Wu, Mengling; Ge, Yongbin; Wang, Zhi Explicit high-order compact difference method for solving nonlinear hyperbolic equations with three types of boundary conditions. (English) Zbl 07662982 Wave Motion 118, Article ID 103120, 17 p. (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{M. Wu} et al., Wave Motion 118, Article ID 103120, 17 p. (2023; Zbl 07662982) Full Text: DOI OpenURL
Singh, Anshima; Kumar, Sunil A convergent exponential B-spline collocation method for a time-fractional telegraph equation. (English) Zbl 1505.65250 Comput. Appl. Math. 42, No. 2, Paper No. 79, 20 p. (2023). MSC: 65M06 65M70 35R11 65M12 PDF BibTeX XML Cite \textit{A. Singh} and \textit{S. Kumar}, Comput. Appl. Math. 42, No. 2, Paper No. 79, 20 p. (2023; Zbl 1505.65250) Full Text: DOI OpenURL
Michelitsch, Thomas M.; Polito, Federico; Riascos, Alejandro P. Squirrels can remember little: a random walk with jump reversals induced by a discrete-time renewal process. (English) Zbl 07654065 Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107031, 28 p. (2023). MSC: 60Gxx 60Kxx 60Jxx PDF BibTeX XML Cite \textit{T. M. Michelitsch} et al., Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107031, 28 p. (2023; Zbl 07654065) Full Text: DOI arXiv OpenURL
Dyskin, Arcady; Pasternak, Elena Inter-sonic propagation of shear zone as an effect of longitudinal deformation. (English) Zbl 07646854 Int. J. Eng. Sci. 183, Article ID 103795, 12 p. (2023). MSC: 74-XX 76-XX PDF BibTeX XML Cite \textit{A. Dyskin} and \textit{E. Pasternak}, Int. J. Eng. Sci. 183, Article ID 103795, 12 p. (2023; Zbl 07646854) Full Text: DOI OpenURL
Alegría, Francisco; Poblete, Verónica; Pozo, Juan C. Nonlocal in-time telegraph equation and telegraph processes with random time. (English) Zbl 1505.35346 J. Differ. Equations 347, 310-347 (2023). MSC: 35R11 35R60 26A33 45D05 60G22 60H15 60H20 PDF BibTeX XML Cite \textit{F. Alegría} et al., J. Differ. Equations 347, 310--347 (2023; Zbl 1505.35346) Full Text: DOI OpenURL
Qiao, Leijie; Qiu, Wenlin; Xu, Da Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions. (English) Zbl 07627993 Math. Comput. Simul. 205, 205-231 (2023). MSC: 65-XX 39-XX PDF BibTeX XML Cite \textit{L. Qiao} et al., Math. Comput. Simul. 205, 205--231 (2023; Zbl 07627993) Full Text: DOI OpenURL
Li, Fang; Zhu, Xiangyu Convergence rate of solutions to the generalized telegraph equation with an inhomogeneous force. (English) Zbl 1497.35048 J. Math. Anal. Appl. 517, No. 1, Article ID 126564, 10 p. (2023). MSC: 35B40 35L20 35L72 35J92 74K10 PDF BibTeX XML Cite \textit{F. Li} and \textit{X. Zhu}, J. Math. Anal. Appl. 517, No. 1, Article ID 126564, 10 p. (2023; Zbl 1497.35048) Full Text: DOI OpenURL
Vieira, Nelson; Rodrigues, M. Manuela; Ferreira, Milton Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. (English) Zbl 07676897 Electron Res. Arch. 30, No. 10, 3595-3631 (2022). MSC: 35R11 35L15 PDF BibTeX XML Cite \textit{N. Vieira} et al., Electron Res. Arch. 30, No. 10, 3595--3631 (2022; Zbl 07676897) Full Text: DOI OpenURL
Niknam, Sepideh; Adibi, Hojatollah A numerical solution of two-dimensional hyperbolic telegraph equation based on moving least square meshless method and radial basis functions. (English) Zbl 07665279 Comput. Methods Differ. Equ. 10, No. 4, 969-985 (2022). MSC: 65L05 34K06 34K28 PDF BibTeX XML Cite \textit{S. Niknam} and \textit{H. Adibi}, Comput. Methods Differ. Equ. 10, No. 4, 969--985 (2022; Zbl 07665279) Full Text: DOI OpenURL
Babu, Athira; Han, Bin; Asharaf, Noufal Numerical solution of the hyperbolic telegraph equation using cubic B-spline-based differential quadrature of high accuracy. (English) Zbl 07665270 Comput. Methods Differ. Equ. 10, No. 4, 837-859 (2022). MSC: 65M22 65N22 35L10 PDF BibTeX XML Cite \textit{A. Babu} et al., Comput. Methods Differ. Equ. 10, No. 4, 837--859 (2022; Zbl 07665270) Full Text: DOI OpenURL
Biswas, Swapan; Das, Shantanu; Ghosh, Uttam Time fractional telegraph equation and its solution by Laplace transform method. (English) Zbl 07648887 Asian-Eur. J. Math. 15, No. 7, Article ID 2250137, 11 p. (2022). MSC: 26A33 33E20 33C45 PDF BibTeX XML Cite \textit{S. Biswas} et al., Asian-Eur. J. Math. 15, No. 7, Article ID 2250137, 11 p. (2022; Zbl 07648887) Full Text: DOI OpenURL
Vieira, N.; Ferreira, M.; Rodrigues, M. M. Time-fractional telegraph equation with \(\psi\)-Hilfer derivatives. (English) Zbl 1506.35275 Chaos Solitons Fractals 162, Article ID 112276, 26 p. (2022). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{N. Vieira} et al., Chaos Solitons Fractals 162, Article ID 112276, 26 p. (2022; Zbl 1506.35275) Full Text: DOI OpenURL
Babu, Athira; Asharaf, Noufal Numerical solution of partial differential equations using Daubechies Filter with accuracy order six. (English) Zbl 07633261 Surv. Math. Appl. 17, 305-332 (2022). MSC: 65M22 35L10 65T60 35Q53 PDF BibTeX XML Cite \textit{A. Babu} and \textit{N. Asharaf}, Surv. Math. Appl. 17, 305--332 (2022; Zbl 07633261) Full Text: Link OpenURL
