Aydin, Muhittin Evren; López, Rafael Translators of flows by powers of the Gauss curvature. (English) Zbl 07645549 Ann. Mat. Pura Appl. (4) 202, No. 1, 235-251 (2023). MSC: 53C44 53A15 35J96 PDF BibTeX XML Cite \textit{M. E. Aydin} and \textit{R. López}, Ann. Mat. Pura Appl. (4) 202, No. 1, 235--251 (2023; Zbl 07645549) Full Text: DOI arXiv OpenURL
Bukhtyak, Mikhail Stepanovich; Esipov, Dmitriĭ Evgen’evich Pseudo-minimal surfaces of revolution. (Russian. English summary) Zbl 07642481 Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2022, No. 76, 5-19 (2022). MSC: 53Z30 PDF BibTeX XML Cite \textit{M. S. Bukhtyak} and \textit{D. E. Esipov}, Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2022, No. 76, 5--19 (2022; Zbl 07642481) Full Text: DOI MNR OpenURL
Wang, Haohao; Wojdylo, Jerzy Determine when a parametric surface is a surface of revolution. (English) Zbl 07626055 Int. Electron. J. Geom. 15, No. 2, 313-320 (2022). MSC: 51N20 51-08 PDF BibTeX XML Cite \textit{H. Wang} and \textit{J. Wojdylo}, Int. Electron. J. Geom. 15, No. 2, 313--320 (2022; Zbl 07626055) Full Text: DOI OpenURL
Gangopadhyay, Ranadip; Kumar, Ashok; Tiwari, Bankteshwar On minimal surfaces immersed in three dimensional Kropina Minkowski space. (English) Zbl 1484.53048 Result. Math. 77, No. 1, Paper No. 27, 14 p. (2022). Reviewer: Gauree Shanker (Bathinda) MSC: 53B40 53C60 53C42 PDF BibTeX XML Cite \textit{R. Gangopadhyay} et al., Result. Math. 77, No. 1, Paper No. 27, 14 p. (2022; Zbl 1484.53048) Full Text: DOI arXiv OpenURL
Kişi, İlim A new approach to revolution surface with its focal surface in the Galilean 3-space \(\mathbb{G}_3\). (English) Zbl 1499.53029 Hacet. J. Math. Stat. 50, No. 6, 1722-1737 (2021). MSC: 53A07 PDF BibTeX XML Cite \textit{İ. Kişi}, Hacet. J. Math. Stat. 50, No. 6, 1722--1737 (2021; Zbl 1499.53029) Full Text: DOI OpenURL
Wang, Haohao; Goldman, Ron Ruled surfaces of revolution with moving axes and angles. (English) Zbl 07514352 Int. J. Comput. Geom. Appl. 31, No. 2-3, 163-181 (2021). MSC: 65D17 PDF BibTeX XML Cite \textit{H. Wang} and \textit{R. Goldman}, Int. J. Comput. Geom. Appl. 31, No. 2--3, 163--181 (2021; Zbl 07514352) Full Text: DOI OpenURL
Kuleshov, A. S.; Solomina, D. V. Liouvillian solutions in the problem of rolling of a heavy homogeneous ball on a surface of revolution. (English. Russian original) Zbl 07485539 Vestn. St. Petersbg. Univ., Math. 54, No. 4, 405-410 (2021); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 4, 653-660 (2021). MSC: 70-XX PDF BibTeX XML Cite \textit{A. S. Kuleshov} and \textit{D. V. Solomina}, Vestn. St. Petersbg. Univ., Math. 54, No. 4, 405--410 (2021; Zbl 07485539); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 4, 653--660 (2021) Full Text: DOI OpenURL
da Silva, Luiz C. B. Surfaces of revolution with prescribed mean and skew curvatures in Lorentz-Minkowski space. (English) Zbl 1486.53073 Tohoku Math. J. (2) 73, No. 3, 317-339 (2021). MSC: 53C42 53A10 53A35 53B30 PDF BibTeX XML Cite \textit{L. C. B. da Silva}, Tôhoku Math. J. (2) 73, No. 3, 317--339 (2021; Zbl 1486.53073) Full Text: DOI arXiv OpenURL
Shanker, Gauree; Jangir, Seema Geometry on the surface of revolution with first approximate slope metric. (English) Zbl 1490.53034 Appl. Sci. 23, 145-155 (2021). Reviewer: Hamid Reza Salimi Moghaddam (Isfahan) MSC: 53B40 53C60 53A05 PDF BibTeX XML Cite \textit{G. Shanker} and \textit{S. Jangir}, Appl. Sci. 23, 145--155 (2021; Zbl 1490.53034) Full Text: Link OpenURL
Sabitov, Idzhad Kh. On metrics admitting a discontinuum set of non-congruent immersions in \(\mathbb{R}^3\). (Russian. English summary) Zbl 1479.53009 Sib. Èlektron. Mat. Izv. 18, No. 2, 1023-1026 (2021). MSC: 53A05 PDF BibTeX XML Cite \textit{I. Kh. Sabitov}, Sib. Èlektron. Mat. Izv. 18, No. 2, 1023--1026 (2021; Zbl 1479.53009) Full Text: DOI OpenURL
Mramor, Alexander; Payne, Alec Ancient and eternal solutions to mean curvature flow from minimal surfaces. (English) Zbl 1468.53077 Math. Ann. 380, No. 1-2, 569-591 (2021). MSC: 53E10 49Q05 53A07 PDF BibTeX XML Cite \textit{A. Mramor} and \textit{A. Payne}, Math. Ann. 380, No. 1--2, 569--591 (2021; Zbl 1468.53077) Full Text: DOI arXiv OpenURL
Dias, Fabio Scalco; Mello, Luis Fernando Polynomial vector fields on algebraic surfaces of revolution. (English) Zbl 1486.34092 Result. Math. 76, No. 1, Paper No. 2, 12 p. (2021). Reviewer: Christos Sourdis (Athína) MSC: 34C45 34C05 34C40 PDF BibTeX XML Cite \textit{F. S. Dias} and \textit{L. F. Mello}, Result. Math. 76, No. 1, Paper No. 2, 12 p. (2021; Zbl 1486.34092) Full Text: DOI OpenURL
Klyachin, V. A.; Grigorieva, E. G. A 3D reconstruction algorithm of a surface of revolution from its projection. (Russian. English summary) Zbl 07630599 Sib. Zh. Ind. Mat. 23, No. 1, 84-92 (2020); translation in J. Appl. Ind. Math. 14, No. 1, 85-91 (2020). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{V. A. Klyachin} and \textit{E. G. Grigorieva}, Sib. Zh. Ind. Mat. 23, No. 1, 84--92 (2020; Zbl 07630599); translation in J. Appl. Ind. Math. 14, No. 1, 85--91 (2020) Full Text: DOI MNR OpenURL
