Univ. Münster, Mathematisch-Naturwissenschaftliche Fakultät (Diss.) (2023; Zbl 07756081)
Chen, Zhen-Qing Stability of elliptic Harnack inequalities. (English) Zbl 07752377 Sci. China, Math. 66, No. 10, 2179-2190 (2023). MSC: 31B05 31C25 35J08 PDF BibTeX XML Cite \textit{Z.-Q. Chen}, Sci. China, Math. 66, No. 10, 2179--2190 (2023; Zbl 07752377) Full Text: DOI
Zolotov, Vladimir Upper bounds for the number of isolated critical points via the Thom-Milnor theorem. (English) Zbl 07750846 Anal. Math. Phys. 13, No. 5, Paper No. 81, 18 p. (2023). MSC: 31B05 31B15 PDF BibTeX XML Cite \textit{V. Zolotov}, Anal. Math. Phys. 13, No. 5, Paper No. 81, 18 p. (2023; Zbl 07750846) Full Text: DOI arXiv
Taylor, Peter A. Off-diagonal heat kernel estimates for symmetric diffusions in a degenerate ergodic environment. (English) Zbl 07749915 Potential Anal. 59, No. 3, 1425-1448 (2023). MSC: 60J60 60J45 60K37 60J35 31B05 PDF BibTeX XML Cite \textit{P. A. Taylor}, Potential Anal. 59, No. 3, 1425--1448 (2023; Zbl 07749915) Full Text: DOI arXiv OA License
Chen, Jiaolong; Kalaj, David; Melentijević, Petar Khavinson problem for hyperbolic harmonic mappings in Hardy space. (English) Zbl 07749908 Potential Anal. 59, No. 3, 1205-1234 (2023). MSC: 31B05 42B30 PDF BibTeX XML Cite \textit{J. Chen} et al., Potential Anal. 59, No. 3, 1205--1234 (2023; Zbl 07749908) Full Text: DOI arXiv
Fernández-Real, Xavier; Tione, Riccardo Improved regularity of second derivatives for subharmonic functions. (English) Zbl 07748564 Proc. Am. Math. Soc. 151, No. 12, 5283-5297 (2023). MSC: 31B05 35B65 35R35 PDF BibTeX XML Cite \textit{X. Fernández-Real} and \textit{R. Tione}, Proc. Am. Math. Soc. 151, No. 12, 5283--5297 (2023; Zbl 07748564) Full Text: DOI arXiv
Liu, Gang; Ponnusamy, Saminathan Improved Bohr inequality for harmonic mappings. (English) Zbl 07747217 Math. Nachr. 296, No. 2, 716-731 (2023). MSC: 31A05 30B10 30A10 PDF BibTeX XML Cite \textit{G. Liu} and \textit{S. Ponnusamy}, Math. Nachr. 296, No. 2, 716--731 (2023; Zbl 07747217) Full Text: DOI arXiv
Dairbekov, N. S.; Penkin, O. M.; Savasteev, D. V. Harnack’s inequality for harmonic functions on stratified sets. (English. Russian original) Zbl 07746686 Sib. Math. J. 64, No. 5, 1137-1144 (2023); translation from Sib. Mat. Zh. 64, No. 5, 971-981 (2023). MSC: 35J05 31C05 PDF BibTeX XML Cite \textit{N. S. Dairbekov} et al., Sib. Math. J. 64, No. 5, 1137--1144 (2023; Zbl 07746686); translation from Sib. Mat. Zh. 64, No. 5, 971--981 (2023) Full Text: DOI
Bhowmik, Bappaditya; Satpati, Goutam Quasiconformal extension of integral transforms of analytic and harmonic mappings. (English) Zbl 07742035 Complex Var. Elliptic Equ. 68, No. 10, 1734-1750 (2023). MSC: 30C45 31A05 30C62 PDF BibTeX XML Cite \textit{B. Bhowmik} and \textit{G. Satpati}, Complex Var. Elliptic Equ. 68, No. 10, 1734--1750 (2023; Zbl 07742035) Full Text: DOI
Garofalo, Nicola A note on monotonicity and Bochner formulas in Carnot groups. (English) Zbl 07741861 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 5, 1543-1563 (2023). MSC: 35R03 35H10 31C05 PDF BibTeX XML Cite \textit{N. Garofalo}, Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 5, 1543--1563 (2023; Zbl 07741861) Full Text: DOI arXiv OA License
Ahamed, Molla Basir; Allu, Vasudevarao Bohr-Rogosinski radius for a certain class of close-to-convex harmonic mappings. (English) Zbl 07741849 Can. Math. Bull. 66, No. 3, 1014-1029 (2023). MSC: 31A05 30C45 30C50 30C80 PDF BibTeX XML Cite \textit{M. B. Ahamed} and \textit{V. Allu}, Can. Math. Bull. 66, No. 3, 1014--1029 (2023; Zbl 07741849) Full Text: DOI
Gangania, Kamaljeet Radius properties of harmonic mappings with fixed analytic part. (English) Zbl 07738486 Monatsh. Math. 202, No. 2, 317-334 (2023). MSC: 31A05 30C45 PDF BibTeX XML Cite \textit{K. Gangania}, Monatsh. Math. 202, No. 2, 317--334 (2023; Zbl 07738486) Full Text: DOI arXiv
Kalinin, Nikita Sandpile solitons in higher dimensions. (English) Zbl 07736691 Arnold Math. J. 9, No. 3, 435-454 (2023). MSC: 14T05 37B15 31A05 28A80 35B36 PDF BibTeX XML Cite \textit{N. Kalinin}, Arnold Math. J. 9, No. 3, 435--454 (2023; Zbl 07736691) Full Text: DOI arXiv
