×

An exact transfer matrix expression for bending vibration analysis of a rotating tapered beam. (English) Zbl 1480.74113

Summary: This paper presents a transfer matrix expression that can be used to determine the eigenpairs of a rotating beam with a cross section height that linearly decreases along the length of the beam element. The proposed method considers the effect of centrifugal force, including the effects of the axial force, hub radius, and taper ratio. Differential equations are solved for the in-plane bending vibration using the Frobenius method for a power series. The effect of the rotational speed on the eigenpairs of a rotating tapered beam is first investigated, followed by an examination of the contribution rates of the bending strain and additional strain energies generated by centrifugal forces for each mode by analyzing the variation of the energies computed from the strain and kinetic energies. To compute these contribution rates, we used a shape function that was defined by the displacement at both ends of the beam elements. The effect of tapering on the eigenfrequencies of the transverse vibration of rotating beams is analyzed by using various examples, and the contribution rates are examined by using taper ratios of 0 and 0.5.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Soltani, M.; Asgarian, B.; Mohri, F., Elastic instability and free vibration analyses of tapered thin-walled beam by the power series method, J. Constr. Steel. Res., 96, 106-126 (2014)
[2] Zhu, T. L., Free flapewise vibration analysis of rotating double-tapered Timoshenko beams, Arch. Appl. Mech., 82, 479-494 (2012) · Zbl 1293.74222
[3] Sarkar, K.; Ganguli, R., Modal tailoring and closed-form solutions for rotating non-uniform Euler-Bernoulli beams, Int. J. Mech. Sci., 88, 208-220 (2014)
[4] Bulut, G., Effect of taper ratio on parametric stability of a rotating tapered beam, Euro. J. Mech. A-Solids, 37, 344-350 (2013) · Zbl 1347.74048
[5] Wu, J. S.; Chang, B. H., Free vibration of axial-loaded multi-step Timshenko beam carrying arbitrary concentrated elements using continuous-mass transfer matrix method, Euro. J. Mech. A-Solids, 38, 20-37 (2013) · Zbl 1347.74053
[6] Tang, A. Y.; Li, X. F.; Wu, J. X.; Lee, K. Y., Flapwise bending vibration of rotating tapered Rayleigh cantilever beams, J. Constr. Steel. Res., 112, 1-9 (2015)
[7] Zhou, D.; Cheung, Y. K., The free vibration of a type of tapered beams, Comput. Method Appl. Mech. Eng., 188, 203-216 (2000) · Zbl 0979.74029
[8] Bazehhour, B. G.; Mousavi, S. M.; Farshidianfar, A., Free vibration of high-speed rotating Timoshenko shaft with various boundary conditions: effect of centrifugally induced axial force, Arch. Appl. Mech., 86, 1691-1700 (2014)
[9] Hodges, D. H.; Rutkowski, M. J., Free-vibration analysis of rotating beams by a variable-order finite element method, AIAA J., 19, 1459-1466 (1981) · Zbl 0468.73093
[10] Pesheck, E.; Pierre, C.; Shaw, S. W., Modal reduction of a nonlinear rotating beam through nonlinear normal modes, J. Vib. Acoust., 124, 229-236 (2002)
[11] Gunda, J. B.; Gupta, R. K.; Ganguli, R., Hybrid stiff-string-polynominal basis functions for vibration analysis of high speed rotating beams, Comput. Struct., 87, 254-265 (2009)
[12] Lee, H. P., Effect of gravity on the stability of a rotating cantilever beam in a vertical plane, Comput. Struct., 53, 351-355 (1994) · Zbl 0870.73026
[13] Lin, S. M., Dynamic analysis of rotating nonuniform Timoshenko beams with an elastically restrained root, J. Appl. Mech., 66, 742-749 (1999)
[14] Ozgumus, O. O.; Kaya, M. O., Flapwise bending vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method, Meccanica, 41, 661-670 (2006) · Zbl 1163.74512
[15] Gunda, J. B.; Ganguli, R., New rational interpolation functions for finite element analysis of rotating beams, Int. J. Mech. Sci., 50, 578-588 (2008) · Zbl 1264.74262
[16] Khulief, Y. A.; Bazoune, A., Frequencies of rotating tapered Timoshenko beams with different boundary conditions, Comput. Struct., 42, 781-795 (1992) · Zbl 0968.74594
[17] Wang, G.; Wereley, N. M., Free vibration analysis of rotating blades with uniform tapers, AIAA J., 42, 2429-2437 (2004)
[18] Banerjee, J. R.; Su, H.; Jackson, D. R., Free vibration of rotating tapered beams using the dynamic stiffness method, J. Sound. Vib., 298, 1034-1054 (2006)