Khan, Mair; Salahuddin, T.; Malik, M. Y.; Alqarni, M. S.; Alqahtani, A. M. Numerical modeling and analysis of bioconvection on MHD flow due to an upper paraboloid surface of revolution. (English) Zbl 07461796 Physica A 553, Article ID 124231, 13 p. (2020); corrigendum ibid. 581, Article ID 126203, 2 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{M. Khan} et al., Physica A 553, Article ID 124231, 13 p. (2020; Zbl 07461796) Full Text: DOI OpenURL
Chansangiam, Pattrawut; Chansri, Pipatpong; Sabau, Sorin V. Surfaces of revolution admitting strongly convex slope metrics. (English) Zbl 1488.53002 Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 13(62), No. 1, 77-88 (2020). MSC: 53A04 53A05 PDF BibTeX XML Cite \textit{P. Chansangiam} et al., Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 13(62), No. 1, 77--88 (2020; Zbl 1488.53002) Full Text: DOI arXiv OpenURL
Takahashi, Masatomo; Teramoto, Keisuke Surfaces of revolution of frontals in the Euclidean space. (English) Zbl 1475.57041 Bull. Braz. Math. Soc. (N.S.) 51, No. 4, 887-914 (2020). Reviewer: Pedro Benedini Riul (São João del-Rei) MSC: 57R45 53A05 58K05 PDF BibTeX XML Cite \textit{M. Takahashi} and \textit{K. Teramoto}, Bull. Braz. Math. Soc. (N.S.) 51, No. 4, 887--914 (2020; Zbl 1475.57041) Full Text: DOI arXiv OpenURL
Kudryavtseva, E. A.; Oshemkov, A. A. Bifurcations of integrable mechanical systems with magnetic field on surfaces of revolution. (Russian. English summary) Zbl 1462.37064 Chebyshevskiĭ Sb. 21, No. 2(74), 244-265 (2020). MSC: 37J20 37J35 37J39 PDF BibTeX XML Cite \textit{E. A. Kudryavtseva} and \textit{A. A. Oshemkov}, Chebyshevskiĭ Sb. 21, No. 2(74), 244--265 (2020; Zbl 1462.37064) Full Text: MNR OpenURL
Chansri, P.; Chansangiam, S.; Sabau, Sorin V. The geometry on the slope of a mountain. (English) Zbl 1474.53046 Miskolc Math. Notes 21, No. 2, 747-762 (2020). MSC: 53A35 53C60 PDF BibTeX XML Cite \textit{P. Chansri} et al., Miskolc Math. Notes 21, No. 2, 747--762 (2020; Zbl 1474.53046) Full Text: DOI arXiv OpenURL
Cheshkova, M. A. Transformation of Bianchi for Minding top. (Russian. English summary) Zbl 1455.53031 Differ. Geom. Mnogoobr. Figur 51, 135-142 (2020). MSC: 53A10 PDF BibTeX XML Cite \textit{M. A. Cheshkova}, Differ. Geom. Mnogoobr. Figur 51, 135--142 (2020; Zbl 1455.53031) Full Text: DOI OpenURL
Olver, Sheehan; Xu, Yuan Orthogonal polynomials in and on a quadratic surface of revolution. (English) Zbl 07240969 Math. Comput. 89, No. 326, 2847-2865 (2020). MSC: 42C05 42C10 65D15 65D32 65T50 PDF BibTeX XML Cite \textit{S. Olver} and \textit{Y. Xu}, Math. Comput. 89, No. 326, 2847--2865 (2020; Zbl 07240969) Full Text: DOI arXiv OpenURL
Sumbatov, A. S. On rolling of a heavy disk on a surface of revolution with negative curvature. (English. Russian original) Zbl 1479.70040 Mech. Solids 54, No. 5, 638-651 (2019); translation from Prikl. Mat. Mekh. 83, No. 2, 234-248 (2019). MSC: 70F25 70F40 PDF BibTeX XML Cite \textit{A. S. Sumbatov}, Mech. Solids 54, No. 5, 638--651 (2019; Zbl 1479.70040); translation from Prikl. Mat. Mekh. 83, No. 2, 234--248 (2019) Full Text: DOI OpenURL
Martins, Luciana F.; Saji, Kentaro; Dos Santos, Samuel P.; Teramoto, Keisuke Singular surfaces of revolution with prescribed unbounded mean curvature. (English) Zbl 1445.53004 An. Acad. Bras. Ciênc. 91, No. 3, Article ID e20170865, 10 p. (2019). MSC: 53A05 57R45 58K99 PDF BibTeX XML Cite \textit{L. F. Martins} et al., An. Acad. Bras. Ciênc. 91, No. 3, Article ID e20170865, 10 p. (2019; Zbl 1445.53004) Full Text: DOI arXiv OpenURL
Gerasimov, A. V.; Kirpichnikov, A. P.; Sabirova, F. R. Analysis of the equation of the balance of energy in the field of heating limited to the longitudinal coordinate. (English) Zbl 1434.76105 Lobachevskii J. Math. 40, No. 11, 1929-1932 (2019). MSC: 76N15 PDF BibTeX XML Cite \textit{A. V. Gerasimov} et al., Lobachevskii J. Math. 40, No. 11, 1929--1932 (2019; Zbl 1434.76105) Full Text: DOI OpenURL
Sônego, Maicon A note on existence of patterns on surfaces of revolution with nonlinear flux on the boundary. (English) Zbl 1438.35212 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 49, 8 p. (2019). MSC: 35K20 35B35 35B36 35R01 58J32 PDF BibTeX XML Cite \textit{M. Sônego}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 49, 8 p. (2019; Zbl 1438.35212) Full Text: DOI OpenURL
Kilin, Alexander A.; Pivovarova, Elena N. Qualitative analysis of the nonholonomic rolling of a rubber wheel with sharp edges. (English) Zbl 1423.70013 Regul. Chaotic Dyn. 24, No. 2, 212-233 (2019). MSC: 70E15 70E18 70E40 37Jxx PDF BibTeX XML Cite \textit{A. A. Kilin} and \textit{E. N. Pivovarova}, Regul. Chaotic Dyn. 24, No. 2, 212--233 (2019; Zbl 1423.70013) Full Text: DOI OpenURL