Fuhrer, Aidan; Ransford, Thomas; Younsi, Malik Holomorphic motions, dimension, area and quasiconformal mappings. (English. French summary) Zbl 07731008 J. Math. Pures Appl. (9) 177, 455-483 (2023). MSC: 37F44 37F31 37F35 30C62 31A05 PDF BibTeX XML Cite \textit{A. Fuhrer} et al., J. Math. Pures Appl. (9) 177, 455--483 (2023; Zbl 07731008) Full Text: DOI arXiv
Khabibullin, B. N. Representations on an open set of potentials that are harmonic and coincident outside a compact subset. (English) Zbl 1521.31008 Lobachevskii J. Math. 44, No. 4, 1350-1357 (2023). MSC: 31B05 31A05 31B15 31A15 PDF BibTeX XML Cite \textit{B. N. Khabibullin}, Lobachevskii J. Math. 44, No. 4, 1350--1357 (2023; Zbl 1521.31008) Full Text: DOI
Perstneva, Polina On an obstacle to the converse of Dahlberg’s theorem in high codimensions. (English) Zbl 1520.35085 Math. Z. 305, No. 1, Paper No. 6, 36 p. (2023). MSC: 35J70 31B05 28A75 42B20 PDF BibTeX XML Cite \textit{P. Perstneva}, Math. Z. 305, No. 1, Paper No. 6, 36 p. (2023; Zbl 1520.35085) Full Text: DOI arXiv
Fonda, Alessandro; Toader, Rodica Subharmonic solutions of weakly coupled Hamiltonian systems. (English) Zbl 07729205 J. Dyn. Differ. Equations 35, No. 3, 2337-2353 (2023). MSC: 37J46 31A05 PDF BibTeX XML Cite \textit{A. Fonda} and \textit{R. Toader}, J. Dyn. Differ. Equations 35, No. 3, 2337--2353 (2023; Zbl 07729205) Full Text: DOI
Jaglan, Kapil; Kaliraj, Anbareeswaran Sairam Area-minimizing minimal graphs over linearly accessible domains. (English) Zbl 1520.49018 J. Geom. Anal. 33, No. 10, Paper No. 321, 18 p. (2023). MSC: 49Q05 53A10 30C45 30C55 31B05 PDF BibTeX XML Cite \textit{K. Jaglan} and \textit{A. S. Kaliraj}, J. Geom. Anal. 33, No. 10, Paper No. 321, 18 p. (2023; Zbl 1520.49018) Full Text: DOI
Cirant, Marco; Payne, Kevin R.; Redaelli, Davide F. Comparison principles for nonlinear potential theories and PDEs with fiberegularity and sufficient monotonicity. (English) Zbl 1520.31004 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 235, Article ID 113343, 52 p. (2023). MSC: 31B05 31C45 35J60 PDF BibTeX XML Cite \textit{M. Cirant} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 235, Article ID 113343, 52 p. (2023; Zbl 1520.31004) Full Text: DOI arXiv
Pouliasis, Stamatis Logarithmic capacity under holomorphic motions in higher dimensions. (English) Zbl 07723327 J. Math. Anal. Appl. 527, No. 2, Article ID 127546, 8 p. (2023). Reviewer: Christina Karafyllia (Stony Brook) MSC: 31A05 31B15 PDF BibTeX XML Cite \textit{S. Pouliasis}, J. Math. Anal. Appl. 527, No. 2, Article ID 127546, 8 p. (2023; Zbl 07723327) Full Text: DOI
Ben Chrouda, Mohamed; Hassine, Kods One-radius theorem for harmonic tempered distributions. (English) Zbl 1521.31007 Georgian Math. J. 30, No. 4, 509-513 (2023). MSC: 31B05 35B65 PDF BibTeX XML Cite \textit{M. Ben Chrouda} and \textit{K. Hassine}, Georgian Math. J. 30, No. 4, 509--513 (2023; Zbl 1521.31007) Full Text: DOI
David, Guy; Feneuil, Joseph; Mayboroda, Svitlana Elliptic theory in domains with boundaries of mixed dimension. (English) Zbl 07722428 Astérisque 442. Paris: Société Mathématique de France (SMF) (ISBN 978-2-85629-974-6/pbk). viii, 139 p. (2023). MSC: 35-02 35J70 28A15 28A25 31B05 31B25 35J25 42B37 PDF BibTeX XML Cite \textit{G. David} et al., Elliptic theory in domains with boundaries of mixed dimension. Paris: Société Mathématique de France (SMF) (2023; Zbl 07722428) Full Text: DOI arXiv
Kalaj, David; Mateljević, Miodrag; Pinelis, Iosif Schwarz lemma for real harmonic functions onto surfaces with non-negative Gaussian curvature. (English) Zbl 1520.31003 Proc. Edinb. Math. Soc., II. Ser. 66, No. 2, 516-531 (2023). MSC: 31A05 31C05 PDF BibTeX XML Cite \textit{D. Kalaj} et al., Proc. Edinb. Math. Soc., II. Ser. 66, No. 2, 516--531 (2023; Zbl 1520.31003) Full Text: DOI arXiv
Berberyan, S. L.; Dallakyan, R. V. On some new boundary properties of normal harmonic functions. (Russian. English summary) Zbl 07713750 Math. Montisnigri 56, 54-62 (2023). MSC: 30D40 31A05 PDF BibTeX XML Cite \textit{S. L. Berberyan} and \textit{R. V. Dallakyan}, Math. Montisnigri 56, 54--62 (2023; Zbl 07713750) Full Text: DOI
Bartels, Sören; Palus, Christian; Wang, Zhangxian Quasi-optimal error estimates for the finite element approximation of stable harmonic maps with nodal constraints. (English) Zbl 1519.31001 SIAM J. Numer. Anal. 61, No. 4, 1819-1834 (2023). MSC: 31B05 65N30 PDF BibTeX XML Cite \textit{S. Bartels} et al., SIAM J. Numer. Anal. 61, No. 4, 1819--1834 (2023; Zbl 1519.31001) Full Text: DOI arXiv
