×

Control parametrization: a unified approach to optimal control problems with general constraints. (English) Zbl 0637.49017

A computational technique for solving fixed terminal time optimal control problems subject to general constraints is presented. The class of optimal control problems under consideration involves joint continuous constraints on the state and control variables, and terminal and interior point constraints on the state variable. The computational scheme proposed is based on the control parametrization technique, which has been used by several authors and proven to be very efficient. A proof of convergence is given, and a computer program is developed for actual implementation of the algorithm. Several examples are solved which illustrate the efficiency of the proposed computational scheme.
Reviewer: Petko Hr.Petkov

MSC:

49M99 Numerical methods in optimal control
65K10 Numerical optimization and variational techniques
93B40 Computational methods in systems theory (MSC2010)
93C15 Control/observation systems governed by ordinary differential equations

Software:

MINOS; NLPQL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Banks, H. T.; Burns, J. A., Hededitary control problem: numerical methods based on averaging approximations, SIAM J. Control. Opt., 6, 169-208 (1978) · Zbl 0379.49025
[2] Banks, H. T.; Lamm, P. D., Estimation of variable coefficients in parabolic distributed systems, IEEE Trans. Aut. Control, AC-30, 386-398 (1985) · Zbl 0586.93007
[3] Bosarge, W. E.; Johnson, O. G., Direct method approximation to the state regulator control problem using a Ritz-Trefftz suboptimal control, IEEE Trans. Aut. Control, AC-15, 627-631 (1970)
[4] Bryson, A. E.; Ho, Y. C., (Appl. Optimal Control (1969), Halsted Press: Halsted Press New York)
[5] Cullum, J., Finite-dimensional approximations of state constrained continuous optimal problems, SIAM J. Control, 10, 649-670 (1972) · Zbl 0244.49018
[6] Dontchev, A. L., Error estimates for a discrete approximation to constrained control problems, SIAM J. Numer. Anal., 18, 500-514 (1981) · Zbl 0469.65045
[7] Goh, C. J.; Teo, K. L., (User Guide for MISER I.0. control software, theory and user manual (1986), Applied Research Corporation, National University of Singapore)
[8] Gonzalez, S.; Miele, A., Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions, J. Opt. Theory Applic., 26, 395-425 (1978) · Zbl 0406.49019
[9] Gruver, W. E.; Sachs, E., Algorithmic Methods in Optimal Control, (Research Notes in Mathematics, 47 (1981), Pitman (Advance Publishing Program): Pitman (Advance Publishing Program) London) · Zbl 0456.49001
[10] Hager, W. W.; Ianculescu, G. D., Dual approximations in optimal control, SIAM J. Control Opt., 22, 423-465 (1984) · Zbl 0555.49022
[11] Halkin, H., Mathematical foundations of system optimization, (Leitmann, G., Topics in Optimization (1967), Academic Press: Academic Press New York) · Zbl 0142.06703
[12] Han, S. P., Superlinearity convergent variable matrix algorithm for general nonlinear programming problems, Math. Programming, 11, 263-282 (1976)
[13] Han, S. P., A globally convergent method for nonlinear programming, J. Opt. Theory Applic., 22, 297 (1977) · Zbl 0336.90046
[14] Hicks, G. A.; Ray, W. H., Approximation methods for optimal control systems, Can. J. Chem. Engng, 49, 522-528 (1971)
[15] Jacobson, D. H.; Lele, M. M., A transformation technique for optimal control problems with a state variable inequality constraint, IEEE Trans. Aut. Control, AC-14, 457-464 (1969)
[16] Malanowski, K., (Finite Difference Approximations to Constrained Optimal Control Problems (1981), Springer: Springer New York), 243-254, Optimization and Optimal Control, Lecture Notes in Control and Information Sciences
[17] Mehra, R. K.; Davis, R. E., A generalized gradient method for optimal control problems with inequality constraints and singular arcs, IEEE Trans. Aut. Control, AC-17, 69-78 (1972) · Zbl 0268.49038
[18] Miele, A., Recent advances in gradient algorithms for optimal control problems, J. Opt. Theory Applic., 17, 361-430 (1975) · Zbl 0296.49024
[19] Miele, A., Gradient algorithms for the optimization of dynamic systems, (Leondes, C. T., Control and Dynamic Systems: Advances in Theory and Applications, Vol. 16 (1980), Academic Press: Academic Press New York), 1-52
[20] Miele, A.; Damoulakis, J. N.; Cloutier, J. R.; Tietze, J. L., Sequential gradient-restoration algorithm for optimal control problems with nondifferentiable constraints, J. Opt. Theory Applic., 13, 218-255 (1974) · Zbl 0268.49042
[21] Miele, A.; Pritchard, R. E.; Damoulakis, J. N., Sequential gradient-restoration algorithm for optimal control problems, J. Opt. Theory Applic., 5, 235-282 (1970) · Zbl 0192.51802