Borisenko, Alexander A. On the structure of multidimensional submanifolds with metric of revolution in Euclidean space. (English) Zbl 1454.53020 J. Math. Phys. Anal. Geom. 15, No. 2, 192-202 (2019). Reviewer: Hans Havlicek (Wien) MSC: 53B25 53A07 PDF BibTeX XML Cite \textit{A. A. Borisenko}, J. Math. Phys. Anal. Geom. 15, No. 2, 192--202 (2019; Zbl 1454.53020) Full Text: DOI OpenURL
Sônego, Maicon Stable solution induced by domain geometry in the heat equation with nonlinear boundary conditions on surfaces of revolution. (English) Zbl 1422.35099 Discrete Contin. Dyn. Syst., Ser. B 24, No. 11, 5981-5988 (2019). MSC: 35K05 35B35 35B36 58J32 PDF BibTeX XML Cite \textit{M. Sônego}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 11, 5981--5988 (2019; Zbl 1422.35099) Full Text: DOI OpenURL
Khan, Mair; Hussain, Arif; Malik, M. Y.; Salahuddin, T.; Aly, Shaban Numerical analysis of Carreau fluid flow for generalized Fourier’s and Fick’s laws. (English) Zbl 1444.76010 Appl. Numer. Math. 144, 100-117 (2019). MSC: 76A05 76R10 35Q35 76W05 76T20 PDF BibTeX XML Cite \textit{M. Khan} et al., Appl. Numer. Math. 144, 100--117 (2019; Zbl 1444.76010) Full Text: DOI OpenURL
Goemans, Wendy Flat double rotational surfaces in Euclidean and Lorentz-Minkowski 4-space. (English) Zbl 1474.53036 Publ. Inst. Math., Nouv. Sér. 103(117), 61-68 (2018). MSC: 53A07 53A35 PDF BibTeX XML Cite \textit{W. Goemans}, Publ. Inst. Math., Nouv. Sér. 103(117), 61--68 (2018; Zbl 1474.53036) Full Text: DOI OpenURL
Dede, M.; Ekici, C.; Goemans, W. Surfaces of revolution with vanishing curvature in Galilean 3-space. (English) Zbl 1453.53013 J. Math. Phys. Anal. Geom. 14, No. 2, 141-152 (2018). Reviewer: Luiz da Silva (Rehovot) MSC: 53A35 53A10 53A40 PDF BibTeX XML Cite \textit{M. Dede} et al., J. Math. Phys. Anal. Geom. 14, No. 2, 141--152 (2018; Zbl 1453.53013) Full Text: DOI Link OpenURL
Lone, Mohamd Saleem Linear Weingarten revolution surfaces in three-dimensional pseudo-Galilean space. (English) Zbl 1438.53034 Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 11(60), No. 2, 149-164 (2018). MSC: 53A35 53B30 53C50 PDF BibTeX XML Cite \textit{M. S. Lone}, Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 11(60), No. 2, 149--164 (2018; Zbl 1438.53034) OpenURL
Kilin, Alexander A.; Pivovarova, Elena N. Integrable nonsmooth nonholonomic dynamics of a rubber wheel with sharp edges. (English) Zbl 1429.70002 Regul. Chaotic Dyn. 23, No. 7-8, 887-907 (2018). MSC: 70E15 70E18 70E40 37J60 PDF BibTeX XML Cite \textit{A. A. Kilin} and \textit{E. N. Pivovarova}, Regul. Chaotic Dyn. 23, No. 7--8, 887--907 (2018; Zbl 1429.70002) Full Text: DOI OpenURL
Aydin, Muhittin Evren Constant curvature surfaces in a pseudo-isotropic space. (English) Zbl 1405.53015 Tamkang J. Math. 49, No. 3, 221-233 (2018). MSC: 53A35 53B25 53B30 53C42 PDF BibTeX XML Cite \textit{M. E. Aydin}, Tamkang J. Math. 49, No. 3, 221--233 (2018; Zbl 1405.53015) Full Text: DOI arXiv OpenURL
Kim, Daehwan; Pyo, Juncheol Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. (English) Zbl 1398.53075 Discrete Contin. Dyn. Syst. 38, No. 11, 5897-5919 (2018). MSC: 53C44 37C10 53A10 PDF BibTeX XML Cite \textit{D. Kim} and \textit{J. Pyo}, Discrete Contin. Dyn. Syst. 38, No. 11, 5897--5919 (2018; Zbl 1398.53075) Full Text: DOI OpenURL
Kazan, Ahmet; Karadağ, H. Bayram Weighted minimal and weighted flat surfaces of revolution in Galilean 3-space with density. (English) Zbl 1413.53023 Int. J. Anal. Appl. 16, No. 3, 414-426 (2018). MSC: 53A10 53A20 53A35 PDF BibTeX XML Cite \textit{A. Kazan} and \textit{H. B. Karadağ}, Int. J. Anal. Appl. 16, No. 3, 414--426 (2018; Zbl 1413.53023) Full Text: Link OpenURL
Makinde, O. D.; Sandeep, N.; Ajayi, T. M.; Animasaun, I. L. Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution. (English) Zbl 1401.76165 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 2, 93-106 (2018). MSC: 76W05 76A05 PDF BibTeX XML Cite \textit{O. D. Makinde} et al., Int. J. Nonlinear Sci. Numer. Simul. 19, No. 2, 93--106 (2018; Zbl 1401.76165) Full Text: DOI OpenURL
Dumitru, Dan Remarks on generalized surfaces of revolution. (English) Zbl 1499.53021 An. Univ. Spiru Haret, Ser. Mat.-Inform. 13, No. 2, 5-14 (2017). MSC: 53A05 PDF BibTeX XML Cite \textit{D. Dumitru}, An. Univ. Spiru Haret, Ser. Mat.-Inform. 13, No. 2, 5--14 (2017; Zbl 1499.53021) Full Text: Link OpenURL
Hoxhaj, Valmira; Khattree, Ravindra Beyond Q-Q plots: some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data. (English) Zbl 1425.62005 J. Stat. Theory Pract. 11, No. 4, 531-552 (2017). MSC: 62A09 62E15 PDF BibTeX XML Cite \textit{V. Hoxhaj} and \textit{R. Khattree}, J. Stat. Theory Pract. 11, No. 4, 531--552 (2017; Zbl 1425.62005) Full Text: DOI OpenURL
