×

Vibrations of inhomogeneous piezoelectric bodies in conditions of residual stress-strain state. (English) Zbl 1480.74121

Summary: In the article, we present the general linearized statement of the boundary problem on vibrations of inhomogeneous piezoelectric body under residual stress-strain state. We have derived the weak statement of the problem for the test functions satisfying the essential boundary conditions, formulated the general variational principle for a prestressed piezoelectric body and proposed several options for the potential energy representation. On the basis of the principles proposed, we have formulated and investigated a number of particular boundary problems on steady-state vibrations of inhomogeneous piezoelectric prestressed rods and thin prestressed disk polarized in the direction of thickness. The analysis of the residual stress levels on frequency response function for the bodies considered is provided.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74B15 Equations linearized about a deformed state (small deformations superposed on large)
74F15 Electromagnetic effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Schatt, W.; Wieters, K., Powder metallurgy processing and materials, EPMA Eur. Powder Metall. Assoc., 47-59 (1997)
[2] Kieback, B.; Neubrand, A.; Riedel, H., Processing techniques for functionally graded materials, Mater. Sci. Eng., 81-105 (2003)
[4] Fischer, F. A., Fundamentals of Electroacoustics (1955), Interscience, New York
[5] Auld, B. A., Acoustic Fields and Waves in Solids (1973), Wiley, New York
[6] Dieulesaint, E.; Royer, D., Elastic Waves in Solids (1980), Wiley, New York
[7] Nayfen, A., Wave Propagation in Layered Anisotropic Media (1995), Elsevier, Amsterdam · Zbl 0857.73005
[8] Liu, G. R.; Tani, J., Characteristics of wave propagation in functionally gradient piezoelectric material plates and its response analysis, Trans. Japan Soc. Mech. Eng., 57, 541, 2122-2133 (1991)
[9] Sharma, J. N.; Pal, M.; Chand, D., Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials, J. Sound Vib., 284, 1, 227-248 (2005)
[11] Gulyaev, Y. V., Electroacoustic surface waves in solids, J. Exp. Theor. Phys., 9, 37-38 (1969)
[12] Kuang, Z.-B., Theory of Electroelasticity (2014), Springer: Heidelberg, New York · Zbl 1323.74002
[13] Parton, V. Z.; Kudryavtsev, B. A., Electro-Magneto-Elasticity of Piezoelectric and Electroconductive Bodies (1988), Moscow: Nauka
[14] Tiersten, H. F., Perturbation theory for linear electroelastic equations for small fields superimposed on a bias, J. Acoust. Soc. Am., 64, 3, 832-837 (1978) · Zbl 0383.73086
[15] Sinha, A. K.; W. J. Tanski, A. B.; Lukaszek, T., Influence of biasing stress on the propagation of surface waves, J. Appl. Phys., 57, 767-776 (1985)
[16] Su, J.; Liu, H.; Kuang, Z.-B., Love wave in ZnO/SiO2/Si structure with initial stresses, J. Sound Vib., 286, 981-999 (1985)
[17] Southwell, R. V., On the general theory of elastic stability, Philos. Trans. Royal Soc. Ser. A, 213, 187-244 (1914) · JFM 44.0931.01
[19] Biot, M. A., Nonlinear theory of elasticity and the linearized case for a body under initial stress, Philos. Mag. Ser. 7, 27, 468-489 (1939) · Zbl 0021.16508
[20] Neuber, H., Die Grundgleichungen der elastischen Stabilität in allgemeinen Koordinaten und ihre Integration, ZAMM, 23, 321-330 (1943) · Zbl 0063.05926
[21] Trefftz, E., Zur Theorie der Stabilität des elastischen Gleichgewichts, ZAMM, 12, 2, 160-165 (1933) · JFM 59.0737.07
[22] Green, A. E.; Rivlin, R. S.; Shield, R. T., General theory of small deformations superposed on large elastic deformations, Proc. Roy. Soc. A, 211, 211-292 (1952) · Zbl 0046.41208
[23] Novozhilov, V. V., Foundations of Nonlinear Theory of Elasticity (in Russian) (1948), Leningrad: Leningrad Moscow
[24] Truesdell, C.; Noll, W., The nonlinear theories of mechanics, (Flügge, S., Encyclopedia of Physics (2006), Springer, Berlin), 68-70
[26] Zubov, L. M., Theory of small deformations of prestressed thin shells, J. Appl. Math. Mech., 40, 73-82 (1976) · Zbl 0352.73072