Chen, Shaolin; Hamada, Hidetaka Hardy type spaces and Bergman type classes of complex-valued harmonic functions. (English) Zbl 1520.31001 Bull. Malays. Math. Sci. Soc. (2) 46, No. 4, Paper No. 138, 19 p. (2023). MSC: 31A05 30H10 30H20 PDF BibTeX XML Cite \textit{S. Chen} and \textit{H. Hamada}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 4, Paper No. 138, 19 p. (2023; Zbl 1520.31001) Full Text: DOI
Berberyan, S. L.; Dallakyan, R. V. Angular boundary limits for normal subharmonic functions. (English. Russian original) Zbl 1521.31001 Mosc. Univ. Math. Bull. 78, No. 1, 44-48 (2023); translation from Vestn. Mosk. Univ., Ser. I 78, No. 1, 49-53 (2023). MSC: 31A05 31A20 PDF BibTeX XML Cite \textit{S. L. Berberyan} and \textit{R. V. Dallakyan}, Mosc. Univ. Math. Bull. 78, No. 1, 44--48 (2023; Zbl 1521.31001); translation from Vestn. Mosk. Univ., Ser. I 78, No. 1, 49--53 (2023) Full Text: DOI
Ha, Jeongmin; Kim, Daehwan Maximal graphs and harmonic mappings. (English) Zbl 1520.31002 J. Math. Anal. Appl. 527, No. 1, Part 2, Article ID 127412, 17 p. (2023). MSC: 31A05 53A10 PDF BibTeX XML Cite \textit{J. Ha} and \textit{D. Kim}, J. Math. Anal. Appl. 527, No. 1, Part 2, Article ID 127412, 17 p. (2023; Zbl 1520.31002) Full Text: DOI
Akman, Murat; Hofmann, Steve; Martell, José María; Toro, Tatiana Square function and non-tangential maximal function estimates for elliptic operators in 1-sided NTA domains satisfying the capacity density condition. (English) Zbl 07707655 Adv. Calc. Var. 16, No. 3, 731-766 (2023). MSC: 47F10 31B05 35J08 35J25 42B37 42B25 42B99 PDF BibTeX XML Cite \textit{M. Akman} et al., Adv. Calc. Var. 16, No. 3, 731--766 (2023; Zbl 07707655) Full Text: DOI arXiv
Fässler, Katrin; Orponen, Tuomas Riesz transform and vertical oscillation in the Heisenberg group. (English) Zbl 07707611 Anal. PDE 16, No. 2, 309-340 (2023). MSC: 43A80 42B20 28A78 31C05 32U30 35R03 44A15 PDF BibTeX XML Cite \textit{K. Fässler} and \textit{T. Orponen}, Anal. PDE 16, No. 2, 309--340 (2023; Zbl 07707611) Full Text: DOI arXiv
Hussain, Javed; Fatah, Abdul Semigroup approach to global well-posedness of the biharmonic Newell-Whitehead-Segel equation. (English) Zbl 07707341 J. Math. Ext. 17, No. 1, Paper No. 7, 18 p. (2023). MSC: 31A05 47H20 35A01 PDF BibTeX XML Cite \textit{J. Hussain} and \textit{A. Fatah}, J. Math. Ext. 17, No. 1, Paper No. 7, 18 p. (2023; Zbl 07707341) Full Text: DOI
Weed, Jared; Ding, Lingyun; Huang, Jingfang; Cho, Min Hyung Quadrature by two expansions for evaluating Helmholtz layer potentials. (English) Zbl 1515.65336 J. Sci. Comput. 95, No. 3, Paper No. 96, 16 p. (2023). MSC: 65R20 65D30 65E05 65T40 31C05 32A55 41A10 PDF BibTeX XML Cite \textit{J. Weed} et al., J. Sci. Comput. 95, No. 3, Paper No. 96, 16 p. (2023; Zbl 1515.65336) Full Text: DOI arXiv
Deng, Hua; Ponnusamy, Saminathan; Qiao, Jinjing; Tian, Yue On harmonic entire mappings. II. (English) Zbl 1516.31001 Monatsh. Math. 201, No. 4, 1059-1092 (2023). MSC: 31A05 30D15 30D20 PDF BibTeX XML Cite \textit{H. Deng} et al., Monatsh. Math. 201, No. 4, 1059--1092 (2023; Zbl 1516.31001) Full Text: DOI
Butzer, P. L.; Stens, R. L. Boundary value problems of potential theory for the exterior ball and the approximation and ergodic behaviour of the solutions. (English) Zbl 07697437 J. Approx. Theory 292, Article ID 105916, 12 p. (2023). Reviewer: David Kapanadze (Tbilisi) MSC: 35J25 47D03 47A35 31B05 PDF BibTeX XML Cite \textit{P. L. Butzer} and \textit{R. L. Stens}, J. Approx. Theory 292, Article ID 105916, 12 p. (2023; Zbl 07697437) Full Text: DOI arXiv
Kalaj, David Nitsche type inequality for hyperbolic harmonic mappings between annuli in the unit ball \(\mathbb{B}^3\). (English) Zbl 1516.31009 Anal. Math. Phys. 13, No. 4, Paper No. 57, 10 p. (2023). MSC: 31B05 PDF BibTeX XML Cite \textit{D. Kalaj}, Anal. Math. Phys. 13, No. 4, Paper No. 57, 10 p. (2023; Zbl 1516.31009) Full Text: DOI
Bogdan, Krzysztof; Jakubowski, Tomasz; Kim, Panki; Pilarczyk, Dominika Self-similar solution for Hardy operator. (English) Zbl 07694902 J. Funct. Anal. 285, No. 5, Article ID 110014, 40 p. (2023). MSC: 47D08 31C05 60J35 35R11 PDF BibTeX XML Cite \textit{K. Bogdan} et al., J. Funct. Anal. 285, No. 5, Article ID 110014, 40 p. (2023; Zbl 07694902) Full Text: DOI arXiv