Hajinezhad, H.; Soheili, A. R. A numerical approximation for the solution of a time-fractional telegraph equation based on the Crank-Nicolson method. (English) Zbl 1499.65393 Iran. J. Numer. Anal. Optim. 12, No. 3, 607-628 (2022). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{H. Hajinezhad} and \textit{A. R. Soheili}, Iran. J. Numer. Anal. Optim. 12, No. 3, 607--628 (2022; Zbl 1499.65393) Full Text: DOI OpenURL
Youssri, Y. H.; Abd-Elhameed, W. M.; Atta, A. G. Spectral Galerkin treatment of linear one-dimensional telegraph type problem via the generalized Lucas polynomials. (English) Zbl 1501.65081 Arab. J. Math. 11, No. 3, 601-615 (2022). MSC: 65M70 65M60 65R20 35R09 45K05 65M12 65M15 35L52 11B39 PDF BibTeX XML Cite \textit{Y. H. Youssri} et al., Arab. J. Math. 11, No. 3, 601--615 (2022; Zbl 1501.65081) Full Text: DOI OpenURL
Huang, Jian; Cen, Zhongdi; Xu, Aimin An efficient numerical method for a time-fractional telegraph equation. (English) Zbl 07607652 Math. Biosci. Eng. 19, No. 5, 4672-4689 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{J. Huang} et al., Math. Biosci. Eng. 19, No. 5, 4672--4689 (2022; Zbl 07607652) Full Text: DOI OpenURL
Kong, Wang; Huang, Zhongyi Numerical study of time-fractional telegraph equations of transmission line modeling. (English) Zbl 1495.65137 East Asian J. Appl. Math. 12, No. 4, 821-847 (2022). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{W. Kong} and \textit{Z. Huang}, East Asian J. Appl. Math. 12, No. 4, 821--847 (2022; Zbl 1495.65137) Full Text: DOI OpenURL
Ashry, Heba; Abd-Elhameed, W. M.; Moatimid, G. M.; Youssri, Y. H. Robust shifted Jacobi-Galerkin method for solving linear hyperbolic telegraph type equation. (English) Zbl 1495.65181 Palest. J. Math. 11, No. 3, 504-518 (2022). MSC: 65M70 33C45 35L10 65M12 PDF BibTeX XML Cite \textit{H. Ashry} et al., Palest. J. Math. 11, No. 3, 504--518 (2022; Zbl 1495.65181) Full Text: Link OpenURL
Majeed, Abdul; Kamran, Mohsin; Asghar, Noreen Solution of non-linear time fractional telegraph equation with source term using B-spline and Caputo derivative. (English) Zbl 07582990 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 5, 735-749 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{A. Majeed} et al., Int. J. Nonlinear Sci. Numer. Simul. 23, No. 5, 735--749 (2022; Zbl 07582990) Full Text: DOI OpenURL
Singh, Brajesh Kumar; Kumar, Anil; Gupta, Mukesh Efficient new approximations for space-time fractional multi-dimensional telegraph equation. (English) Zbl 1501.65086 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 218, 36 p. (2022). Reviewer: Cornelis Vuik (Delft) MSC: 65M99 33E12 26A33 35R11 PDF BibTeX XML Cite \textit{B. K. Singh} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 218, 36 p. (2022; Zbl 1501.65086) Full Text: DOI OpenURL
Deresse, Alemayehu Tamirie Analytical solution of one-dimensional nonlinear conformable fractional telegraph equation by reduced differential transform method. (English) Zbl 1497.65202 Adv. Math. Phys. 2022, Article ID 7192231, 18 p. (2022). MSC: 65M99 65M12 35C05 26A33 35R11 PDF BibTeX XML Cite \textit{A. T. Deresse}, Adv. Math. Phys. 2022, Article ID 7192231, 18 p. (2022; Zbl 1497.65202) Full Text: DOI OpenURL
Karabaş, Neslişah İmamoğlu; Korkut, Sıla Övgü; Gurarslan, Gurhan; Tanoğlu, Gamze A reliable and fast mesh-free solver for the telegraph equation. (English) Zbl 07562968 Comput. Appl. Math. 41, No. 5, Paper No. 225, 24 p. (2022). MSC: 00A69 65M15 65M20 65M50 PDF BibTeX XML Cite \textit{N. İ. Karabaş} et al., Comput. Appl. Math. 41, No. 5, Paper No. 225, 24 p. (2022; Zbl 07562968) Full Text: DOI OpenURL
Kumar, Kamlesh; Kumar, Jogendra; Pandey, Rajesh K. A fully finite difference scheme for time-fractional telegraph equation involving Atangana Baleanu Caputo fractional derivative. (English) Zbl 07549894 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 154, 12 p. (2022). MSC: 65Mxx 39-XX PDF BibTeX XML Cite \textit{K. Kumar} et al., Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 154, 12 p. (2022; Zbl 07549894) Full Text: DOI OpenURL
Uchaikin, V. V. Atoms and photons: kinetic equations with delay. (English. Russian original) Zbl 1492.65353 J. Math. Sci., New York 260, No. 3, 335-370 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 62-96 (2019). MSC: 65P40 PDF BibTeX XML Cite \textit{V. V. Uchaikin}, J. Math. Sci., New York 260, No. 3, 335--370 (2022; Zbl 1492.65353); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 62--96 (2019) Full Text: DOI OpenURL
Kong, Wang; Huang, Zhongyi Artificial boundary conditions for time-fractional telegraph equation. (English) Zbl 1499.65401 Numer. Math., Theory Methods Appl. 15, No. 2, 360-386 (2022). MSC: 65M06 65N06 65M85 44A10 26A33 35R11 80A19 35Q79 PDF BibTeX XML Cite \textit{W. Kong} and \textit{Z. Huang}, Numer. Math., Theory Methods Appl. 15, No. 2, 360--386 (2022; Zbl 1499.65401) Full Text: DOI OpenURL