Hieu, Doan The; Thang, Nguyen Ngoc Bour’s theorem in 4-dimensional Euclidean space. (English) Zbl 1418.53006 Bull. Korean Math. Soc. 54, No. 6, 2081-2089 (2017). MSC: 53A07 53A10 PDF BibTeX XML Cite \textit{D. T. Hieu} and \textit{N. N. Thang}, Bull. Korean Math. Soc. 54, No. 6, 2081--2089 (2017; Zbl 1418.53006) Full Text: DOI OpenURL
Timonina, D. S. Topological classification of integrable geodesic flows in a potential field on the torus of revolution. (English) Zbl 1383.37046 Lobachevskii J. Math. 38, No. 6, 1108-1120 (2017). MSC: 37J35 37J05 37J20 70H06 PDF BibTeX XML Cite \textit{D. S. Timonina}, Lobachevskii J. Math. 38, No. 6, 1108--1120 (2017; Zbl 1383.37046) Full Text: DOI OpenURL
Müller, Christian; Yasumoto, Masashi Semi-discrete constant mean curvature surfaces of revolution in Minkowski space. (English) Zbl 1379.53014 Mladenov, Ivaïlo M. (ed.) et al., Proceedings of the 18th international conference on geometry, integrability and quantization, Sts. Constantine and Elena (near Varna), Bulgaria, June 3–8, 2016. Sofia: Avangard Prima. Geometry, Integrability and Quantization, 191-202 (2017). MSC: 53A10 52C99 53A35 52B70 PDF BibTeX XML Cite \textit{C. Müller} and \textit{M. Yasumoto}, in: Proceedings of the 18th international conference on geometry, integrability and quantization, Sts. Constantine and Elena (near Varna), Bulgaria, June 3--8, 2016. Sofia: Avangard Prima. 191--202 (2017; Zbl 1379.53014) Full Text: DOI Link OpenURL
Freese, Daniel; Weber, Matthias On surfaces that are intrinsically surfaces of revolution. (English) Zbl 1376.53012 J. Geom. 108, No. 2, 743-762 (2017). MSC: 53A10 53A05 PDF BibTeX XML Cite \textit{D. Freese} and \textit{M. Weber}, J. Geom. 108, No. 2, 743--762 (2017; Zbl 1376.53012) Full Text: DOI arXiv OpenURL
Vigdergauz, Shmuel Equi-stress boundaries in two- and three-dimensional elastostatics: the single-layer potential approach. (English) Zbl 1371.74035 Math. Mech. Solids 22, No. 4, 837-851 (2017). MSC: 74B05 PDF BibTeX XML Cite \textit{S. Vigdergauz}, Math. Mech. Solids 22, No. 4, 837--851 (2017; Zbl 1371.74035) Full Text: DOI OpenURL
Andres, Eric; Richaume, Lydie; Largeteau-Skapin, Gaelle Digital surface of revolution with hand-drawn generatrix. (English) Zbl 1420.68222 J. Math. Imaging Vis. 59, No. 1, 40-51 (2017). MSC: 68U05 PDF BibTeX XML Cite \textit{E. Andres} et al., J. Math. Imaging Vis. 59, No. 1, 40--51 (2017; Zbl 1420.68222) Full Text: DOI HAL OpenURL
Kim, Daehwan; Pyo, Juncheol Translating solitons foliated by spheres. (English) Zbl 1360.53070 Int. J. Math. 28, No. 1, Article ID 1750006, 11 p. (2017). MSC: 53C44 53A10 PDF BibTeX XML Cite \textit{D. Kim} and \textit{J. Pyo}, Int. J. Math. 28, No. 1, Article ID 1750006, 11 p. (2017; Zbl 1360.53070) Full Text: DOI OpenURL
Kennard, Lee; Rainone, Jordan Characterizations of the round two-dimensional sphere in terms of closed geodesics. (English) Zbl 1352.53034 Involve 10, No. 2, 243-255 (2017). MSC: 53C22 53C20 58E10 PDF BibTeX XML Cite \textit{L. Kennard} and \textit{J. Rainone}, Involve 10, No. 2, 243--255 (2017; Zbl 1352.53034) Full Text: DOI arXiv OpenURL
Sônego, Maicon Stability and instability of solutions of semilinear problems with Dirichlet boundary condition on surfaces of revolution. (English) Zbl 1413.35209 Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 95, 12 p. (2016). MSC: 35J61 35B35 35J25 35R01 58J32 PDF BibTeX XML Cite \textit{M. Sônego}, Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 95, 12 p. (2016; Zbl 1413.35209) Full Text: DOI OpenURL
Konstantinov, A. V.; Limarchenko, O. S.; Kinebas, K. V.; Paran’kina, O. Yu. Dynamics of a reservoir in the form of a body of revolution partially filled with liquid, with a complex impulse loading. (Russian. English summary) Zbl 1389.76003 Zb. Pr. Inst. Mat. NAN Ukr. 13, No. 3, 117-128 (2016). MSC: 76B07 PDF BibTeX XML Cite \textit{A. V. Konstantinov} et al., Zb. Pr. Inst. Mat. NAN Ukr. 13, No. 3, 117--128 (2016; Zbl 1389.76003) OpenURL
Innami, Nobuhiro; Nagano, Tetsuya; Shiohama, Katsuhiro Geodesics in a Finsler surface with one-parameter group of motions. (English) Zbl 1389.53061 Publ. Math. Debr. 89, No. 1-2, 137-160 (2016). Reviewer: James Hebda (St. Louis) MSC: 53C20 53C22 PDF BibTeX XML Cite \textit{N. Innami} et al., Publ. Math. Debr. 89, No. 1--2, 137--160 (2016; Zbl 1389.53061) Full Text: DOI OpenURL
Hama, Rattanasak; Chitsakul, Pakkinee; Sabau, Sorin V. Corrigenda: The geometry of a Randers rotational surface. (English) Zbl 1374.53107 Publ. Math. Debr. 88, No. 3-4, 517-519 (2016). MSC: 53C60 53C22 PDF BibTeX XML Cite \textit{R. Hama} et al., Publ. Math. Debr. 88, No. 3--4, 517--519 (2016; Zbl 1374.53107) Full Text: DOI OpenURL