Lee, Ki-Ahm; Park, Sungha Non-linear operators of divergence form on the Sierpinski gasket. (English) Zbl 1516.31020 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113256, 33 p. (2023). MSC: 31C05 31E05 35J62 PDF BibTeX XML Cite \textit{K.-A. Lee} and \textit{S. Park}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113256, 33 p. (2023; Zbl 1516.31020) Full Text: DOI
Páll-Szabo, Á. O. Generalizations of starlike harmonic functions defined by Sălăgean and Ruscheweyh derivatives. (English) Zbl 1515.31005 Ukr. Math. J. 74, No. 10, 1584-1598 (2023) and Ukr. Mat. Zh. 74, No. 10, 1388-1400 (2022). MSC: 31A05 30C45 30C50 PDF BibTeX XML Cite \textit{Á. O. Páll-Szabo}, Ukr. Math. J. 74, No. 10, 1584--1598 (2023; Zbl 1515.31005) Full Text: DOI
Loveikin, A. V. Plane potential field outside a symmetric T-shaped profile. (English. Ukrainian original) Zbl 1514.31001 J. Math. Sci., New York 272, No. 1, 93-111 (2023); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 2, 83-97 (2020). MSC: 31A05 30E25 47B35 PDF BibTeX XML Cite \textit{A. V. Loveikin}, J. Math. Sci., New York 272, No. 1, 93--111 (2023; Zbl 1514.31001); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 2, 83--97 (2020) Full Text: DOI
Tokibetov, J. A.; Abduakhitova, G. E.; Kaparova, R. M. On one representation of a generalized holomorphic vector via the derivatives of harmonic functions. (English. Ukrainian original) Zbl 1514.35154 J. Math. Sci., New York 272, No. 1, 29-37 (2023); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 2, 29-35 (2020). MSC: 35J46 31A05 30G35 PDF BibTeX XML Cite \textit{J. A. Tokibetov} et al., J. Math. Sci., New York 272, No. 1, 29--37 (2023; Zbl 1514.35154); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 2, 29--35 (2020) Full Text: DOI
Takeda, Masayoshi; Uemura, Toshihiro Criticality of Schrödinger forms and recurrence of Dirichlet forms. (English) Zbl 1519.60073 Trans. Am. Math. Soc. 376, No. 6, 4145-4171 (2023). MSC: 60J46 31C25 31C05 60J25 PDF BibTeX XML Cite \textit{M. Takeda} and \textit{T. Uemura}, Trans. Am. Math. Soc. 376, No. 6, 4145--4171 (2023; Zbl 1519.60073) Full Text: DOI arXiv
Miura, Yusuke Optimal Hardy inequalities for Schrödinger operators based on symmetric stable processes. (English) Zbl 1521.60044 J. Theor. Probab. 36, No. 1, 134-166 (2023). Reviewer: Renming Song (Urbana) MSC: 60J45 60G52 31C05 PDF BibTeX XML Cite \textit{Y. Miura}, J. Theor. Probab. 36, No. 1, 134--166 (2023; Zbl 1521.60044) Full Text: DOI
Shang, Shouming; Hou, Pengfei; Li, Qiuhua; Zhang, Wenhua Three-dimensional exact solutions of double-coated structure with arbitrary thickness under normal point load. (English) Zbl 1510.74002 Appl. Math. Modelling 117, 762-785 (2023). MSC: 74A50 31B05 65M60 PDF BibTeX XML Cite \textit{S. Shang} et al., Appl. Math. Modelling 117, 762--785 (2023; Zbl 1510.74002) Full Text: DOI
Mangasuli, Anandateertha G.; Tiwari, Aditya Laplace eigenvalues of ellipsoids obtained as analytic perturbations of the unit sphere. (English) Zbl 1514.58017 Ann. Global Anal. Geom. 63, No. 3, Paper No. 26, 10 p. (2023). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 58J50 31B05 PDF BibTeX XML Cite \textit{A. G. Mangasuli} and \textit{A. Tiwari}, Ann. Global Anal. Geom. 63, No. 3, Paper No. 26, 10 p. (2023; Zbl 1514.58017) Full Text: DOI
De Philippis, Guido; Núñez-Zimbrón, Jesús The behavior of harmonic functions at singular points of \(\mathsf{RCD}\) spaces. (English) Zbl 1521.31016 Manuscr. Math. 171, No. 1-2, 155-168 (2023). Reviewer: Marius Ghergu (Dublin) MSC: 31C05 42B20 31B05 PDF BibTeX XML Cite \textit{G. De Philippis} and \textit{J. Núñez-Zimbrón}, Manuscr. Math. 171, No. 1--2, 155--168 (2023; Zbl 1521.31016) Full Text: DOI arXiv
Kuznetsov, N. A characterization of harmonic functions by quadrature identities on annular domains and related results. (English. Russian original) Zbl 1516.31011 J. Math. Sci., New York 270, No. 6, 793-802 (2023); translation from Probl. Mat. Anal. 124, 53-60 (2023). MSC: 31B05 35J05 PDF BibTeX XML Cite \textit{N. Kuznetsov}, J. Math. Sci., New York 270, No. 6, 793--802 (2023; Zbl 1516.31011); translation from Probl. Mat. Anal. 124, 53--60 (2023) Full Text: DOI arXiv