Ahmad, Imtiaz; Seadawy, Aly R.; Ahmad, Hijaz; Thounthong, Phatiphat; Wang, Fuzhang Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method. (English) Zbl 07533158 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 115-122 (2022). MSC: 74-XX 65-XX PDF BibTeX XML Cite \textit{I. Ahmad} et al., Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 115--122 (2022; Zbl 07533158) Full Text: DOI OpenURL
Kumar, Manish; Pradhan, Tusharakanta Quadratic-phase Fourier transform of tempered distributions and pseudo-differential operators. (English) Zbl 1501.46039 Integral Transforms Spec. Funct. 33, No. 6, 449-465 (2022). Reviewer: Antonio Galbis (Valencia) MSC: 46F12 43A32 47G30 35Qxx 35L05 35K05 PDF BibTeX XML Cite \textit{M. Kumar} and \textit{T. Pradhan}, Integral Transforms Spec. Funct. 33, No. 6, 449--465 (2022; Zbl 1501.46039) Full Text: DOI OpenURL
Asl, Malek A.; Saei, Farhad D.; Javidi, Mohammad; Mahmoudi, Yaghoub Stability and error of the new numerical solution of fractional Riesz space telegraph equation with time delay. (English) Zbl 07524410 Facta Univ., Ser. Math. Inf. 37, No. 1, 137-158 (2022). MSC: 35-XX PDF BibTeX XML Cite \textit{M. A. Asl} et al., Facta Univ., Ser. Math. Inf. 37, No. 1, 137--158 (2022; Zbl 07524410) Full Text: DOI OpenURL
Deng, Nan; Feng, Meiqiang New results of positive doubly periodic solutions to telegraph equations. (English) Zbl 1490.35022 Electron Res. Arch. 30, No. 3, 1104-1125 (2022). MSC: 35B10 35B40 35L71 PDF BibTeX XML Cite \textit{N. Deng} and \textit{M. Feng}, Electron Res. Arch. 30, No. 3, 1104--1125 (2022; Zbl 1490.35022) Full Text: DOI OpenURL
Abdollahy, Z.; Mahmoudi, Y.; Shamloo, A. Salimi; Baghmisheh, M. Haar wavelets method for time fractional Riesz space telegraph equation with separable solution. (English) Zbl 07505717 Rep. Math. Phys. 89, No. 1, 81-96 (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{Z. Abdollahy} et al., Rep. Math. Phys. 89, No. 1, 81--96 (2022; Zbl 07505717) Full Text: DOI OpenURL
Geng, Xiaoxiao; Cheng, Hao; Fan, Wenping A note on “Analytical solution for the time-fractional telegraph equation by the method of separating variables”. (English) Zbl 1486.35425 J. Math. Anal. Appl. 512, No. 2, Article ID 126144, 15 p. (2022). MSC: 35R11 34B24 35L20 PDF BibTeX XML Cite \textit{X. Geng} et al., J. Math. Anal. Appl. 512, No. 2, Article ID 126144, 15 p. (2022; Zbl 1486.35425) Full Text: DOI OpenURL
Doss, Forrest W. Advection versus diffusion in Richtmyer-Meshkov mixing. (English) Zbl 1491.76028 Phys. Lett., A 430, Article ID 127976, 6 p. (2022). MSC: 76E17 76R50 76F25 PDF BibTeX XML Cite \textit{F. W. Doss}, Phys. Lett., A 430, Article ID 127976, 6 p. (2022; Zbl 1491.76028) Full Text: DOI OpenURL
Majee, Sudeb; Jain, Subit K.; Ray, Rajendra K.; Majee, Ananta K. A fuzzy edge detector driven telegraph total variation model for image despeckling. (English) Zbl 1484.35281 Inverse Probl. Imaging 16, No. 2, 367-396 (2022). MSC: 35L20 35L71 65M06 68U10 PDF BibTeX XML Cite \textit{S. Majee} et al., Inverse Probl. Imaging 16, No. 2, 367--396 (2022; Zbl 1484.35281) Full Text: DOI arXiv OpenURL
Rizvi, Syed Tahir Raza; Ali, Kashif; Bekir, Ahmet; Nawaz, Badar; Younis, M. Investigation on the single and multiple dromions for nonlinear telegraph equation in electrical transmission line. (English) Zbl 1482.35068 Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 12, 14 p. (2022). MSC: 35C08 35L71 PDF BibTeX XML Cite \textit{S. T. R. Rizvi} et al., Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 12, 14 p. (2022; Zbl 1482.35068) Full Text: DOI OpenURL
Jegdić, Ilija Approximate solutions of the telegraph equation. (English) Zbl 1498.65184 Appl. Appl. Math. 16, No. 2, 1202-1220 (2021). MSC: 65M99 35L15 68T07 PDF BibTeX XML Cite \textit{I. Jegdić}, Appl. Appl. Math. 16, No. 2, 1202--1220 (2021; Zbl 1498.65184) Full Text: Link OpenURL
Bozorgnia, Farid; Lewintan, Peter Decay estimates for solutions of evolutionary damped \(p\)-Laplace equations. (English) Zbl 1496.35066 Electron. J. Differ. Equ. 2021, Paper No. 73, 9 p. (2021). MSC: 35B40 35L20 35L72 PDF BibTeX XML Cite \textit{F. Bozorgnia} and \textit{P. Lewintan}, Electron. J. Differ. Equ. 2021, Paper No. 73, 9 p. (2021; Zbl 1496.35066) Full Text: arXiv Link OpenURL
Khater, Mostafa M. A.; Park, Choonkil; Lee, Jung Rye; Mohamed, Mohamed S.; Attia, Raghda A. M. Five semi analytical and numerical simulations for the fractional nonlinear space-time telegraph equation. (English) Zbl 1494.35162 Adv. Difference Equ. 2021, Paper No. 227, 9 p. (2021). MSC: 35R11 65M70 26A33 PDF BibTeX XML Cite \textit{M. M. A. Khater} et al., Adv. Difference Equ. 2021, Paper No. 227, 9 p. (2021; Zbl 1494.35162) Full Text: DOI OpenURL
Zarebnia, Mohammad; Parvaz, Reza An approximation to the solution of one-dimensional hyperbolic telegraph equation based on the collocation of quadratic B-spline functions. (English) Zbl 1499.65586 Comput. Methods Differ. Equ. 9, No. 4, 1198-1213 (2021). MSC: 65M70 65M06 65N35 65D07 65M12 65M15 35L10 PDF BibTeX XML Cite \textit{M. Zarebnia} and \textit{R. Parvaz}, Comput. Methods Differ. Equ. 9, No. 4, 1198--1213 (2021; Zbl 1499.65586) Full Text: DOI OpenURL