[19] Banerjee, J. R., Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method, J. Sound. Vib., 233, 857-875 (2000) · Zbl 1237.74048
[20] Leung, A. Y.T.; Zhou, W. E., Dynamic stiffness analysis of axially loaded non-uniform Timoshenko columns, Comput. Struct., 56, 577-588 (1995) · Zbl 0920.73122
[21] Kumar, A.; Ganguli, R., Rotating beams and nonrotating beams with shared eigenpair, J. Appl. Mech., 76, Article 051006-1-051006-14 (2009)
[22] Shooshtari, A.; Khajavi, R., An efficient procedure to find shape functions and stiffness matrices of nonprismatic Euler-Bernoulli and Timoshenko beam elements, Euro. J. Mech. A-Solids, 29, 826-836 (2010) · Zbl 1481.74701
[23] Firouz-Abadi, R. D.; Rahmanian, M.; Amabili, M., Exact solutions for free vibrations and buckling of double tapered columns with elastic foundation and tip mass, J. Vib. Acoust., 135, Article 051017-1-051017-10 (2013)
[24] Lee, J. W.; Lee, J. Y., Free vibration analysis using the transfer-matrix method on a tapered beam, Comput. Struct., 164, 75-82 (2016)
[25] Bazoune, A.; Khulief, Y. A., A finite beam element for vibration analysis of rotating tapered Timoshenko beams, J. Sound. Vib., 156, 141-164 (1992) · Zbl 0968.74594
[26] Boiangiu, M.; Ceausu, V.; Untaroiu, C. D., A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section, J. Vib. Control., 22, 2591-2602 (2016)
[27] Huang, Y.; Yang, L. E.; Luo, Q. Z., Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section, Compos. Part. B-Eng., 45, 1493-1498 (2013)
[28] Akgöz, B.; Civalek, Ö., Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory, Compos. Struct., 98, 314-322 (2013)
[29] Zeighampour, H.; Beni, Y. T., Free vibration analysis of axially functionally graded nanobeam with radius along the length based on strain gradient theory, Appl. Math. Model., 39, 5354-5369 (2015) · Zbl 1443.74134
[30] Rajasekaran, S., Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods, Appl. Math. Model., 37, 4440-4463 (2013) · Zbl 1307.74042
[31] Adair, D.; Jaeger, M., Simulation of tapered rotating beams with centrifugal stiffening using the Adomian decomposition method, Appl. Math. Model., 40, 3230-3241 (2016) · Zbl 1452.74060
[32] Spyrakos, C. C.; Chen, C. I., Power series expansions of dynamic stiffness matrices for tapered bars and shafts, Int. J. Numer. Methods Eng., 30, 259-270 (1990) · Zbl 0714.73088
[33] Banerjee, J. R., Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams, J. Sound. Vib., 247, 97-115 (2001)
[34] Hashemi, S. M.; Richard, M. J.; Dhatt, G., A new dynamic finite element (DFE) formulation for lateral free vibrations of Euler-Bernoulli spinning beams using trigonometric shape functions, J. Sound. Vib., 220, 601-624 (1999)
[35] Bazoune, A.; Kulief, Y. A.; Stephen, N. G.; Mohiuddin, M. A., Dynamic response of spinning tapered Timoshenko beams using modal reduction, Finite Elem. Anal. Des., 37, 199-219 (2001) · Zbl 1015.74066
[36] Wang, X.; Wang, Y., Free vibration analysis of multiple-stepped beams by the differential quadrature element method, Appl. Math. Comput., 219, 5802-5810 (2013) · Zbl 1273.74135
[37] Ganesh, R.; Ganguli, R., Stiff string approximations in Rayleigh-Ritz method for rotating beams, Appl. Math. Comput., 219, 9282-9295 (2013) · Zbl 1290.70009
[38] Vyas, N. S.; Rao, J. S., Equations of motion of a blade rotating with variable angular velocity, J. Sound. Vib., 156, 327-336 (1992) · Zbl 0968.74536
[39] Lee, S. Y.; Lin, S. M., Exact vibration solutions for nonuniform Timoshenko beam with attachments, AIAA J., 30, 2930-2934 (1992) · Zbl 0770.73044
[40] Lee, S. Y.; Lin, S. M.; Hsu, J. J., In-plane vibration of a rotating curved beam with an elastically restrained root, J. Sound. Vib., 315, 1086-1102 (2008)
[41] Stafford, R. O.; Giurgiutiu, V., Semi-analytic methods for rotating Timoshenko beams, Int. J. Mech. Sci., 17, 719-727 (1975) · Zbl 0318.73045
[42] Lee, J. W.; Lee, J. Y., In-plane bending vibration analysis of a rotating beam with multiple edge cracks by using the transfer matrix method, Meccanica, 52, 1143-1157 (2017) · Zbl 1383.74035
[43] Lee, J. W.; Kwak, J. H.; Lee, J. Y., Exact solution for bending vibration of rotating cantilever beam with tapered width using transfer matrix method, Trans. Korean Soc. Noise Vib. Eng., 26, 75-81 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.