Savkovic, Ivana Boundedness of Bergman projections acting on weighted mixed norm spaces. (English) Zbl 1517.32007 Turk. J. Math. 47, No. 2, 687-693 (2023). MSC: 32A25 31B05 PDF BibTeX XML Cite \textit{I. Savkovic}, Turk. J. Math. 47, No. 2, 687--693 (2023; Zbl 1517.32007) Full Text: DOI
Bravo, Víctor; Hernández, Rodrigo; Venegas, Osvaldo Two-point distortion theorems for harmonic mappings. (English) Zbl 1515.31002 Bull. Malays. Math. Sci. Soc. (2) 46, No. 3, Paper No. 100, 13 p. (2023). MSC: 31A05 30C45 PDF BibTeX XML Cite \textit{V. Bravo} et al., Bull. Malays. Math. Sci. Soc. (2) 46, No. 3, Paper No. 100, 13 p. (2023; Zbl 1515.31002) Full Text: DOI arXiv
Gallegos, Josep M. Size of the zero set of solutions of elliptic PDEs near the boundary of Lipschitz domains with small Lipschitz constant. (English) Zbl 1516.31008 Calc. Var. Partial Differ. Equ. 62, No. 4, Paper No. 113, 52 p. (2023). MSC: 31B05 35J62 31B20 35J25 PDF BibTeX XML Cite \textit{J. M. Gallegos}, Calc. Var. Partial Differ. Equ. 62, No. 4, Paper No. 113, 52 p. (2023; Zbl 1516.31008) Full Text: DOI arXiv
Liu, Gang; Ponnusamy, Saminathan; Starkov, Victor V. Stable classes of harmonic mappings. (English) Zbl 1515.31004 Bull. Sci. Math. 184, Article ID 103256, 17 p. (2023). MSC: 31A05 30C50 30C45 PDF BibTeX XML Cite \textit{G. Liu} et al., Bull. Sci. Math. 184, Article ID 103256, 17 p. (2023; Zbl 1515.31004) Full Text: DOI arXiv
Ahamed, Molla Basir; Mandal, Sanju Certain properties of normal meromorphic and normal harmonic mappings. (English) Zbl 1515.30085 Monatsh. Math. 200, No. 4, 719-736 (2023). MSC: 30D45 30D35 31A05 PDF BibTeX XML Cite \textit{M. B. Ahamed} and \textit{S. Mandal}, Monatsh. Math. 200, No. 4, 719--736 (2023; Zbl 1515.30085) Full Text: DOI
Khabibullin, B. N. Nevanlinna characteristic and integral inequalities with maximal radial characteristic for meromorphic functions and for differences of subharmonic functions. (English. Russian original) Zbl 1515.30081 St. Petersbg. Math. J. 34, No. 2, 247-270 (2023); translation from Algebra Anal. 34, No. 2, 152-184 (2022). MSC: 30D35 31A05 PDF BibTeX XML Cite \textit{B. N. Khabibullin}, St. Petersbg. Math. J. 34, No. 2, 247--270 (2023; Zbl 1515.30081); translation from Algebra Anal. 34, No. 2, 152--184 (2022) Full Text: DOI
Efraimidis, Iason; Hernández, Rodrigo; Martín, María J. Ahlfors-Weill extensions for harmonic mappings. (English) Zbl 1515.31003 J. Math. Anal. Appl. 523, No. 2, Article ID 127053, 15 p. (2023). MSC: 31A05 PDF BibTeX XML Cite \textit{I. Efraimidis} et al., J. Math. Anal. Appl. 523, No. 2, Article ID 127053, 15 p. (2023; Zbl 1515.31003) Full Text: DOI arXiv
Qiao, Jinjing; Wang, Jing Quasiconformal extensions of biharmonic mappings and strongly starlike biharmonic mappings. (English) Zbl 1516.31002 Bull. Malays. Math. Sci. Soc. (2) 46, No. 2, Paper No. 74, 24 p. (2023). MSC: 31A05 30C45 30C62 PDF BibTeX XML Cite \textit{J. Qiao} and \textit{J. Wang}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 2, Paper No. 74, 24 p. (2023; Zbl 1516.31002) Full Text: DOI
Alama, Stan; Bronsard, Lia; Lamy, Xavier; Venkatraman, Raghavendra Far-field expansions for harmonic maps and the electrostatics analogy in nematic suspensions. (English) Zbl 1512.35198 J. Nonlinear Sci. 33, No. 3, Paper No. 39, 27 p. (2023). MSC: 35J20 31B05 PDF BibTeX XML Cite \textit{S. Alama} et al., J. Nonlinear Sci. 33, No. 3, Paper No. 39, 27 p. (2023; Zbl 1512.35198) Full Text: DOI arXiv
Xia, Qiaoling Some \(L^p\) Liouville theorems on Finsler measure spaces. (English) Zbl 1516.53067 Differ. Geom. Appl. 87, Article ID 101987, 15 p. (2023). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 53C60 31B05 53B40 PDF BibTeX XML Cite \textit{Q. Xia}, Differ. Geom. Appl. 87, Article ID 101987, 15 p. (2023; Zbl 1516.53067) Full Text: DOI
Kadaoui Abbassi, Mohamed Tahar; Lakrini, Ibrahim Some classes of harmonic functions on vector bundles. (English) Zbl 1516.53061 Beitr. Algebra Geom. 64, No. 1, 175-196 (2023). Reviewer: Gabriel Eduard Vilcu (București) MSC: 53C43 31B05 PDF BibTeX XML Cite \textit{M. T. Kadaoui Abbassi} and \textit{I. Lakrini}, Beitr. Algebra Geom. 64, No. 1, 175--196 (2023; Zbl 1516.53061) Full Text: DOI
Avetisyan, Karen Estimates for harmonic reproducing kernel and Bergman type operators on mixed norm and Besov spaces in the real ball. (English) Zbl 1509.31006 Ann. Funct. Anal. 14, No. 2, Paper No. 40, 29 p. (2023). MSC: 31B05 31B10 46E15 47B32 PDF BibTeX XML Cite \textit{K. Avetisyan}, Ann. Funct. Anal. 14, No. 2, Paper No. 40, 29 p. (2023; Zbl 1509.31006) Full Text: DOI
