×

Space-time domain decomposition for reduced fracture models in mixed formulation. (English) Zbl 1382.76164

Summary: In this paper we are interested in the “fast path” fracture and we aim to use global-in-time, nonoverlapping domain decomposition methods to model flow and transport problems in a porous medium containing such a fracture. We consider a reduced model in which the fracture is treated as an interface between the two subdomains. Two domain decomposition methods are considered: one uses the time-dependent Steklov-Poincaré operator and the other uses optimized Schwarz waveform relaxation (OSWR) based on Ventcell transmission conditions. For each method, a mixed formulation of an interface problem on the space-time interface is derived, and different time grids are employed to adapt to different time scales in the subdomains and in the fracture. Demonstrations of the well-posedness of the Ventcell subdomain problems is given for the mixed formulation. An analysis for the convergence factor of the OSWR algorithm is given in the case with fractures to compute the optimized parameters. Numerical results for two-dimensional problems with strong heterogeneities are presented to illustrate the performance of the two methods.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
74R10 Brittle fracture
76S05 Flows in porous media; filtration; seepage

Software:

PANG
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. Alboin, J. Jaffré, J. E. Roberts, and C. Serres, {\it Modeling fractures as interfaces for flow and transport in porous media}, in Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment (South Hadley, MA, 2001), Contemp. Math. 295, AMS, Providence, RI, 2002, pp. 13-24. · Zbl 1102.76331
[2] L. Amir, M. Kern, V. Martin, and J. E. Roberts, {\it Décomposition de domaine pour un milieu poreux fracturé: Un modèle en 3D avec fractures qui s’intersectent}, Arima, 5 (2006), pp. 11-25.
[3] P. Angot, F. Boyer, and F. Hubert, {\it Asymptotic and numerical modelling of flows in fractured porous media}, M2AN Math. Model. Numer. Anal., 43 (2009), pp. 239-275. · Zbl 1171.76055
[4] D. N. Arnold and H. Chen, {\it Finite element exterior calculus for parabolic problems}, in revision, arXiv preprint 1209.1142, 2012.
[5] P. Bastian, Z. Chen, R. E. Ewing, R. Helmig, H. Jakobs, and V. Reichenberger, {\it Numerical simulation of multiphase flow in fractured porous media}, in Numerical Treatment of Multiphase Flows in Porous Media (Beijing, 1999), Lecture Notes in Phys. 552, Springer, Berlin, 2000, pp. 50-68. · Zbl 1072.76575
[6] D. Bennequin, M. J. Gander, and L. Halpern, {\it A homographic best approximation problem with application to optimized Schwarz waveform relaxation}, Math. Comp., 78 (2009), pp. 185-223. · Zbl 1198.65179
[7] P. M. Berthe, {\it Méthodes de décomposition de domaine de type relaxation d’ondes pour l’équation de convection-diffusion instationnaire discrétisée par volumes finis}, Ph.D. thesis, University Paris 13, Paris, France, 2013.
[8] P. M. Berthe, C. Japhet, and P. Omnes, {\it Space-time domain decomposition with finite volumes for porous media applications}, in Domain Decomposition Methods in Science and Engineering XXI, Lect. Notes Comput. Sci. Eng. 98, J. Erhel, M. J. Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund, eds., Springer, Cham, 2014, pp. 483-490. · Zbl 1443.76154
[9] F. Lemarié, L. Debreu, and E. Blayo, {\it Toward an optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients. Part 1: The constant coefficients case}, Electron. Trans. Numer. Anal., 40 (2013), pp. 148-169. · Zbl 1288.65137
[10] E. Blayo, L. Halpern, and C. Japhet, {\it Optimized Schwarz waveform relaxation algorithms with nonconforming time discretization for coupling convection-diffusion problems with discontinuous coefficients}, in Domain Decomposition Methods in Science and Engineering XVI, Lect. Notes Comput. Sci. Eng. 55, Springer, Berlin, 2007, pp. 267-274.