Singh, Gurpreet; Singh, Inderdeep New hybrid technique for solving three dimensional telegraph equations. (English) Zbl 1499.44007 Adv. Differ. Equ. Control Process. 24, No. 2, 153-165 (2021). MSC: 44A10 35E15 47J30 PDF BibTeX XML Cite \textit{G. Singh} and \textit{I. Singh}, Adv. Differ. Equ. Control Process. 24, No. 2, 153--165 (2021; Zbl 1499.44007) Full Text: DOI OpenURL
Mishra, Arvind Kumar; Kumar, Sushil; Shukla, A. K. Numerical approximation of fractional telegraph equation via Legendre collocation technique. (English) Zbl 1499.65571 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 198, 27 p. (2021). MSC: 65M70 65N15 65N35 26A33 35R11 65N12 65D07 65D12 35L10 78A55 PDF BibTeX XML Cite \textit{A. K. Mishra} et al., Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 198, 27 p. (2021; Zbl 1499.65571) Full Text: DOI OpenURL
Srinivasa, Kumbinarasaiah; Rezazadeh, Hadi Numerical solution for the fractional-order one-dimensional telegraph equation via wavelet technique. (English) Zbl 07486821 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 6, 767-780 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{K. Srinivasa} and \textit{H. Rezazadeh}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 6, 767--780 (2021; Zbl 07486821) Full Text: DOI OpenURL
Singh, Brajesh Kumar; Shukla, Jai Prakash; Gupta, Mukesh Study of one dimensional hyperbolic telegraph equation via a hybrid cubic B-spline differential quadrature method. (English) Zbl 07486452 Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 14, 18 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{B. K. Singh} et al., Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 14, 18 p. (2021; Zbl 07486452) Full Text: DOI OpenURL
Lomov, I. S. Effective application of the Fourier technique for constructing a solution to a mixed problem for a telegraph equation. (English) Zbl 1484.35140 Mosc. Univ. Comput. Math. Cybern. 45, No. 4, 168-173 (2021). MSC: 35C10 35L20 PDF BibTeX XML Cite \textit{I. S. Lomov}, Mosc. Univ. Comput. Math. Cybern. 45, No. 4, 168--173 (2021; Zbl 1484.35140) Full Text: DOI OpenURL
Alfaqeih, Suliman; Mısırlı, Emine Conformable double Laplace transform method for solving conformable fractional partial differential equations. (English) Zbl 1499.44001 Comput. Methods Differ. Equ. 9, No. 3, 908-918 (2021). MSC: 44A05 44A10 35Q35 35R11 PDF BibTeX XML Cite \textit{S. Alfaqeih} and \textit{E. Mısırlı}, Comput. Methods Differ. Equ. 9, No. 3, 908--918 (2021; Zbl 1499.44001) Full Text: DOI OpenURL
Inc, Mustafa; Partohaghighi, Mohammad; Akinlar, Mehmet Ali; Weber, Gerhard-Wilhelm New solutions of hyperbolic telegraph equation. (English) Zbl 1497.35022 J. Dyn. Games 8, No. 2, 129-138 (2021). MSC: 35A35 35L10 33E30 65M22 65J15 PDF BibTeX XML Cite \textit{M. Inc} et al., J. Dyn. Games 8, No. 2, 129--138 (2021; Zbl 1497.35022) Full Text: DOI OpenURL
Hassan, Jabar S.; Grow, David Stability and approximation of solutions in new reproducing kernel Hilbert spaces on a semi-infinite domain. (English) Zbl 1490.46023 Math. Methods Appl. Sci. 44, No. 17, 12442-12452 (2021). MSC: 46E22 47B32 47B38 35L99 PDF BibTeX XML Cite \textit{J. S. Hassan} and \textit{D. Grow}, Math. Methods Appl. Sci. 44, No. 17, 12442--12452 (2021; Zbl 1490.46023) Full Text: DOI OpenURL
Jun, Younbae Efficiency analysis of a domain decomposition method for the two-dimensional telegraph equations. (English) Zbl 1473.65181 East Asian Math. J. 37, No. 3, 295-305 (2021). MSC: 65M55 65M06 PDF BibTeX XML Cite \textit{Y. Jun}, East Asian Math. J. 37, No. 3, 295--305 (2021; Zbl 1473.65181) Full Text: DOI OpenURL
Shi, Duanyin; Du, Hong New reproducing kernel Chebyshev wavelets method for solving a fractional telegraph equation. (English) Zbl 1476.35087 Comput. Appl. Math. 40, No. 4, Paper No. 126, 14 p. (2021). MSC: 35C10 PDF BibTeX XML Cite \textit{D. Shi} and \textit{H. Du}, Comput. Appl. Math. 40, No. 4, Paper No. 126, 14 p. (2021; Zbl 1476.35087) Full Text: DOI OpenURL
Ratanov, Nikita Ornstein-Uhlenbeck processes of bounded variation. (English) Zbl 1476.60146 Methodol. Comput. Appl. Probab. 23, No. 3, 925-946 (2021). MSC: 60J74 60J27 60K99 PDF BibTeX XML Cite \textit{N. Ratanov}, Methodol. Comput. Appl. Probab. 23, No. 3, 925--946 (2021; Zbl 1476.60146) Full Text: DOI arXiv OpenURL
Yang, Xuehua; Qiu, Wenlin; Zhang, Haixiang; Tang, Liang An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation. (English) Zbl 07419191 Comput. Math. Appl. 102, 233-247 (2021). MSC: 65M06 35R11 65M12 26A33 65M70 PDF BibTeX XML Cite \textit{X. Yang} et al., Comput. Math. Appl. 102, 233--247 (2021; Zbl 07419191) Full Text: DOI OpenURL
De Gregorio, Alessandro; Iafrate, Francesco Telegraph random evolutions on a circle. (English) Zbl 1480.60300 Stochastic Processes Appl. 141, 79-108 (2021). MSC: 60K99 60H10 60J35 PDF BibTeX XML Cite \textit{A. De Gregorio} and \textit{F. Iafrate}, Stochastic Processes Appl. 141, 79--108 (2021; Zbl 1480.60300) Full Text: DOI arXiv OpenURL