Bierenbaum, I.; Blümlein, J.; De Freitas, A.; Goedicke, A.; Klein, S.; Schönwald, K. \(O(\alpha_s^2)\) polarized heavy flavor corrections to deep-inelastic scattering at \(Q^2 \gg m^2\). (English) Zbl 1520.81158 Nucl. Phys., B 988, Article ID 116114, 61 p. (2023). MSC: 81U35 81V05 37E40 31B05 32J05 47A56 81V35 PDF BibTeX XML Cite \textit{I. Bierenbaum} et al., Nucl. Phys., B 988, Article ID 116114, 61 p. (2023; Zbl 1520.81158) Full Text: DOI arXiv
Ahamed, Molla Basir; Allu, Vasudevarao; Halder, Himadri Improved Bohr inequalities for certain class of harmonic univalent functions. (English) Zbl 1509.31001 Complex Var. Elliptic Equ. 68, No. 2, 267-290 (2023). MSC: 31A05 30C50 30C80 PDF BibTeX XML Cite \textit{M. B. Ahamed} et al., Complex Var. Elliptic Equ. 68, No. 2, 267--290 (2023; Zbl 1509.31001) Full Text: DOI arXiv
Chen, Ren-Yu; Li, Song-Ying; Luo, Jie On the asymptotic expansions of the proper harmonic maps between balls in Bergman metrics. (English) Zbl 1510.31001 J. Geom. Anal. 33, No. 4, Paper No. 114, 48 p. (2023). MSC: 31B05 32F45 PDF BibTeX XML Cite \textit{R.-Y. Chen} et al., J. Geom. Anal. 33, No. 4, Paper No. 114, 48 p. (2023; Zbl 1510.31001) Full Text: DOI
Ostrovska, Sofiya; Turan, Mehmet On the Lupaş \(q\)-transform of unbounded functions. (English) Zbl 1516.44001 Math. Slovaca 73, No. 1, 177-184 (2023). MSC: 44A05 41A36 31A05 33D05 PDF BibTeX XML Cite \textit{S. Ostrovska} and \textit{M. Turan}, Math. Slovaca 73, No. 1, 177--184 (2023; Zbl 1516.44001) Full Text: DOI
Atanasi, Laura; Picardello, Massimo A. An area theorem for joint harmonic functions on the product of homogeneous trees. (English) Zbl 1509.31017 Potential Anal. 58, No. 2, 393-407 (2023). MSC: 31C05 05C05 PDF BibTeX XML Cite \textit{L. Atanasi} and \textit{M. A. Picardello}, Potential Anal. 58, No. 2, 393--407 (2023; Zbl 1509.31017) Full Text: DOI
Mashreghi, Javad; Ransford, Thomas Weakly multiplicative distributions and weighted Dirichlet spaces. (English) Zbl 1507.46030 J. Geom. Anal. 33, No. 3, Paper No. 103, 10 p. (2023). Reviewer: Denis Sidorov (Irkutsk) MSC: 46F05 46E22 PDF BibTeX XML Cite \textit{J. Mashreghi} and \textit{T. Ransford}, J. Geom. Anal. 33, No. 3, Paper No. 103, 10 p. (2023; Zbl 1507.46030) Full Text: DOI arXiv
Adamowicz, Tomasz; Kijowski, Antoni; Soultanis, Elefterios Asymptotically mean value harmonic functions in subriemannian and RCD settings. (English) Zbl 1509.31024 J. Geom. Anal. 33, No. 3, Paper No. 80, 30 p. (2023). MSC: 31E05 31C05 35R03 PDF BibTeX XML Cite \textit{T. Adamowicz} et al., J. Geom. Anal. 33, No. 3, Paper No. 80, 30 p. (2023; Zbl 1509.31024) Full Text: DOI arXiv
Boyack, Rufus; Bhuiyan, Asadullah; Su, Aneca; Marsiglio, Frank The bound-state solutions of the one-dimensional pseudoharmonic oscillator. (English) Zbl 1518.81043 J. Math. Chem. 61, No. 1, 242-276 (2023). MSC: 81Q05 34L40 31A05 33C05 47A52 PDF BibTeX XML Cite \textit{R. Boyack} et al., J. Math. Chem. 61, No. 1, 242--276 (2023; Zbl 1518.81043) Full Text: DOI arXiv
Akman, Murat; Hofmann, Steve; Martell, José María; Toro, Tatiana Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition. (English) Zbl 1509.31005 Forum Math. 35, No. 1, 245-295 (2023). MSC: 31B05 35J08 35J25 PDF BibTeX XML Cite \textit{M. Akman} et al., Forum Math. 35, No. 1, 245--295 (2023; Zbl 1509.31005) Full Text: DOI arXiv
Lin, Daowen; Ou, Qianzhong Liouville type theorems for positive harmonic functions on the unit ball with a nonlinear boundary condition. (English) Zbl 1517.35102 Calc. Var. Partial Differ. Equ. 62, No. 1, Paper No. 34, 13 p. (2023). Reviewer: Paolo Musolino (Padova) MSC: 35J05 31B05 35J65 35B53 PDF BibTeX XML Cite \textit{D. Lin} and \textit{Q. Ou}, Calc. Var. Partial Differ. Equ. 62, No. 1, Paper No. 34, 13 p. (2023; Zbl 1517.35102) Full Text: DOI
AbdulHadi, Zayid; Hajj, Layan El On the Bohr’s inequality for stable mappings. (English) Zbl 1503.30002 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 43, 18 p. (2023). MSC: 30B10 31A05 PDF BibTeX XML Cite \textit{Z. AbdulHadi} and \textit{L. E. Hajj}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 43, 18 p. (2023; Zbl 1503.30002) Full Text: DOI arXiv