Eichmann, Sascha Nonuniqueness for Willmore surfaces of revolution satisfying Dirichlet boundary data. (English) Zbl 1353.53065 J. Geom. Anal. 26, No. 4, 2563-2590 (2016). MSC: 53C42 35J67 34L30 49Q10 34C20 PDF BibTeX XML Cite \textit{S. Eichmann}, J. Geom. Anal. 26, No. 4, 2563--2590 (2016; Zbl 1353.53065) Full Text: DOI OpenURL
Sônego, Maicon Patterns in a balanced bistable equation with heterogeneous environments on surfaces of revolution. (English) Zbl 1346.35110 Differ. Equ. Appl. 8, No. 4, 521-533 (2016). MSC: 35K57 35B36 35R01 35B25 35B35 34K20 58J32 PDF BibTeX XML Cite \textit{M. Sônego}, Differ. Equ. Appl. 8, No. 4, 521--533 (2016; Zbl 1346.35110) Full Text: DOI OpenURL
Andres, Eric; Largeteau-Skapin, Gaelle Digital surfaces of revolution made simple. (English) Zbl 1475.68401 Normand, Nicolas (ed.) et al., Discrete geometry for computer imagery. 19th IAPR international conference, DGCI 2016, Nantes, France, April 18–20, 2016. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 9647, 244-255 (2016). MSC: 68U05 68U03 PDF BibTeX XML Cite \textit{E. Andres} and \textit{G. Largeteau-Skapin}, Lect. Notes Comput. Sci. 9647, 244--255 (2016; Zbl 1475.68401) Full Text: DOI HAL OpenURL
Morales-Almazan, Pedro Casimir energy for perturbed surfaces of revolution. (English) Zbl 1337.81114 Int. J. Mod. Phys. A 31, No. 9, Article ID 1650044, 16 p. (2016). MSC: 81T55 11M36 PDF BibTeX XML Cite \textit{P. Morales-Almazan}, Int. J. Mod. Phys. A 31, No. 9, Article ID 1650044, 16 p. (2016; Zbl 1337.81114) Full Text: DOI arXiv OpenURL
Kang, Ju-Yeon; Kim, Seon-Bu Constant curvatures and surfaces of revolution in \(L^3\). (English) Zbl 1339.53016 Honam Math. J. 38, No. 1, 151-167 (2016). MSC: 53B25 53B30 53C42 PDF BibTeX XML Cite \textit{J.-Y. Kang} and \textit{S.-B. Kim}, Honam Math. J. 38, No. 1, 151--167 (2016; Zbl 1339.53016) Full Text: DOI OpenURL
Liu, Chang; Hu, Weiduo Ellipse fitting for imaged cross sections of a surface of revolution. (English) Zbl 1374.68607 Pattern Recognition 48, No. 4, 1440-1454 (2015). MSC: 68T45 68U05 PDF BibTeX XML Cite \textit{C. Liu} and \textit{W. Hu}, Pattern Recognition 48, No. 4, 1440--1454 (2015; Zbl 1374.68607) Full Text: DOI OpenURL
Hama, Rattanasak; Chitsakul, Pakkinee; Sabau, Sorin V. The geometry of a Randers rotational surface. (English) Zbl 1363.53064 Publ. Math. Debr. 87, No. 3-4, 473-502 (2015); corrigenda ibid. 88, No. 3-4, 517-519 (2016). Reviewer: Hui Li Liu (Shenyang) MSC: 53C60 53C22 PDF BibTeX XML Cite \textit{R. Hama} et al., Publ. Math. Debr. 87, No. 3--4, 473--502 (2015; Zbl 1363.53064) Full Text: DOI arXiv OpenURL
Niu, Zhendong; Zhu, Kai; Chen, Yanping \(L^p\) bounds for the commutators of rough singular integrals associated with surfaces of revolution. (English) Zbl 1349.42028 Anal. Theory Appl. 31, No. 2, 176-183 (2015). MSC: 42B20 47B47 PDF BibTeX XML Cite \textit{Z. Niu} et al., Anal. Theory Appl. 31, No. 2, 176--183 (2015; Zbl 1349.42028) Full Text: DOI OpenURL
Innami, Nobuhiro Geodesics in a Finsler torus of revolution. (English) Zbl 1350.53030 Suh, Young Jin (ed.) et al., Proceedings of the 19th international workshop on Hermitian-Grassmannian submanifolds and the 10th RIRCM-OCAMI joint differential geometry workshop, Daejeon, Korea, October 26–28, 2015. Taejŏn: National Institute for Mathematical Sciences (NIMS). 75-82 (2015). Reviewer: Nabil L. Youssef (Giza) MSC: 53B40 53C60 53C22 53C20 PDF BibTeX XML Cite \textit{N. Innami}, in: Proceedings of the 19th international workshop on Hermitian-Grassmannian submanifolds and the 10th RIRCM-OCAMI joint differential geometry workshop, Daejeon, South Korea, October 26--28, 2015. Taejŏn: National Institute for Mathematical Sciences (NIMS). 75--82 (2015; Zbl 1350.53030) OpenURL
Hertrich-Jeromin, Udo; Mundilova, Klara; Tjaden, Ekkehard-Heinrich Channel linear Weingarten surfaces. (English) Zbl 1348.53011 J. Geom. Symmetry Phys. 40, 25-33 (2015). MSC: 53A10 53C42 PDF BibTeX XML Cite \textit{U. Hertrich-Jeromin} et al., J. Geom. Symmetry Phys. 40, 25--33 (2015; Zbl 1348.53011) Full Text: DOI arXiv OpenURL
Christianson, Hans Unique continuation for quasimodes on surfaces of revolution: rotationally invariant neighbourhoods. (Prolongement unique de quasimodes sur les surfaces de r’evolution: voisinages invariants par rotation.) (English. French summary) Zbl 1341.35092 Ann. Inst. Fourier 65, No. 4, 1617-1645 (2015). Reviewer: Claude Zuily (Orsay) MSC: 35P20 35B60 58J50 PDF BibTeX XML Cite \textit{H. Christianson}, Ann. Inst. Fourier 65, No. 4, 1617--1645 (2015; Zbl 1341.35092) Full Text: DOI arXiv OpenURL
Apostol, Tom M.; Mnatsakanian, Mamikon A. Volume/surface area relations for \(n\)-dimensional spheres, pseudospheres, and catenoids. (English) Zbl 1346.51007 Am. Math. Mon. 122, No. 8, 745-756 (2015). Reviewer: Mowaffaq Hajja (Irbid) MSC: 51M25 52A38 26B15 28A75 PDF BibTeX XML Cite \textit{T. M. Apostol} and \textit{M. A. Mnatsakanian}, Am. Math. Mon. 122, No. 8, 745--756 (2015; Zbl 1346.51007) Full Text: DOI OpenURL