Li, Jin; Su, Xiaoning; Qu, Jinzheng Linear barycentric rational collocation method for solving telegraph equation. (English) Zbl 07393737 Math. Methods Appl. Sci. 44, No. 14, 11720-11737 (2021). MSC: 65D05 65M70 PDF BibTeX XML Cite \textit{J. Li} et al., Math. Methods Appl. Sci. 44, No. 14, 11720--11737 (2021; Zbl 07393737) Full Text: DOI OpenURL
Al-Smadi, Mohammed; Arqub, Omar Abu; Gaith, Mohamed Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. (English) Zbl 1497.65200 Math. Methods Appl. Sci. 44, No. 10, 8472-8489 (2021). MSC: 65M99 26A33 35R11 PDF BibTeX XML Cite \textit{M. Al-Smadi} et al., Math. Methods Appl. Sci. 44, No. 10, 8472--8489 (2021; Zbl 1497.65200) Full Text: DOI OpenURL
Ferreira, M.; Rodrigues, M. M.; Vieira, N. Application of the fractional Sturm-Liouville theory to a fractional Sturm-Liouville telegraph equation. (English) Zbl 1472.35433 Complex Anal. Oper. Theory 15, No. 5, Paper No. 87, 36 p. (2021). MSC: 35R11 35L20 34B24 33E12 30G35 PDF BibTeX XML Cite \textit{M. Ferreira} et al., Complex Anal. Oper. Theory 15, No. 5, Paper No. 87, 36 p. (2021; Zbl 1472.35433) Full Text: DOI OpenURL
Xie, Jiaquan Numerical computation of fractional partial differential equations with variable coefficients utilizing the modified fractional Legendre wavelets and error analysis. (English) Zbl 1506.65172 Math. Methods Appl. Sci. 44, No. 8, 7150-7164 (2021). Reviewer: Hendrik Ranocha (Hamburg) MSC: 65M70 65T60 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{J. Xie}, Math. Methods Appl. Sci. 44, No. 8, 7150--7164 (2021; Zbl 1506.65172) Full Text: DOI OpenURL
Malinzi, Joseph A mathematical model for oncolytic virus spread using the telegraph equation. (English) Zbl 1470.92188 Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105944, 16 p. (2021). MSC: 92C60 35Q92 PDF BibTeX XML Cite \textit{J. Malinzi}, Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105944, 16 p. (2021; Zbl 1470.92188) Full Text: DOI OpenURL
Khater, Mostafa M. A.; Nisar, Kottakkaran Sooppy; Mohamed, Mohamed S. Numerical investigation for the fractional nonlinear space-time telegraph equation via the trigonometric Quintic B-spline scheme. (English) Zbl 1469.35196 Math. Methods Appl. Sci. 44, No. 6, 4598-4606 (2021). MSC: 35Q60 35C07 37K10 65M70 65M15 65D07 35R11 PDF BibTeX XML Cite \textit{M. M. A. Khater} et al., Math. Methods Appl. Sci. 44, No. 6, 4598--4606 (2021; Zbl 1469.35196) Full Text: DOI OpenURL
Ashyralyev, Allaberen; Al-Hammouri, Ahmad Stability of the space identification problem for the elliptic-telegraph differential equation. (English) Zbl 1469.35241 Math. Methods Appl. Sci. 44, No. 1, 945-959 (2021). MSC: 35R30 35L90 58D25 PDF BibTeX XML Cite \textit{A. Ashyralyev} and \textit{A. Al-Hammouri}, Math. Methods Appl. Sci. 44, No. 1, 945--959 (2021; Zbl 1469.35241) Full Text: DOI OpenURL
Yang, Xiaozhong; Liu, Xinlong Numerical analysis of two new finite difference methods for time-fractional telegraph equation. (English) Zbl 1476.65198 Discrete Contin. Dyn. Syst., Ser. B 26, No. 7, 3921-3942 (2021). MSC: 65M06 65M12 78A40 26A33 35R11 PDF BibTeX XML Cite \textit{X. Yang} and \textit{X. Liu}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 7, 3921--3942 (2021; Zbl 1476.65198) Full Text: DOI OpenURL
Ahmadian Asl, Malek; Saei, Farhad Dastmalchi; Javidi, Mohammad; Mahmoudi, Yaghoub Numerical solution of fractional Riesz space telegraph equation: stability and error. (English) Zbl 1488.65368 Comput. Methods Differ. Equ. 9, No. 1, 187-210 (2021). MSC: 65M20 35R11 65M12 PDF BibTeX XML Cite \textit{M. Ahmadian Asl} et al., Comput. Methods Differ. Equ. 9, No. 1, 187--210 (2021; Zbl 1488.65368) Full Text: DOI OpenURL
Nikan, O.; Avazzadeh, Z.; Machado, J. A. Tenreiro Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport. (English) Zbl 1471.65162 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105755, 22 p. (2021). MSC: 65M70 65M06 65N06 65M12 65D12 82D75 35R11 PDF BibTeX XML Cite \textit{O. Nikan} et al., Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105755, 22 p. (2021; Zbl 1471.65162) Full Text: DOI OpenURL
Pettres, Roberto A first dynamic population invasion study from reactive-telegraph equation and boundary element formulation. (English) Zbl 1464.65109 Eng. Anal. Bound. Elem. 122, 214-231 (2021). MSC: 65M38 92D25 PDF BibTeX XML Cite \textit{R. Pettres}, Eng. Anal. Bound. Elem. 122, 214--231 (2021; Zbl 1464.65109) Full Text: DOI OpenURL
Kolesnik, Alexander D. Markov random flights. (English) Zbl 1493.60001 Monographs and Research Notes in Mathematics. Boca Raton, FL: CRC Press (ISBN 978-0-367-56494-0/hbk; 978-1-003-09813-3/ebook). xxvi, 380 p. (2021). Reviewer: Jordan M. Stoyanov (Sofia) MSC: 60-02 60J60 60K35 PDF BibTeX XML Cite \textit{A. D. Kolesnik}, Markov random flights. Boca Raton, FL: CRC Press (2021; Zbl 1493.60001) Full Text: DOI OpenURL