Gao, Linkui; Gao, Junyang; Liu, Gang Location of the zeros of harmonic trinomials. (English) Zbl 1503.31003 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 34, 19 p. (2023). MSC: 31A05 30C15 PDF BibTeX XML Cite \textit{L. Gao} et al., Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 34, 19 p. (2023; Zbl 1503.31003) Full Text: DOI
Bshouty, Daoud; Lyzzaik, Abdallah On harmonic homeomorphisms from the punctured unit disc onto its exterior. (English) Zbl 1502.31002 J. Math. Anal. Appl. 519, No. 2, Article ID 126822, 15 p. (2023). MSC: 31A05 PDF BibTeX XML Cite \textit{D. Bshouty} and \textit{A. Lyzzaik}, J. Math. Anal. Appl. 519, No. 2, Article ID 126822, 15 p. (2023; Zbl 1502.31002) Full Text: DOI
Üreyen, A. Ersin \(\mathcal{H}\)-harmonic Bergman projection on the real hyperbolic ball. (English) Zbl 1504.31018 J. Math. Anal. Appl. 519, No. 2, Article ID 126802, 30 p. (2023). MSC: 31C05 47B38 PDF BibTeX XML Cite \textit{A. E. Üreyen}, J. Math. Anal. Appl. 519, No. 2, Article ID 126802, 30 p. (2023; Zbl 1504.31018) Full Text: DOI arXiv
Gerhards, C.; Huang, X.; Kegeles, A. Relation between Hardy components for locally supported vector fields on the sphere. (English) Zbl 1503.31007 J. Math. Anal. Appl. 517, No. 1, Article ID 126572, 18 p. (2023). MSC: 31B05 42B30 PDF BibTeX XML Cite \textit{C. Gerhards} et al., J. Math. Anal. Appl. 517, No. 1, Article ID 126572, 18 p. (2023; Zbl 1503.31007) Full Text: DOI arXiv
Kokurin, Mikhail Yu. Completeness of asymmetric products of harmonic functions and uniqueness of the solution to the Lavrent’ev equation in inverse wave sounding problems. (English. Russian original) Zbl 07733640 Izv. Math. 86, No. 6, 1123-1142 (2022); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 86, No. 6, 101-122 (2022). MSC: 35R30 35J25 35P10 31B05 PDF BibTeX XML Cite \textit{M. Yu. Kokurin}, Izv. Math. 86, No. 6, 1123--1142 (2022; Zbl 07733640); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 86, No. 6, 101--122 (2022) Full Text: DOI MNR
Khabibullin, Bulat N. Integrals of a difference of subharmonic functions against measures and the Nevanlinna characteristic. (English. Russian original) Zbl 1521.31002 Sb. Math. 213, No. 5, 694-733 (2022); translation from Mat. Sb. 213, No. 5, 126-166 (2022). MSC: 31A05 30A10 PDF BibTeX XML Cite \textit{B. N. Khabibullin}, Sb. Math. 213, No. 5, 694--733 (2022; Zbl 1521.31002); translation from Mat. Sb. 213, No. 5, 126--166 (2022) Full Text: DOI MNR
He, Zunwu; Hua, Bobo Harmonic functions of polynomial growth on infinite penny graphs. (English) Zbl 1519.05181 J. Lond. Math. Soc., II. Ser. 105, No. 1, 565-586 (2022). MSC: 05C63 05C10 31C05 35K05 PDF BibTeX XML Cite \textit{Z. He} and \textit{B. Hua}, J. Lond. Math. Soc., II. Ser. 105, No. 1, 565--586 (2022; Zbl 1519.05181) Full Text: DOI arXiv
Khavinson, Dmitry; Lundberg, Erik A note on arclength null quadrature domains. (English) Zbl 1521.30017 Bull. Lond. Math. Soc. 54, No. 1, 275-284 (2022). Reviewer: Marius Ghergu (Dublin) MSC: 30C20 30H15 31A05 35R35 PDF BibTeX XML Cite \textit{D. Khavinson} and \textit{E. Lundberg}, Bull. Lond. Math. Soc. 54, No. 1, 275--284 (2022; Zbl 1521.30017) Full Text: DOI arXiv
Shah, Shujaat Ali; Cotirla, Luminita-Ioana; Catas, Adriana; Dubau, Calin; Cheregi, Gabriel A study of spiral-like harmonic functions associated with quantum calculus. (English) Zbl 1516.31003 J. Funct. Spaces 2022, Article ID 5495011, 7 p. (2022). MSC: 31A05 30C45 PDF BibTeX XML Cite \textit{S. A. Shah} et al., J. Funct. Spaces 2022, Article ID 5495011, 7 p. (2022; Zbl 1516.31003) Full Text: DOI
Radulescu, Vicentiu; Rosiu, Monica Boundary value problems on Klein surfaces. (English) Zbl 1515.30104 Krantz, Steven G. (ed.), Handbook of complex analysis. Boca Raton, FL: CRC Press. 487-520 (2022). MSC: 30F50 30E25 31A05 PDF BibTeX XML Cite \textit{V. Radulescu} and \textit{M. Rosiu}, in: Handbook of complex analysis. Boca Raton, FL: CRC Press. 487--520 (2022; Zbl 1515.30104) Full Text: DOI
Raj, Manivannan Varadha; Madhu, Venkataraman Biharmonic Green function and bisupermedian on infinite networks. (English) Zbl 1516.31021 Ural Math. J. 8, No. 2, 177-186 (2022). MSC: 31C05 05C05 PDF BibTeX XML Cite \textit{M. V. Raj} and \textit{V. Madhu}, Ural Math. J. 8, No. 2, 177--186 (2022; Zbl 1516.31021) Full Text: DOI MNR