Sypchenko, I. V.; Timonina, D. S. Closed geodesics on piecewise smooth surfaces of revolution with constant curvature. (English. Russian original) Zbl 1344.53004 Sb. Math. 206, No. 5, 738-769 (2015); translation from Mat. Sb. 206, No. 5, 127-160 (2015). Reviewer: Adriana Nicolae (Cluj-Napoca) MSC: 53A05 53C22 PDF BibTeX XML Cite \textit{I. V. Sypchenko} and \textit{D. S. Timonina}, Sb. Math. 206, No. 5, 738--769 (2015; Zbl 1344.53004); translation from Mat. Sb. 206, No. 5, 127--160 (2015) Full Text: DOI OpenURL
Kudryavtseva, E. A.; Fedoseev, D. A. Mechanical systems with closed orbits on manifolds of revolution. (English. Russian original) Zbl 1397.70025 Sb. Math. 206, No. 5, 718-737 (2015); translation from Mat. Sb. 206, No. 5, 107-126 (2015). MSC: 70H12 31C12 70G45 PDF BibTeX XML Cite \textit{E. A. Kudryavtseva} and \textit{D. A. Fedoseev}, Sb. Math. 206, No. 5, 718--737 (2015; Zbl 1397.70025); translation from Mat. Sb. 206, No. 5, 107--126 (2015) Full Text: DOI OpenURL
Lee, Sungwook Spacelike surfaces of revolution with constant mean curvature in de Sitter 3-space. (English) Zbl 1331.53089 Differ. Geom. Dyn. Syst. 17, 81-96 (2015). MSC: 53C42 53C50 PDF BibTeX XML Cite \textit{S. Lee}, Differ. Geom. Dyn. Syst. 17, 81--96 (2015; Zbl 1331.53089) Full Text: Link OpenURL
Chitsakul, Pakkinee The structure theorem for the cut locus of a certain class of cylinders of revolution. II. (English) Zbl 1331.53065 Tokyo J. Math. 38, No. 1, 239-248 (2015). Reviewer: Benjamin McKay (Cork) MSC: 53C22 53C20 PDF BibTeX XML Cite \textit{P. Chitsakul}, Tokyo J. Math. 38, No. 1, 239--248 (2015; Zbl 1331.53065) Full Text: DOI arXiv OpenURL
Vršek, Jan; Lávička, Miroslav Determining surfaces of revolution from their implicit equations. (English) Zbl 1321.65027 J. Comput. Appl. Math. 290, 125-135 (2015). MSC: 65D17 PDF BibTeX XML Cite \textit{J. Vršek} and \textit{M. Lávička}, J. Comput. Appl. Math. 290, 125--135 (2015; Zbl 1321.65027) Full Text: DOI arXiv OpenURL
Lee, Sungwook; Martin, Jacob Timelike surfaces of revolution with constant mean curvature in de Sitter 3-space. (English) Zbl 1315.53064 Int. Electron. J. Geom. 8, No. 1, 116-127 (2015). MSC: 53C42 53A10 53C50 PDF BibTeX XML Cite \textit{S. Lee} and \textit{J. Martin}, Int. Electron. J. Geom. 8, No. 1, 116--127 (2015; Zbl 1315.53064) OpenURL
Surynková, Petra Algorithms for testing axial symmetry of structured point clouds. (Slovak. English summary) Zbl 1350.53012 G, Slov. Čas. Geom. Graf. 11, No. 21, 39-54 (2014). MSC: 53A05 65D17 PDF BibTeX XML Cite \textit{P. Surynková}, G, Slov. Čas. Geom. Graf. 11, No. 21, 39--54 (2014; Zbl 1350.53012) OpenURL
Lee, Sungwook; Zarske, Kinsey Surfaces of revolution with constant mean curvature in hyperbolic 3-space. (English) Zbl 1331.53090 Differ. Geom. Dyn. Syst. 16, 203-218 (2014). MSC: 53C42 53A10 PDF BibTeX XML Cite \textit{S. Lee} and \textit{K. Zarske}, Differ. Geom. Dyn. Syst. 16, 203--218 (2014; Zbl 1331.53090) Full Text: Link OpenURL
Saad, Ansi; Low, Robert J. A generalized Clairaut’s theorem in Minkowski space. (English) Zbl 1328.53013 J. Geom. Symmetry Phys. 35, 103-111 (2014). MSC: 53A35 53C22 53B25 PDF BibTeX XML Cite \textit{A. Saad} and \textit{R. J. Low}, J. Geom. Symmetry Phys. 35, 103--111 (2014; Zbl 1328.53013) OpenURL
Ma, Hongjuan; Zheng, Xiying; Chu, Yuanhong A note on revolution surfaces with constant curvature in SOL manifolds. (Chinese. English summary) Zbl 1324.53059 Pure Appl. Math. 30, No. 5, 474-479 (2014). MSC: 53C42 PDF BibTeX XML Cite \textit{H. Ma} et al., Pure Appl. Math. 30, No. 5, 474--479 (2014; Zbl 1324.53059) Full Text: DOI OpenURL
Esina, A. I.; Shafarevich, A. I. Asymptotics of the spectrum and eigenfunctions of the magnetic induction operator on a compact two-dimensional surface of revolution. (English. Russian original) Zbl 1315.35162 Math. Notes 95, No. 3, 374-387 (2014); translation from Mat. Zametki 95, No. 3, 417-432 (2014). MSC: 35Q35 76W05 35B40 85A30 35P20 PDF BibTeX XML Cite \textit{A. I. Esina} and \textit{A. I. Shafarevich}, Math. Notes 95, No. 3, 374--387 (2014; Zbl 1315.35162); translation from Mat. Zametki 95, No. 3, 417--432 (2014) Full Text: DOI OpenURL
Do Nascimento, Arnaldo Simal; Sonego, Maicon Patterns on surfaces of revolution in a diffusion problem with variable diffusivity. (English) Zbl 06430753 Electron. J. Differ. Equ. 2014, Paper No. 238, 13 p. (2014). MSC: 35K57 35B36 35R01 35B25 35B35 34K20 58J32 PDF BibTeX XML Cite \textit{A. S. Do Nascimento} and \textit{M. Sonego}, Electron. J. Differ. Equ. 2014, Paper No. 238, 13 p. (2014; Zbl 06430753) Full Text: EMIS OpenURL
do Nascimento, Arnaldo Simal; Sônego, Maicon The roles of diffusivity and curvature in patterns on surfaces of revolution. (English) Zbl 06420142 J. Math. Anal. Appl. 412, No. 2, 1084-1096 (2014). MSC: 35Kxx PDF BibTeX XML Cite \textit{A. S. do Nascimento} and \textit{M. Sônego}, J. Math. Anal. Appl. 412, No. 2, 1084--1096 (2014; Zbl 06420142) Full Text: DOI OpenURL