Arslan, Derya The numerical study of a hybrid method for solving telegraph equation. (English) Zbl 07664136 Appl. Math. Nonlinear Sci. 5, No. 1, 293-302 (2020). MSC: 35F16 65N06 65N12 65N15 PDF BibTeX XML Cite \textit{D. Arslan}, Appl. Math. Nonlinear Sci. 5, No. 1, 293--302 (2020; Zbl 07664136) Full Text: DOI OpenURL
Arnault, Pablo; Macquet, Adrian; Anglés-Castillo, Andreu; Márquez-Martín, Iván; Pina-Canelles, Vicente; Pérez, Armando; Di Molfetta, Giuseppe; Arrighi, Pablo; Debbasch, Fabrice Quantum simulation of quantum relativistic diffusion via quantum walks. (English) Zbl 07642080 J. Phys. A, Math. Theor. 53, No. 20, Article ID 205303, 39 p. (2020). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{P. Arnault} et al., J. Phys. A, Math. Theor. 53, No. 20, Article ID 205303, 39 p. (2020; Zbl 07642080) Full Text: DOI arXiv OpenURL
Wang, Hui; He, Qingfang; Luo, Zhendong A reduced order extrapolating technique of solution coefficient vectors to collocation spectral method for telegraph equation. (English) Zbl 1487.65190 Adv. Difference Equ. 2020, Paper No. 61, 16 p. (2020). MSC: 65N35 65N12 PDF BibTeX XML Cite \textit{H. Wang} et al., Adv. Difference Equ. 2020, Paper No. 61, 16 p. (2020; Zbl 1487.65190) Full Text: DOI OpenURL
Boukanjime, Brahim; Caraballo, Tomás; El Fatini, Mohamed; El Khalifi, Mohamed Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching. (English) Zbl 1496.92104 Chaos Solitons Fractals 141, Article ID 110361, 11 p. (2020). MSC: 92D30 34C60 34D05 34F05 60H10 60J28 PDF BibTeX XML Cite \textit{B. Boukanjime} et al., Chaos Solitons Fractals 141, Article ID 110361, 11 p. (2020; Zbl 1496.92104) Full Text: DOI OpenURL
Panda, Sumati Kumari; Abdeljawad, Thabet; Ravichandran, C. A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear telegraph equation via fixed point method. (English) Zbl 1489.34112 Chaos Solitons Fractals 130, Article ID 109439, 11 p. (2020). MSC: 34K37 34A08 26A33 47N20 45P05 PDF BibTeX XML Cite \textit{S. K. Panda} et al., Chaos Solitons Fractals 130, Article ID 109439, 11 p. (2020; Zbl 1489.34112) Full Text: DOI OpenURL
Hafez, R. M.; Youssri, Y. H. Shifted Jacobi collocation scheme for multidimensional time-fractional order telegraph equation. (English) Zbl 07497011 Iran. J. Numer. Anal. Optim. 10, No. 1, 195-223 (2020). MSC: 65-XX 35R11 33C45 15A24 PDF BibTeX XML Cite \textit{R. M. Hafez} and \textit{Y. H. Youssri}, Iran. J. Numer. Anal. Optim. 10, No. 1, 195--223 (2020; Zbl 07497011) Full Text: DOI OpenURL
Bonyadi, Samira; Mahmoudi, Yaghoub; Lakestani, Mehrdad; Jahangiri Rad, Mohammad A tau method based on Jacobi operational matrix for solving fractional telegraph equation with Riesz-space derivative. (English) Zbl 1486.65187 Comput. Appl. Math. 39, No. 4, Paper No. 309, 26 p. (2020). MSC: 65M70 35R11 65M15 PDF BibTeX XML Cite \textit{S. Bonyadi} et al., Comput. Appl. Math. 39, No. 4, Paper No. 309, 26 p. (2020; Zbl 1486.65187) Full Text: DOI OpenURL
Sweilam, N. H.; Nagy, A. M.; El-Sayed, A. A. Sinc-Chebyshev collocation method for time-fractional order telegraph equation. (English) Zbl 1480.65295 Appl. Comput. Math. 19, No. 2, 162-174 (2020). MSC: 65M70 35K05 35R11 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Appl. Comput. Math. 19, No. 2, 162--174 (2020; Zbl 1480.65295) Full Text: Link OpenURL
Shokri, Ali; Bahmani, Erfan Numerical solution of the 2D telegraph equation using direct meshless local Petrov-Galerkin (DMLPG) method. (Persian. English summary) Zbl 1500.65069 JAMM, J. Adv. Math. Model. 10, No. 2, 267-287 (2020). MSC: 65M60 65K10 35L10 PDF BibTeX XML Cite \textit{A. Shokri} and \textit{E. Bahmani}, JAMM, J. Adv. Math. Model. 10, No. 2, 267--287 (2020; Zbl 1500.65069) Full Text: DOI OpenURL
Lin, Yier The stochastic telegraph equation limit of the stochastic higher spin six vertex model. (English) Zbl 1470.60186 Electron. J. Probab. 25, Paper No. 148, 30 p. (2020). Reviewer: Fraser Daly (Edinburgh) MSC: 60H15 82B20 60F05 PDF BibTeX XML Cite \textit{Y. Lin}, Electron. J. Probab. 25, Paper No. 148, 30 p. (2020; Zbl 1470.60186) Full Text: DOI arXiv OpenURL
Arora, Rajni; Singh, Swarn; Singh, Suruchi Numerical solution of second-order two-dimensional hyperbolic equation by bi-cubic B-spline collocation method. (English) Zbl 1473.65229 Math. Sci., Springer 14, No. 3, 201-213 (2020). MSC: 65M70 65M60 65M06 PDF BibTeX XML Cite \textit{R. Arora} et al., Math. Sci., Springer 14, No. 3, 201--213 (2020; Zbl 1473.65229) Full Text: DOI OpenURL
Hayek, Alaa; Nicaise, Serge; Salloum, Zaynab; Wehbe, Ali Existence, uniqueness and stabilization of solutions of a generalized telegraph equation on star shaped networks. (English) Zbl 1461.35039 Acta Appl. Math. 170, 823-851 (2020). MSC: 35B35 93D15 35L50 93C20 47D03 47D06 35L05 PDF BibTeX XML Cite \textit{A. Hayek} et al., Acta Appl. Math. 170, 823--851 (2020; Zbl 1461.35039) Full Text: DOI OpenURL