Mead, Lawrence R.; Lee, Sungwook; Garfinkle, David A non-trivial PT-symmetric continuum Hamiltonian and its eigenstates and eigenvalues. (English) Zbl 1521.81080 J. Math. Phys. 63, No. 7, Article ID 072104, 6 p. (2022); erratum ibid. 63, No. 8, Article ID 089901, 1 p. (2022). MSC: 81Q12 31A05 81Q65 35P10 PDF BibTeX XML Cite \textit{L. R. Mead} et al., J. Math. Phys. 63, No. 7, Article ID 072104, 6 p. (2022; Zbl 1521.81080) Full Text: DOI arXiv
Kenig, Carlos E.; Zhao, Zihui Expansion of harmonic functions near the boundary of Dini domains. (English) Zbl 1516.31010 Rev. Mat. Iberoam. 38, No. 7, 2117-2152 (2022). Reviewer: Paolo Musolino (Padova) MSC: 31B05 31B35 PDF BibTeX XML Cite \textit{C. E. Kenig} and \textit{Z. Zhao}, Rev. Mat. Iberoam. 38, No. 7, 2117--2152 (2022; Zbl 1516.31010) Full Text: DOI arXiv
Martin, Gaven J.; Yao, Cong Extremal mappings of finite distortion and the Radon-Riesz property. (English) Zbl 1521.30031 Rev. Mat. Iberoam. 38, No. 7, 2057-2068 (2022). Reviewer: Chong Wu (Chengdu) MSC: 30C62 31A05 49J10 PDF BibTeX XML Cite \textit{G. J. Martin} and \textit{C. Yao}, Rev. Mat. Iberoam. 38, No. 7, 2057--2068 (2022; Zbl 1521.30031) Full Text: DOI arXiv
Savković, Ivana Carleson measures for weighted harmonic mixed norm spaces on bounded domains in \(\mathbb{R}^n\). (English) Zbl 07655795 Czech. Math. J. 72, No. 4, 1205-1216 (2022). MSC: 42B35 31B05 PDF BibTeX XML Cite \textit{I. Savković}, Czech. Math. J. 72, No. 4, 1205--1216 (2022; Zbl 07655795) Full Text: DOI
Hrabova, Ulyana Z.; Kal’chuk, Inna V. Approximation of classes \({C}_{\beta, \infty}^{\psi }\) by three-harmonic Poisson integrals in uniform metric (low smoothness). (English. Ukrainian original) Zbl 1507.42003 J. Math. Sci., New York 268, No. 2, 178-191 (2022); translation from Ukr. Mat. Visn. 19, No. 3, 355-372 (2022). MSC: 42A10 41A35 31A05 31A30 PDF BibTeX XML Cite \textit{U. Z. Hrabova} and \textit{I. V. Kal'chuk}, J. Math. Sci., New York 268, No. 2, 178--191 (2022; Zbl 1507.42003); translation from Ukr. Mat. Visn. 19, No. 3, 355--372 (2022) Full Text: DOI
Athreya, Siva; Gadhiwala, Nitya; Radhakrishnan, Ritvik R. Elliptic Harnack inequality for \(\mathbb{Z}^d\). (English) Zbl 1509.31018 Involve 15, No. 4, 687-708 (2022). MSC: 31C05 31C20 60G50 PDF BibTeX XML Cite \textit{S. Athreya} et al., Involve 15, No. 4, 687--708 (2022; Zbl 1509.31018) Full Text: DOI arXiv
Men’shikova, E. B. Integral formulas of Carleman and Levin for meromorphic and subharmonic functions. (English. Russian original) Zbl 1508.30065 Russ. Math. 66, No. 6, 28-42 (2022); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 6, 37-53 (2022). MSC: 30D30 31A05 30C15 PDF BibTeX XML Cite \textit{E. B. Men'shikova}, Russ. Math. 66, No. 6, 28--42 (2022; Zbl 1508.30065); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 6, 37--53 (2022) Full Text: DOI
Berberyan, S. L. Meyer points and refined Meyer points for arbitrary harmonic functions. (English. Russian original) Zbl 1509.31002 Russ. Math. 66, No. 5, 21-25 (2022); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 5, 26-32 (2022). MSC: 31A05 PDF BibTeX XML Cite \textit{S. L. Berberyan}, Russ. Math. 66, No. 5, 21--25 (2022; Zbl 1509.31002); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 5, 26--32 (2022) Full Text: DOI
Mortini, Raymond The Milne-Thomson formula for the harmonic conjugate and its associated holomorphic function. (English) Zbl 1504.31007 Elem. Math. 77, No. 4, 192-195 (2022). MSC: 31A05 PDF BibTeX XML Cite \textit{R. Mortini}, Elem. Math. 77, No. 4, 192--195 (2022; Zbl 1504.31007) Full Text: DOI
Abubakirov, N. R.; Denisova, M. Yu. Solvability and invertibility of the problems of logarithmic potential. (English) Zbl 1504.31001 Lobachevskii J. Math. 43, No. 8, 2019-2028 (2022). MSC: 31A05 31A25 PDF BibTeX XML Cite \textit{N. R. Abubakirov} and \textit{M. Yu. Denisova}, Lobachevskii J. Math. 43, No. 8, 2019--2028 (2022; Zbl 1504.31001) Full Text: DOI
Chen, Shao Lin; Ponnusamy, Saminathan Koebe type theorems and pre-Schwarzian of harmonic \(K\)-quasiconformal mappings, and their applications. (English) Zbl 1504.31005 Acta Math. Sin., Engl. Ser. 38, No. 11, 1965-1980 (2022). MSC: 31A05 30C62 30C75 30H30 PDF BibTeX XML Cite \textit{S. L. Chen} and \textit{S. Ponnusamy}, Acta Math. Sin., Engl. Ser. 38, No. 11, 1965--1980 (2022; Zbl 1504.31005) Full Text: DOI