[11] D. Boffi, F. Brezzi, and M. Fortin, {\it Mixed Finite Elements Methods and Applications}, Springer, Heidelberg, 2013. · Zbl 1277.65092
[12] D. Boffi and L. Gastaldi, {\it Analysis of finite element approximation of evolution problems in mixed form}, SIAM J. Numer. Anal., 42 (2004), pp. 1502-1526. · Zbl 1080.65089
[13] L. C. Cowsar, J. Mandel, and M. F. Wheeler, {\it Balancing domain decomposition for mixed finite elements}, Math. Comp., 64 (1995), pp. 989-1015. · Zbl 0828.65135
[14] R. Dautray and J.-L. Lions, {\it Mathematical Analysis and Numerical Methods for Science and Technology}, Springer-Verlag, Berlin, New York, 2000. · Zbl 0942.35001
[15] J. Douglas, Jr., P. J. Paes-Leme, J. E. Roberts, and J. P. Wang, {\it A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods}, Numer. Math., 65 (1993), pp. 95-108. · Zbl 0813.65122
[16] I. Faille, E. Flauraud, F. Nataf, S. Pégaz-Fiornet, F. Schneider, and F. Willien, {\it A new fault model in geological basin modelling. Application of finite volume scheme and domain decomposition methods}, in Finite Volumes for Complex Applications, III (Porquerolles, 2002), Hermes Sci. Publ., Paris, 2002, pp. 529-536. · Zbl 1055.86001
[17] A. Fumagalli and A. Scotti, {\it Numerical modelling of multiphase subsurface flow in the presence of fractures}, Commun. Appl. Ind. Math., 3 (2012), pp. e-380. · Zbl 1329.76166
[18] M. J. Gander, F. Kwok, and B. C. Mandal, {\it Dirichlet-Neumann and Neumann-Neumann waveform relaxation for the wave equation}, arXiv preprint arXiv:1402.4285, 2014. · Zbl 1339.65165
[19] M. J. Gander, {\it Optimized Schwarz methods}, SIAM J. Numer. Anal., 44 (2006), pp. 699-731. · Zbl 1117.65165
[20] M. J. Gander, L. Halpern, and M. Kern, {\it A Schwarz waveform relaxation method for advection-diffusion-reaction problems with discontinuous coefficients and non-matching grids}, in Domain Decomposition Methods in Science and Engineering XVI, Lect. Notes Comput. Sci. Eng. 55, Springer, Berlin, 2007, pp. 283-290.
[21] M. J. Gander, L. Halpern, and F. Nataf, {\it Optimal Schwarz waveform relaxation for the one dimensional wave equation}, SIAM J. Numer. Anal., 41 (2003), pp. 1643-1681. · Zbl 1085.65077
[22] M. J. Gander and C. Japhet, {\it Algorithm \(932\): PANG: Software for non-matching grid projections in \(2\) d and \(3\) d with linear complexity}, ACM Trans. Math. Software, 40 2013, article 6. · Zbl 1295.65120
[23] M. J. Gander, C. Japhet, Y. Maday, and F. Nataf, {\it A New Cement to Glue Nonconforming Grids with Robin Interface Conditions: The Finite Element Case}, in Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin, 2005, pp. 259-266. · Zbl 1067.65144
[24] F. Haeberlein, {\it Time sPace Domain Decomposition Methods for rEactive Transport - Application to \(CO_2\) Geological Storage}, Ph.D. thesis, Institut Galilée, Université Paris 13, Paris, France, 2011.
[25] L. Halpern, C. Japhet, and P. Omnes, {\it Nonconforming in time domain decomposition method for porous media applications}, in Proceedings of the 5th European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010., J. C. F. Pereira and A. Sequeira, eds., Lisbon, Portugal, 2010.
[26] L. Halpern, C. Japhet, and J. Szeftel, {\it Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation}, in Domain Decomposition Methods in Science and Engineering XIX, Lect. Notes Comput. Sci. Eng. 78, Springer, Heidelberg, 2011, pp. 133-140. · Zbl 1220.65135
[27] L. Halpern, C. Japhet, and J. Szeftel, {\it Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems}, SIAM J. Numer. Anal., 50 (2012), pp. 2588-2611. · Zbl 1262.65127
[28] T. T. P Hoang, {\it Space-time Domain Decomposition Methods for Mixed Formulations of Flow and Transport Problems in Porous Media}, Ph.D. thesis, University Paris 6, Paris, France, 2013.