Caffarelli, Elena A.; Halverson, Denise M.; Jensen, Ryan J. The Steiner problem on surfaces of revolution. (English) Zbl 1305.51005 Graphs Comb. 30, No. 2, 315-342 (2014). Reviewer: Manuel Ritoré (Granada) MSC: 51E10 49Q10 PDF BibTeX XML Cite \textit{E. A. Caffarelli} et al., Graphs Comb. 30, No. 2, 315--342 (2014; Zbl 1305.51005) Full Text: DOI OpenURL
Medvedev, Sergeĭ Borisovich The geometrical approximation for the rotating shallow water equations. (Russian. English summary) Zbl 1421.76037 Vychisl. Tekhnol. 18, No. 1, 45-64 (2013). MSC: 76B15 70S05 PDF BibTeX XML Cite \textit{S. B. Medvedev}, Vychisl. Tekhnol. 18, No. 1, 45--64 (2013; Zbl 1421.76037) Full Text: Link OpenURL
Yoon, Dae Won Surfaces of revolution in the three dimensional pseudo-Galilean space. (English) Zbl 1303.53021 Glas. Mat., III. Ser. 48, No. 2, 415-428 (2013). MSC: 53A35 53B30 PDF BibTeX XML Cite \textit{D. W. Yoon}, Glas. Mat., III. Ser. 48, No. 2, 415--428 (2013; Zbl 1303.53021) Full Text: DOI Link OpenURL
Innami, Nobuhiro; Shiohama, Katsuhiro; Uneme, Yuya A sphere theorem for radial curvature. (English) Zbl 1288.53027 Nihonkai Math. J. 24, No. 2, 93-102 (2013). Reviewer: Peter B. Gilkey (Eugene) MSC: 53C20 PDF BibTeX XML Cite \textit{N. Innami} et al., Nihonkai Math. J. 24, No. 2, 93--102 (2013; Zbl 1288.53027) Full Text: Euclid OpenURL
Innami, Nobuhiro; Shiohama, Katsuhiro; Uneme, Yuya The Alexandrov-Toponogov comparison theorem for radial curvature. (English) Zbl 1296.53067 Nihonkai Math. J. 24, No. 2, 57-91 (2013). Reviewer: I. G. Nikolaev (Urbana) MSC: 53C20 53C22 PDF BibTeX XML Cite \textit{N. Innami} et al., Nihonkai Math. J. 24, No. 2, 57--91 (2013; Zbl 1296.53067) Full Text: arXiv Euclid OpenURL
Jin, Minghao; Pei, Donghe The time-like axis surface of revolution with pointwise type-1 Gauss map in Minkowski 3-space. (Chinese. English summary) Zbl 1289.53011 J. Shandong Univ., Nat. Sci. 48, No. 2, 57-61, 66 (2013). MSC: 53A05 53A35 PDF BibTeX XML Cite \textit{M. Jin} and \textit{D. Pei}, J. Shandong Univ., Nat. Sci. 48, No. 2, 57--61, 66 (2013; Zbl 1289.53011) OpenURL
Sabitov, I. Kh. Infinitesimal and global rigidity and inflexibility of surfaces of revolution with flattening at the poles. (English. Russian original) Zbl 1292.53007 Sb. Math. 204, No. 9, 1516-1547 (2013); translation from Mat. Sb. 204, No. 10, 127-160 (2013). Reviewer: Friedrich Manhart (Wien) MSC: 53A05 PDF BibTeX XML Cite \textit{I. Kh. Sabitov}, Sb. Math. 204, No. 9, 1516--1547 (2013; Zbl 1292.53007); translation from Mat. Sb. 204, No. 10, 127--160 (2013) Full Text: DOI OpenURL
Dang Van Cuong Surfaces of revolution with constant Gaussian curvature in four-space. (English) Zbl 1276.53005 Asian-Eur. J. Math. 6, No. 2, Article ID 1350021, 7 p. (2013). MSC: 53A05 53A35 53B30 PDF BibTeX XML Cite \textit{Dang Van Cuong}, Asian-Eur. J. Math. 6, No. 2, Article ID 1350021, 7 p. (2013; Zbl 1276.53005) Full Text: DOI arXiv OpenURL
Fu, Yu; Wang, Xiaoshu Classification of timelike constant slope surfaces in 3-dimensional Minkowski space. (English) Zbl 1384.53017 Result. Math. 63, No. 3-4, 1095-1108 (2013). MSC: 53B25 53B30 53C40 53A35 PDF BibTeX XML Cite \textit{Y. Fu} and \textit{X. Wang}, Result. Math. 63, No. 3--4, 1095--1108 (2013; Zbl 1384.53017) Full Text: DOI OpenURL
Tanaka, Minoru; Kondo, Kei The topology of an open manifold with radial curvature bounded from below by a model surface with finite total curvature and examples of model surfaces. (English) Zbl 1266.53041 Nagoya Math. J. 209, 23-34 (2013). Reviewer: Benjamin McKay (Cork) MSC: 53C20 53A07 PDF BibTeX XML Cite \textit{M. Tanaka} and \textit{K. Kondo}, Nagoya Math. J. 209, 23--34 (2013; Zbl 1266.53041) Full Text: arXiv Euclid OpenURL
Bergner, Matthias; Dall’acqua, Anna; Fröhlich, Steffen Willmore surfaces of revolution with two prescribed boundary circles. (English) Zbl 1257.49044 J. Geom. Anal. 23, No. 1, 283-302 (2013). MSC: 49Q10 53C42 35J65 34L30 PDF BibTeX XML Cite \textit{M. Bergner} et al., J. Geom. Anal. 23, No. 1, 283--302 (2013; Zbl 1257.49044) Full Text: DOI OpenURL
Chen, Yanping; Wang, Feixing; Yu, Wei \(L^p\) bounds for the parabolic singular integral operator. (English) Zbl 1279.42011 J. Inequal. Appl. 2012, Paper No. 121, 9 p. (2012). Reviewer: Fayou Zhao (Shanghai) MSC: 42B20 42B25 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Inequal. Appl. 2012, Paper No. 121, 9 p. (2012; Zbl 1279.42011) Full Text: DOI OpenURL
Sabau, Sorin V.; Shibuya, Kazuhiro; Shimada, Hideo Moving frames on generalized Finsler structures. (English) Zbl 1264.53068 J. Korean Math. Soc. 49, No. 6, 1229-1257 (2012). MSC: 53C60 53C20 58A15 PDF BibTeX XML Cite \textit{S. V. Sabau} et al., J. Korean Math. Soc. 49, No. 6, 1229--1257 (2012; Zbl 1264.53068) Full Text: DOI arXiv Link OpenURL