[27] Guz, A. N., Three-dimensional theory of elastic stability under finite subcritical deformations, J. Appl. Mech., 8, 12, 25-44 (1972)
[28] Hoger, A., On the determination of residual stress in an elastic body, J. Elast., 16, 303-324 (1986) · Zbl 0616.73033
[29] Robertson, R. L., Determining residual stress from boundary. Measurements: a linearized approach, J. Elast., 52, 63-73 (1998) · Zbl 0938.74012
[30] Kravchishin, O. Z.; Chekurin, B. F., A model of acoustoelasticity for inhomogeneous deformable bodies, Solis Mech., 5, 150-163 (2009)
[31] Ogden, R. W., Nonlinear Elastic Deformations (1984), Ellis Horwood/Halsted Press: Ellis Horwood/Halsted Press Chichester/New York · Zbl 0541.73044
[32] Guz, A. N., Stability of Elastic Bodies Under Finite Deformations (in Russian) (1973), Kiev: Naukova dumka
[33] Zubov, L. M., Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies (1997), Springer · Zbl 0899.73001
[34] Guz, A. N., On foundations of the ultrasonic nondestructive method for determination of stresses in near-surface layers of solid bodies, Int. Appl. Mech., 41, 8, 944-955 (2005) · Zbl 1089.74535
[35] Tovstik, P. E., Vibration and stability of the prestressed plate lying on the elastic base, J. Appl. Math. Mech., 6, 106-120 (2009) · Zbl 1183.74108
[36] Bažant, Z. P., A correlation study of formulations of incremental deformation and stability of continuous bodies, J. Appl. Mech., 38, 919-928 (1971) · Zbl 0268.73001
[37] Ansari, R.; Gholami, R.; Rouhi, H., Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic timoshenko nanobeams based upon the nonlocal elasticity theory, Compos. Struct., 126, 216-226 (2015)
[38] Ansari, R.; Faraji Oskouie, M.; Gholami, R.; Sadeghi, F., Thermo-electro-mechanical vibration of postbuckled piezoelectric timoshenko nanobeams based on the nonlocal elasticity theory, Compos. Part B, 89, 316-327 (2016)
[39] He, X.; Ng, T.; Sivashankar, S.; Liew, K., Active control of FGM plates with integrated piezoelectric sensors and actuators, Int. J. Solids Struct., 38, 1641-1655 (2001) · Zbl 1012.74047
[40] Yang, J.; Shen, H.-S., Dynamic response of initially stressed functionally graded rectangular thin plates, Compos. Struct., 54, 497-508 (2001)
[41] Getman, I. P.; Ustinov, Y. A., On the theory of inhomogeneous electroelastic plates, PMM, 43, 5, 923-932 (1979) · Zbl 0456.73089
[42] Kundalwal, S. I.; Kumar, R. S.; Ray, M. C., Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites, Smart Mater. Struct., 22, 10, 105001 (2013)
[43] Kundalwal, S. I.; Meguid, S. A., Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells, Acta Mech., 226, 6, 2035-2052 (2015) · Zbl 1325.74097
[44] Kundalwal, S. I.; Ray, M. C., Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells, J. Vib. Control, 22, 6, 1526-1546 (2016)
[45] Dudarev, V. V.; Vatulyan, A. O., On restoring of the pre-stressed state in elastic bodies, ZAMM, 91, 6, 485-492 (2011) · Zbl 1316.74021
[46] Nedin, R.; Nesterov, S.; Vatulyan, A., On an inverse problem for inhomogeneous thermoelastic rod, Int. J. Solids Struct., 51, 767-773 (2014)
[47] Dudarev, V.; Nedin, R.; Vatulyan, A., Nondestructive identification of inhomogeneous residual stress state in deformable bodies on the basis of the acoustic sounding method, Adv. Mater. Res., 996, 409-414 (2014)
[48] Nedin, R.; Nesterov, S.; Vatulyan, A., On reconstruction of thermalphysic characteristics of functionally graded hollow cylinder, Appl. Math. Model., 40, 4, 2711-2719 (2016) · Zbl 1452.74004
[49] Nedin, R.; Nesterov, S.; Vatulyan, A., Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded materials, Int. J. Heat Mass Transf., 102, 213-218 (2016)
[50] Bogachev, I. V.; Nedin, R. D.; Vatulyan, A. O.; Yavruyan, O. V., Identification of inhomogeneous elastic properties of isotropic cylinder, ZAMM — J. Appl. Math. Mech. / Zeitschrift fur Angewandte Mathematik und Mechanik, 97, 3, 358-364 (2017)
[52] Vatulyan, A. O.; Soloviev, A. N., Direct and Inverse Problems for Homogeneous and Inhomogeneous Elastic and Electroelastic Bodies (2008), Southern Federal University Publ.
