×

Copositive and positive quadratic forms on matrices. (English) Zbl 1423.15019

The authors call a quadratic form \(f\), in \(n\) noncommuting variables \(Z_1, \dots , Z_n\), \(d\)-positive if \(f (A_1 , \dots, A_n ) \geq0\) for all symmetric \(d \times d\) matrices, and \(d\)-copositive if \(f(A_1,\dots A_n)\geq 0\) for all positive definite \(d\times d\) matrices. They define \(T = \sum_{1\leq i \leq n} Z_i^2\) and \(W = \sum_{1\leq {i,j} \leq n, \, i\neq j}Z_i Z_j\) and write \(f = xT + yW\).
The main result that the authors obtain are necessary and sufficient conditions for \(F\) to be positive and also for \(F\) to be copositive.

MSC:

15A45 Miscellaneous inequalities involving matrices
15A63 Quadratic and bilinear forms, inner products
15B57 Hermitian, skew-Hermitian, and related matrices
15A18 Eigenvalues, singular values, and eigenvectors
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Choi, MD; Lam, TY; Reznick, B., Even symmetric sextics, Math. Z., 195, 559-580 (1987) · Zbl 0654.10024 · doi:10.1007/BF01166704
[2] Cucker, F.; Corbalan, AG, An alternate proof of the continuity of the roots of a polynomial, Am. Math. Mon., 96, 342-345 (1989) · Zbl 0708.30010 · doi:10.1080/00029890.1989.11972193
[3] Hajja, M., Radical and rational means of degree two, Math. Inequal. Appl., 6, 581-593 (2003) · Zbl 1047.26015
[4] Hajja, M., Copositive symmetric cubic forms, Am. Math. Mon., 112, 462-466 (2005) · Zbl 1138.11320 · doi:10.1080/00029890.2005.11920216
[5] Hall, M.; Newman, M., Copositive and completely positive quadratic forms, Proc. Camb. Philos. Soc., 59, 329-339 (1963) · Zbl 0124.25302 · doi:10.1017/S0305004100036951
[6] Harris, WR, Real even symmetric ternary forms, J. Algebra, 222, 204-245 (1999) · Zbl 0970.11013 · doi:10.1006/jabr.1998.8012
[7] Horn, R., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985) · Zbl 0576.15001 · doi:10.1017/CBO9780511810817
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.