[22] Miele, A.; Wang, T., Primal-dual properties of sequential gradient-restoration algorithms for optimal control problems, Part 1, basic problems, (Haji-Sheikh, A., Integral Methods in Science and Engineering (1986), Hemisphere Publishing Corporation: Hemisphere Publishing Corporation Washington, D.C), 577-607
[23] Miele, A.; Wang, T., Primal-dual properties of sequential gradient-restoration algorithms for optimal control problems, Part 2, general problem, J. Math. Analysis Appl., 119, 21-54 (1986) · Zbl 0621.49021
[24] Miele, A.; Wang, T., Dual-properties of sequential gradient-restoration algorithms for optimal control problems, (Conti, R.; De Giorgi, E.; Giannesi, F., Optimization and Related Fields (1986), Springer: Springer New York), 331-357 · Zbl 0621.49020
[25] Miele, A.; Wang, T.; Basapur, V. K., Primal and dual formulations of sequential gradient-restoration algorithms for trajectory optimization problems, Acta Astronautica, 13, 491-505 (1986) · Zbl 0619.70028
[26] Miele, A.; Wang, T.; Melvin, W. W., Optimal take-off trajectories in the presence of windshear, J. Opt. Theory Applic., 49, 1-45 (1986) · Zbl 0569.49023
[27] Murtagh, B. A.; Saunders, M. A., MINOS 5.0 user guide, (Technical Report SOL 83-20 (1983), Stanford University)
[28] Nedeljkovic, N., The LQRE computational method in optimal control theory, (Ph.D. Thesis (1985), Murdoch University)
[29] Polak, E., (Computational Methods in Optimization (1971), Academic Press: Academic Press New York) · Zbl 0257.90055
[30] Polak, E.; Mayne, D. Q., A feasible directions algorithm for optimal control problems with control and terminal inequality constraints, IEEE Trans. Aut. Control, AC-22, 741-751 (1977) · Zbl 0364.49012
[31] Powell, M. J.D., A Fast Algorithm for Nonlinearly Constrained Optimization Calculations, (Matson, G. A., Numerical Analysis: Lecture Notes in Mathematics, 630 (1978), Springer: Springer New York) · Zbl 0374.65032
[32] Ritch, P. S., On the numerical solution of optimal control problems with multiple inequality constraints, (Ph.D. dissertation (1972), University of New South Wales: University of New South Wales Australia) · Zbl 0256.49034
[33] Sakawa, Y., On local convergence of an algorithm for optimal control, Numerical Funct. Anal. Opt., 3, 301-319 (1981) · Zbl 0481.49020
[34] Sakawa, Y.; Shindo, Y., On global convergence of an algorithm for optimal control, IEEE Trans. Aut. Control, AC-25, 1149-1153 (1980) · Zbl 0489.49017
[35] Sakawa, Y.; Shindo, Y., Optimal control of container cranes, Automatica, 18, 257-266 (1982) · Zbl 0488.93021
[36] Schittkowski, K., NLPQL: a Fortran subroutine solving constrained nonlinear programming problems, Ops Res. Ann., 5, 485-500 (1985)
[37] Shindo, Y.; Sakawa, Y., Local convergence of an algorithm for solving optimal control problems, J. Opt. Theory Applic., 46, 265-293 (1985) · Zbl 0548.49015
[38] Sirisena, H. R., Computation of optimal controls using a piecewise polynomial parametrization, IEEE Trans. Aut. Control, AC-18, 409-411 (1973) · Zbl 0261.49031
[39] Sirisena, H. R.; Chou, F. S., An efficient algorithm for solving optimal control problems with linear terminal constraints, IEEE Trans. Aut. Control, AC-21, 275-277 (1976) · Zbl 0324.49031
[40] Sirisena, H. R.; Tan, K. S., Computation of constrained optimal controls using parametrization techniques, IEEE Trans. Aut. Control, AC-19, 431-433 (1974)
[41] Teo, K. L.; Ang, B. W.; Wang, C. M., Least weight cables: optimal parameter selection approach, Engng Opt., 9, 249-264 (1986)
[42] Teo, K. L.; Womersley, R. S., A control parametrization algorithm for optimal control problems involving linear systems and linear terminal inequality constraints, Numerical Funct. Anal. Opt., 6, 291-313 (1983) · Zbl 0536.65055
[43] Teo, K. L.; Wong, K. H.; Clements, D. J., Optimal control computation for linear time-lag systems with linear terminal constraints, J. Opt. Theory and Applic., 44, 509-526 (1984) · Zbl 0535.49029
[44] Teo, K. L.; Wong, K. H.; Clements, D. J., A feasible directions algorithm for time-lag optimal control problems with control and terminal inequality constraints, J. Opt. Theory Applic., 46, 295-317 (1985) · Zbl 0548.49013
[45] Teo, K. L.; Wong, K. H.; Wu, Z. S., An optimal control problem involving a class of linear time-lag systems, J. Aust. Math. Soc., Series B, 28, 93-113 (1986) · Zbl 0596.49003
[46] Teo, K. L.; Wu, Z. S., (Computational Methods for Optimizing Distributed Systems (1984), Academic Press: Academic Press New York) · Zbl 0551.93024
[47] Wong, K. H.; Clements, D. J.; Teo, K. L., Optimal control computation for nonlinear time-lag systems, J. Opt. Theory Applic., 47, 91-107 (1985) · Zbl 0548.49014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.