×

Traces of integrability in relaxation of one-dimensional two-mass mixtures. (English) Zbl 1327.82024

Summary: We study relaxation in a one-dimensional two-mass mixture of hard-core particles. A heavy-light-heavy triplet of three neighboring particles can form a little known unequal mass generalization of Newton’s cradle at particular light-to-heavy mass ratios. An anomalous slow-down in the relaxation of the whole system is expected due to the presence of these triplets, and we provide numerical evidence to support this prediction. The expected experimental realization of our model involves mixtures of two internal states in optical lattices, where the ratio between effective masses can be controlled at will.

MSC:

82B23 Exactly solvable models; Bethe ansatz
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Tonks, L.: The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955 (1936) · JFM 62.1607.19 · doi:10.1103/PhysRev.50.955
[2] Hurtado, P.I., Redner, S.: Simplest piston problem. I. Elastic collisions. Phys. Rev. E 73, 016136 (2006) · doi:10.1103/PhysRevE.73.016136
[3] Herrmann, F., Schmälzle, P.: Simple explanation of a well-known collision experiment. Am. J. Phys. 49(8), 761 (1981) · doi:10.1119/1.12407
[4] Jepsen, D.W., Hirschfelder, J.O.: Set of co-ordinate systems which diagonalize the kinetic energy of relative motion. Proc. Natl. Acad. Sci. USA 45, 249 (1959) · Zbl 0084.19901 · doi:10.1073/pnas.45.2.249
[5] McGuire, J.B.: Study of exactly soluble one-dimensional N-body problems. J. Math. Phys. 5(1), 622 (1964) · Zbl 0131.43804 · doi:10.1063/1.1704156
[6] Glashow, S.L., Mittag, L.: Three rods on a ring and the triangular billiard. J. Stat. Phys. 87, 937 (1997) · Zbl 0952.70501 · doi:10.1007/BF02181254
[7] Artuso, R., Casati, G., Guarneri, I.: Numerical study on ergodic properties of triangular billiards. Phys. Rev. E 55(6), 6384 (1997) · doi:10.1103/PhysRevE.55.6384
[8] Wang, J., Casati, G., Prosen, T.: Nonergodicity and localization of invariant measure for two colliding masses. Phys. Rev. E 89, 042918 (2014) · doi:10.1103/PhysRevE.89.042918
[9] Coxeter, H.S.M.: Regular Polytopes. Methuen & CO. LTD., London (1948) · Zbl 0031.06502
[10] Monroe, C.R., Cornell, E.A., Sackett, C.A., Myatt, C.J., Wieman, C.E.: Measurement of Cs-Cs elastic scattering at \[\text{ T }= 30\,\mu\] T=30μ K. Phys. Rev. Lett. 70, 414 (1993) · doi:10.1103/PhysRevLett.70.414
[11] Wu, H., Foot, C.J.: Direct simulation of evaporative cooling. J. Phys. B 29, L321 (1996) · Zbl 0898.58048 · doi:10.1088/0953-4075/29/8/003
[12] Gadway, B., Pertot, D., Reimann, R., Schneble, D.: Superfluidity of interacting bosonic mixtures in optical lattices. Phys. Rev. Lett 105, 045303 (2010) · doi:10.1103/PhysRevLett.105.045303
[13] Gadway, B., Pertot, D., Reeves, J., Vogt, M., Schneble, D.: Glassy behavior in a binary atomic mixture. Phys. Rev. Lett 107, 145306 (2011) · doi:10.1103/PhysRevLett.107.145306
[14] Gaudin, M.: The Bethe Wavefunction (translated edn.). Cambridge University Press, Cambridge (2014) · Zbl 1335.81010 · doi:10.1017/CBO9781107053885
[15] Gaudin, M.: Boundary energy of a bose gas in one dimension. Phys. Rev. A 24, 386 (1971) · doi:10.1103/PhysRevA.4.386
[16] Emsiz, E., Opdam, E.M., Stokman, J.V.: Periodic integrable systems with delta-potentials. Commun. Math. Phys. 264, 191 (2006) · Zbl 1116.82020 · doi:10.1007/s00220-006-1519-6
[17] Emsiz, E., Opdam, E.M., Stokman, J.V.: Trigonometric cherednik algebra at critical level and quantum many-body problems. New Ser. Sel. Math. 14, 571 (2009) · Zbl 1211.81071 · doi:10.1007/s00029-009-0516-y
[18] Emsiz, E.: Completeness of the Bethe ansatz on Weyl alcoves. Lett. Math. Phys. 91, 61 (2010) · Zbl 1185.82019 · doi:10.1007/s11005-009-0359-7
[19] S.G. Jackson, M. Olshanii, unpublished
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.