Jerome, Joseph W. The multidimensional damped wave equation: maximal weak solutions for nonlinear forcing via semigroups and approximation. (English) Zbl 1462.35202 Numer. Funct. Anal. Optim. 41, No. 16, 1970-1989 (2020). MSC: 35L71 35L20 35D30 47D06 PDF BibTeX XML Cite \textit{J. W. Jerome}, Numer. Funct. Anal. Optim. 41, No. 16, 1970--1989 (2020; Zbl 1462.35202) Full Text: DOI arXiv OpenURL
Mohammadian, Safiyeh; Mahmoudi, Yaghoub; Saei, Farhad Dastmalchi Analytical approximation of time-fractional telegraph equation with Riesz space-fractional derivative. (English) Zbl 1474.65410 Differ. Equ. Appl. 12, No. 3, 243-258 (2020). MSC: 65M99 35R11 PDF BibTeX XML Cite \textit{S. Mohammadian} et al., Differ. Equ. Appl. 12, No. 3, 243--258 (2020; Zbl 1474.65410) Full Text: DOI OpenURL
Kumar, Rakesh; Koundal, Reena; Shehzad, Sabir Ali Least square homotopy solution to hyperbolic telegraph equations: multi-dimension analysis. (English) Zbl 1466.65164 Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 6, 19 p. (2020). MSC: 65M99 65M12 65K10 35B20 PDF BibTeX XML Cite \textit{R. Kumar} et al., Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 6, 19 p. (2020; Zbl 1466.65164) Full Text: DOI OpenURL
Gorinov, A. A.; Kushner, A. G. Dynamics of evolutionary PDE systems. (English) Zbl 1473.35020 Lobachevskii J. Math. 41, No. 12, 2448-2457 (2020). Reviewer: Boris S. Kruglikov (Tromsø) MSC: 35B07 34C45 PDF BibTeX XML Cite \textit{A. A. Gorinov} and \textit{A. G. Kushner}, Lobachevskii J. Math. 41, No. 12, 2448--2457 (2020; Zbl 1473.35020) Full Text: DOI OpenURL
Moroşanu, Gheorghe; Petruşel, Adrian Two-parameter second-order differential inclusions in Hilbert spaces. (English) Zbl 1474.34416 Ann. Acad. Rom. Sci., Math. Appl. 12, No. 1-2, 274-294 (2020). MSC: 34G25 47H05 35K20 35L50 34E15 34B08 PDF BibTeX XML Cite \textit{G. Moroşanu} and \textit{A. Petruşel}, Ann. Acad. Rom. Sci., Math. Appl. 12, No. 1--2, 274--294 (2020; Zbl 1474.34416) Full Text: Link OpenURL
Yaseen, Muhammad; Abbas, Muhammad An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation. (English) Zbl 1474.65399 Appl. Math., Ser. B (Engl. Ed.) 35, No. 3, 359-378 (2020). MSC: 65M70 65Z05 65D05 65D07 35B35 26A33 35R11 65M12 65M06 PDF BibTeX XML Cite \textit{M. Yaseen} and \textit{M. Abbas}, Appl. Math., Ser. B (Engl. Ed.) 35, No. 3, 359--378 (2020; Zbl 1474.65399) Full Text: DOI OpenURL
Hassan, Jabar S.; Grow, David New reproducing kernel Hilbert spaces on semi-infinite domains with existence and uniqueness results for the nonhomogeneous telegraph equation. (English) Zbl 1467.46023 Math. Methods Appl. Sci. 43, No. 17, 9615-9636 (2020). MSC: 46E22 35L05 47B32 47B38 PDF BibTeX XML Cite \textit{J. S. Hassan} and \textit{D. Grow}, Math. Methods Appl. Sci. 43, No. 17, 9615--9636 (2020; Zbl 1467.46023) Full Text: DOI OpenURL
Pogorui, A. O.; Rodríguez-Dagnino, R. M. Differential and integral equations for jump random motions. (English) Zbl 1455.60121 Theory Probab. Math. Stat. 101, 233-242 (2020) and Teor. Jmovirn. Mat. Stat. 101, 203-211 (2019). MSC: 60K15 60J76 PDF BibTeX XML Cite \textit{A. O. Pogorui} and \textit{R. M. Rodríguez-Dagnino}, Theory Probab. Math. Stat. 101, 233--242 (2020; Zbl 1455.60121) Full Text: DOI OpenURL
Delić, Aleksandra; Jovanović, Boško S.; Živanović, Sandra Finite difference approximation of a generalized time-fractional telegraph equation. (English) Zbl 1456.65061 Comput. Methods Appl. Math. 20, No. 4, 595-607 (2020). MSC: 65M06 26A33 34A08 65M12 65M15 PDF BibTeX XML Cite \textit{A. Delić} et al., Comput. Methods Appl. Math. 20, No. 4, 595--607 (2020; Zbl 1456.65061) Full Text: DOI OpenURL
Majee, Sudeb; Jain, Subit K.; Ray, Rajendra K.; Majee, Ananta K. On the development of a coupled nonlinear telegraph-diffusion model for image restoration. (English) Zbl 1490.65157 Comput. Math. Appl. 80, No. 7, 1745-1766 (2020). MSC: 65M06 94A08 PDF BibTeX XML Cite \textit{S. Majee} et al., Comput. Math. Appl. 80, No. 7, 1745--1766 (2020; Zbl 1490.65157) Full Text: DOI arXiv OpenURL
Liang, Yuxiang; Yao, Zhongsheng; Wang, Zhibo Fast high order difference schemes for the time fractional telegraph equation. (English) Zbl 1452.65164 Numer. Methods Partial Differ. Equations 36, No. 1, 154-172 (2020). MSC: 65M06 65M12 35R11 26A33 35Q60 PDF BibTeX XML Cite \textit{Y. Liang} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 154--172 (2020; Zbl 1452.65164) Full Text: DOI OpenURL
Zhao, Zhihui; Li, Hong; Liu, Yang Analysis of a continuous Galerkin method with mesh modification for two-dimensional telegraph equation. (English) Zbl 1443.65233 Comput. Math. Appl. 79, No. 3, 588-602 (2020). MSC: 65M60 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Comput. Math. Appl. 79, No. 3, 588--602 (2020; Zbl 1443.65233) Full Text: DOI OpenURL
Goldstein, Gisèle Ruiz; Goldstein, Jerome A.; Guidetti, Davide; Romanelli, Silvia The fourth order Wentzell heat equation. (English) Zbl 1494.35090 Banasiak, Jacek (ed.) et al., Semigroups of operators – theory and applications. Selected papers based on the presentations at the conference, SOTA 2018, Kazimierz Dolny, Poland, September 30 – October 5, 2018. In honour of Jan Kisyński’s 85th birthday. Cham: Springer. Springer Proc. Math. Stat. 325, 215-226 (2020). MSC: 35K20 35L90 47D06 PDF BibTeX XML Cite \textit{G. R. Goldstein} et al., Springer Proc. Math. Stat. 325, 215--226 (2020; Zbl 1494.35090) Full Text: DOI OpenURL