[53] Nedin, R. D.; Vatulyan, A. O., Chapter 13. On the reconstruction of inhomogeneous initial stresses in plates, (Altenbach, H.; Eremeyev, V., Advanced Structured Materials. Shell-like Structures. Non-classical Theories and Applications (2011), Springer), 165-182
[54] Nedin, R.; Vatulyan, A., Inverse problem of non-homogeneous residual stress identification in thin plates, Int. J. Solids Struct., 50, 2107-2114 (2013)
[55] Nedin, R.; Vatulyan, A., Concerning one approach to the reconstruction of heterogeneous residual stress in plate, ZAMM — J. Appl. Math. Mech. / Zeitschrift fur Angewandte Mathematik und Mechanik, 94, 1, 142-149 (2014)
[57] Nedin, R.; Dudarev, V.; Vatulyan, A., Some aspects of modeling and identification of inhomogeneous residual stress, Eng. Struct., 151, 391-405 (2017)
[58] Nedin, R. D.; Vatulyan, A. O.; Bogachev, I. V., Direct and inverse problems for prestressed functionally graded plates in the framework of the timoshenko model, Math. Methods Appl. Sci., 41, 4, 1600-1618 (2018) · Zbl 1456.74114
[59] Vatul’yan, A. O.; Dudarev, V. V.; Bogachev, I. V., Determination of the prestressed state in a tube, Dokl. Phys., 59, 5, 241-243 (2014)
[60] Vatul’yan, A. O.; Dudarev, V. V., On the determination of the internal pressure in a cylinder based on acoustic testing data, Russ. J. Nondestruct. Test., 50, 10, 595-601 (2014)
[61] Bogachev, I.; Dudarev, V.; Nedin, R.; Vatulyan, A., Identification of inhomogeneous residual stress state in elastic cylinder within the framework of plane strain, Adv. Mater. Res., 996, 404-408 (2014)
[62] Vatulyan, A. O.; Dudarev, V. V.; Mnukhin, R. M., Influence of the residual elastic-plastic state of a tube on the dynamic characteristics, Dokl. Phys., 60, 8, 377-379 (2015)
[63] Dudarev, V. V.; Mnukhin, R. M.; Vatulyan, A. O., Vibration of a prestressed tube in the presence of plastic zone, J. Sound Vib., 375, 92-101 (2016)
[64] Nedin, R.; Vatulyan, A.; Dudarev, V.; Bogachev, I., Detection of nonuniform residual strain in a pipe, Int. J. Solids Struct., 139-140, 121-128 (2018)
[65] Maugin, G. A., Continuum Mechanics of Electromagnetic Solids (1988), Amsterdam: North Holland · Zbl 0652.73002
[66] Truesdell, C.; Noll, W., The Non-Linear Field Theories of Mechanics (1965), Springer, Berlin · Zbl 0779.73004
[67] Bocharova, O. V.; Vatul’yan, A. O., The reconstruction of density and Young’s modulus of an inhomogeneous rod, Acoust. Phys., 55, 3, 281-288 (2009)
[68] Lurie, A. I., Theory of Elasticity (2005), Springer-Verlag Berlin Heidelberg
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.