[29] T. T. P. Hoang, J. Jaffré, C. Japhet, M. Kern, and J. E. Roberts, {\it Space-time domain decomposition methods for diffusion problems in mixed formulations}, SIAM J. Numer. Anal., 51 (2013), pp. 3532-3559. · Zbl 1295.65095
[30] T. T. P. Hoang, C. Japhet, M. Kern, and J. E. Roberts, {\it Ventcell conditions with mixed formulations for flow in porous media}, in Proceedings of the 22th International Conference on Domain Decomposition Methods, 2013; to appear. · Zbl 1383.76383
[31] P. H. Hung and E. Sánchez-Palencia, {\it Phénomènes de transmission à travers des couches minces de conductivité élevée}, J. Math. Anal. Appl., 47 (1974), pp. 284-309. · Zbl 0286.35007
[32] C. Japhet, {\it Optimized Krylov-Ventcell method. Application to convection-diffusion problems}, in Domain Decomposition Methods in Science and Engineering IX, P. Bjørstad, M. Espedal, and D. E. Keyes, eds., John Wiley & Sons, New York, 1998, pp. 382-389.
[33] C. Japhet and Y. Maday, {\it NICEM method with Ventcel transmission conditions}, in preparation. · Zbl 1339.65237
[34] F. Kwok, {\it Neumann-Neumann Waveform Relaxation for the Time-Dependent Heat Equation}, in Domain Decomposition Methods in Science and Engineering XXI, Lect. Notes Comput. Sci. Eng. 98, Springer, Cham, 2014, pp. 189-198. · Zbl 1382.65248
[35] P. Le Tallec, Y. H. De Roeck, and M. Vidrascu, {\it Domain decomposition methods for large linearly elliptic three-dimensional problems}, J. Comput. Appl. Math., 34 (1991), pp. 93-117. · Zbl 0719.65083
[36] J. Li, T. Arbogast, and Y. Huang, {\it Mixed methods using standard conforming finite elements}, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 680-692. · Zbl 1229.76052
[37] J. Mandel, {\it Balancing domain decomposition}, Comm. Numer. Methods Engrg., 9 (1993), pp. 233-241. · Zbl 0796.65126
[38] J. Mandel and M. Brezina, {\it Balancing domain decomposition for problems with large jumps in coefficients}, Math. Comp., 65 (1996), pp. 1387-1401. · Zbl 0853.65129
[39] V. Martin, {\it An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions}, Appl. Numer. Math., 52 (2005), pp. 401-428. · Zbl 1070.65088
[40] V. Martin, J. Jaffré, and J. E. Roberts, {\it Modeling fractures and barriers as interfaces for flow in porous media}, SIAM J. Sci. Comput., 26 (2005), pp. 1667-1691. · Zbl 1083.76058
[41] T. P. A. Mathew, {\it Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations}, Lect. Notes Comput. Sci. Eng. 61, Springer-Verlag, Berlin, 2008. · Zbl 1147.65101
[42] F. Morales and R. E. Showalter, {\it Interface approximation of Darcy flow in a narrow channel}, Math. Methods Appl. Sci., 35 (2012), pp. 182-195. · Zbl 1235.35022
[43] F. Morales and R. E. Showalter, {\it The narrow fracture approximation by channeled flow}, J. Math. Anal. Appl., 365 (2010), pp. 320-331. · Zbl 1273.76370
[44] A. Quarteroni and A. Valli, {\it Numerical Approximation of Partial Differential Equations}, Springer Ser. Comput. Math. 23, Springer-Verlag, Berlin, 1994. · Zbl 0803.65088
[45] J. E. Roberts and J. M. Thomas, {\it Mixed and Hybrid Methods}, in Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 523-639. · Zbl 0875.65090
[46] V. Thomée, {\it Galerkin Finite Element Methods for Parabolic Problems}, Springer, 1997. · Zbl 0884.65097
[47] A. Toselli and O. Widlund, {\it Domain Decomposition Methods–Algorithms and Theory}, Springer Ser. Comput. Math. 34, Springer-Verlag, Berlin, 2005. · Zbl 1069.65138
[48] X. Tunc, I. Faille, T. Gallouët, M. C. Cacas, and P. Havé, {\it AA model for conductive faults with non-matching grids model for conductive faults with non-matching grids}, Comput. Geosci., 16 (2012), pp. 277-296. · Zbl 1348.76167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.