Kong, Wang; Huang, Zhongyi Transparent boundary conditions and numerical computation for singularly perturbed telegraph equation on unbounded domain. (English) Zbl 1450.65124 Numer. Math. 145, No. 2, 345-382 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65M12 35B25 35B40 35C20 35M13 PDF BibTeX XML Cite \textit{W. Kong} and \textit{Z. Huang}, Numer. Math. 145, No. 2, 345--382 (2020; Zbl 1450.65124) Full Text: DOI OpenURL
Majee, Sudeb; Ray, Rajendra K.; Majee, Ananta K. A gray level indicator-based regularized telegraph diffusion model: application to image despeckling. (English) Zbl 1444.35111 SIAM J. Imaging Sci. 13, No. 2, 844-870 (2020). MSC: 35L20 35L71 65M06 68U10 PDF BibTeX XML Cite \textit{S. Majee} et al., SIAM J. Imaging Sci. 13, No. 2, 844--870 (2020; Zbl 1444.35111) Full Text: DOI arXiv OpenURL
Zhou, Yunxu; Qu, Wenzhen; Gu, Yan; Gao, Hongwei A hybrid meshless method for the solution of the second order hyperbolic telegraph equation in two space dimensions. (English) Zbl 1464.65155 Eng. Anal. Bound. Elem. 115, 21-27 (2020). MSC: 65M70 35L20 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Eng. Anal. Bound. Elem. 115, 21--27 (2020; Zbl 1464.65155) Full Text: DOI OpenURL
Khan, Amir; Khan, Asaf; Khan, Tahir; Zaman, Gul Extension of triple Laplace transform for solving fractional differential equations. (English) Zbl 1443.35170 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 755-768 (2020). Reviewer: Pham Viet Hai (Hanoi) MSC: 35R11 44A10 PDF BibTeX XML Cite \textit{A. Khan} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 755--768 (2020; Zbl 1443.35170) Full Text: DOI OpenURL
Hamada, Yasser Mohamed Solution of a new model of fractional telegraph point reactor kinetics using differential transformation method. (English) Zbl 1481.82018 Appl. Math. Modelling 78, 297-321 (2020). MSC: 82C40 35R11 PDF BibTeX XML Cite \textit{Y. M. Hamada}, Appl. Math. Modelling 78, 297--321 (2020; Zbl 1481.82018) Full Text: DOI OpenURL
Leonenko, Nikolai; Vaz, Jayme jun. Spectral analysis of fractional hyperbolic diffusion equations with random data. (English) Zbl 1436.35007 J. Stat. Phys. 179, No. 1, 155-175 (2020). MSC: 35A08 35R11 35R60 35R01 35L15 35P05 PDF BibTeX XML Cite \textit{N. Leonenko} and \textit{J. Vaz jun.}, J. Stat. Phys. 179, No. 1, 155--175 (2020; Zbl 1436.35007) Full Text: DOI OpenURL
Ureña, F.; Gavete, L.; Benito, J. J.; García, A.; Vargas, A. M. Solving the telegraph equation in 2-d and 3-d using generalized finite difference method (GFDM). (English) Zbl 1464.65093 Eng. Anal. Bound. Elem. 112, 13-24 (2020). MSC: 65M06 35L20 PDF BibTeX XML Cite \textit{F. Ureña} et al., Eng. Anal. Bound. Elem. 112, 13--24 (2020; Zbl 1464.65093) Full Text: DOI OpenURL
Devi, Vinita; Maurya, Rahul Kumar; Singh, Somveer; Singh, Vineet Kumar Lagrange’s operational approach for the approximate solution of two-dimensional hyperbolic telegraph equation subject to Dirichlet boundary conditions. (English) Zbl 1433.35196 Appl. Math. Comput. 367, Article ID 124717, 16 p. (2020). MSC: 35L20 PDF BibTeX XML Cite \textit{V. Devi} et al., Appl. Math. Comput. 367, Article ID 124717, 16 p. (2020; Zbl 1433.35196) Full Text: DOI OpenURL
Tasbozan, Orkun; Esen, Alaattin Collocation solutions for the time fractional telegraph equation using cubic B-spline finite elements. (English) Zbl 07645162 An. Univ. Vest Timiș., Ser. Mat.-Inform. 57, No. 2, 131-144 (2019). MSC: 97N40 65N30 65D07 PDF BibTeX XML Cite \textit{O. Tasbozan} and \textit{A. Esen}, An. Univ. Vest Timiș., Ser. Mat.-Inform. 57, No. 2, 131--144 (2019; Zbl 07645162) Full Text: DOI OpenURL
Kumar, Kamlesh; Pandey, Rajesh K.; Yadav, Swati Finite difference scheme for a fractional telegraph equation with generalized fractional derivative terms. (English) Zbl 07571179 Physica A 535, Article ID 122271, 15 p. (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{K. Kumar} et al., Physica A 535, Article ID 122271, 15 p. (2019; Zbl 07571179) Full Text: DOI OpenURL
Mohammadian, S.; Mahmoudi, Y.; Saei, F. D. Solution of fractional telegraph equation with Riesz space-fractional derivative. (English) Zbl 1486.65220 AIMS Math. 4, No. 6, 1664-1683 (2019). MSC: 65M99 35R11 PDF BibTeX XML Cite \textit{S. Mohammadian} et al., AIMS Math. 4, No. 6, 1664--1683 (2019; Zbl 1486.65220) Full Text: DOI OpenURL
Ali, Ajmal; Ali, Norhashidah Hj. Mohd. On skewed grid point iterative method for solving 2D hyperbolic telegraph fractional differential equation. (English) Zbl 1485.65091 Adv. Difference Equ. 2019, Paper No. 303, 29 p. (2019). MSC: 65M06 26A33 65M12 35R11 PDF BibTeX XML Cite \textit{A. Ali} and \textit{N. Hj. Mohd. Ali}, Adv. Difference Equ. 2019, Paper No. 303, 29 p. (2019; Zbl 1485.65091) Full Text: DOI OpenURL