Royer, Melvin Gabriel’s other possessions. (English) Zbl 1261.97010 PRIMUS, Probl. Resour. Issues Math. Undergrad. Stud. 22, No. 4, 338-351 (2012). MSC: 97I50 26A99 51M25 53A05 PDF BibTeX XML Cite \textit{M. Royer}, PRIMUS, Probl. Resour. Issues Math. Undergrad. Stud. 22, No. 4, 338--351 (2012; Zbl 1261.97010) Full Text: DOI OpenURL
Baba-Hamed, Chahrazede; Bekkar, Mohammed On the Gauss map of surfaces of revolution in the three-dimensional Minkowski space. (English) Zbl 1259.53015 Tsukuba J. Math. 36, No. 2, 193-215 (2012). MSC: 53B25 53A05 53B30 PDF BibTeX XML Cite \textit{C. Baba-Hamed} and \textit{M. Bekkar}, Tsukuba J. Math. 36, No. 2, 193--215 (2012; Zbl 1259.53015) Full Text: DOI Euclid OpenURL
Zagryadskiĭ, O. A.; Kudryavtseva, E. A.; Fedoseev, D. A. A generalization of Bertrand’s theorem to surfaces of revolution. (English. Russian original) Zbl 1408.53115 Sb. Math. 203, No. 8, 1112-1150 (2012); translation from Mat. Sb. 203, No. 8, 39-78 (2012). MSC: 53Dxx PDF BibTeX XML Cite \textit{O. A. Zagryadskiĭ} et al., Sb. Math. 203, No. 8, 1112--1150 (2012; Zbl 1408.53115); translation from Mat. Sb. 203, No. 8, 39--78 (2012) Full Text: DOI arXiv OpenURL
Kahraman, Ferdağ; Yayli, Yusuf Spacelike maximal and timelike minimal surfaces of revolution in Minkowski 3-space. (English) Zbl 1261.53008 Far East J. Math. Sci. (FJMS) 61, No. 2, 239-257 (2012). Reviewer: Cornelia-Livia Bejan (Iaşi) MSC: 53A10 53B30 PDF BibTeX XML Cite \textit{F. Kahraman} and \textit{Y. Yayli}, Far East J. Math. Sci. (FJMS) 61, No. 2, 239--257 (2012; Zbl 1261.53008) Full Text: Link OpenURL
Kim, Dong-Soo; Kim, Young Ho Surfaces of revolution with more than one axis. (English) Zbl 1260.53016 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 19, No. 1, 1-5 (2012). MSC: 53A05 PDF BibTeX XML Cite \textit{D.-S. Kim} and \textit{Y. H. Kim}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 19, No. 1, 1--5 (2012; Zbl 1260.53016) Full Text: DOI OpenURL
Ziatdinov, Rushan Family of superspirals with completely monotonic curvature given in terms of Gauss hypergeometric function. (English) Zbl 1250.65029 Comput. Aided Geom. Des. 29, No. 7, 510-518 (2012). MSC: 65D17 33C05 PDF BibTeX XML Cite \textit{R. Ziatdinov}, Comput. Aided Geom. Des. 29, No. 7, 510--518 (2012; Zbl 1250.65029) Full Text: DOI OpenURL
Shi, Xiaoran; Goldman, Ron Implicitizing rational surfaces of revolution using \(\mu \)-bases. (English) Zbl 1256.65016 Comput. Aided Geom. Des. 29, No. 6, 348-362 (2012). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 65D17 51N05 68U07 PDF BibTeX XML Cite \textit{X. Shi} and \textit{R. Goldman}, Comput. Aided Geom. Des. 29, No. 6, 348--362 (2012; Zbl 1256.65016) Full Text: DOI OpenURL
Soga, Toshiro Remarks on the set of poles on a pointed complete surface. (English) Zbl 1250.53006 Nihonkai Math. J. 22, No. 1, 23-37 (2011). Reviewer: Benjamin McKay (Cork) MSC: 53A05 PDF BibTeX XML Cite \textit{T. Soga}, Nihonkai Math. J. 22, No. 1, 23--37 (2011; Zbl 1250.53006) Full Text: Euclid OpenURL
Cao, Muliang; Wu, Huoxiong A class of singular integral operators associated to surfaces of revolution. (English) Zbl 1253.53008 Adv. Pure Math. 1, No. 6, 334-339 (2011). Reviewer: Dan-Mircea Borş (Iaşi) MSC: 53A07 45P05 PDF BibTeX XML Cite \textit{M. Cao} and \textit{H. Wu}, Adv. Pure Math. 1, No. 6, 334--339 (2011; Zbl 1253.53008) Full Text: DOI OpenURL
Savchenko, A. O.; Savchenko, O. Ya. The flow of a harmonic coaxial vector field around an ellipsoid of revolution. (Russian) Zbl 1249.35275 Sib. Zh. Ind. Mat. 14, No. 2, 106-111 (2011). MSC: 35Q40 81V10 PDF BibTeX XML Cite \textit{A. O. Savchenko} and \textit{O. Ya. Savchenko}, Sib. Zh. Ind. Mat. 14, No. 2, 106--111 (2011; Zbl 1249.35275) OpenURL
López, R.; Kalkan, Ö. Boyacioğlu; Saglam, D. Non-degenerate surfaces of revolution in Minkowski space that satisfy the relation \(aH + bK = c\). (English) Zbl 1265.53010 Acta Math. Univ. Comen., New Ser. 80, No. 2, 201-212 (2011). Reviewer: Marián Fecko (Bratislava) MSC: 53A10 53B30 PDF BibTeX XML Cite \textit{R. López} et al., Acta Math. Univ. Comen., New Ser. 80, No. 2, 201--212 (2011; Zbl 1265.53010) Full Text: arXiv OpenURL
San Segundo, Fernando; Sendra, J. Rafael Offsetting revolution surfaces. (English) Zbl 1302.52015 Sturm, Thomas (ed.) et al., Automated deduction in geometry. 7th international workshop, ADG 2008, Shanghai, China, September 22–24, 2008. Revised papers. Berlin: Springer (ISBN 978-3-642-21045-7/pbk). Lecture Notes in Computer Science 6301. Lecture Notes in Artificial Intelligence, 179-188 (2011). MSC: 52B55 68U07 PDF BibTeX XML Cite \textit{F. San Segundo} and \textit{J. R. Sendra}, Lect. Notes Comput. Sci. 6301, 179--188 (2011; Zbl 1302.52015) Full Text: DOI OpenURL