×

Predicting plume spreading during \(\mathrm{CO_2}\) geo-sequestration: benchmarking a new hybrid finite element-finite volume compositional simulator with asynchronous time marching. (English) Zbl 1453.86007

Summary: In this paper, we present the results of benchmark simulations for plume spreading during \(\mathrm{CO_2}\) geo-sequestration conducted with the newly developed Australian \(\mathrm{CO_2}\) Geo-Sequestration Simulator (ACGSS). The simulator uses a hybrid finite element-finite volume (FEFVM) simulation framework, integrating an asynchronous local time stepping method for multi-phase multi-component transport and a novel non-iterative flash calculation approach for the phase equilibrium. The benchmark investigates four standard \(\mathrm{CO_2}\) storage test cases that are widely used to assess the performance of simulation tools for carbon geo-sequestration: (A) radial flow from a \(\mathrm{CO_2}\) injection well; (B) \(\mathrm{CO_2}\) discharge along a fault zone; (C) \(\mathrm{CO_2}\) injection into a layered brine formation; and (D) leakage through an abandoned well. For these applications, ACGSS gives results similar to well-established compositional simulators. Minor discrepancies can be rationalised in terms of the alternative, spatially adaptive discretisation and the treatment of NaCl solubility. While these benchmarks cover issues related to compositional simulation, they do not address the accurate representation of geologically challenging features of \(\mathrm{CO_2}\) storage sites. An additional 3D application scenario of a complexly faulted storage site demonstrates the advantages of the FEFVM discretisation used in the ACGSS for resolving the geometric complexity of geologic storage sites. This example also highlights the significant computational benefits gained from the use of the asynchronous time marching scheme.

MSC:

86-08 Computational methods for problems pertaining to geophysics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Software:

TOUGH; RINGMesh; ANSYS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6, 3, 405-432 (2002) · Zbl 1094.76550 · doi:10.1023/A:1021291114475
[2] Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T., Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media, J. Comput. Phys., 127, 1, 2-14 (1996) · Zbl 0859.76048 · doi:10.1006/jcph.1996.0154
[3] Aavatsmark, I.; Reiso, E.; Teigland, R., Control-volume discretization method for quadrilateral grids with faults and local refinements, Comput. Geosci., 5, 1, 1-23 (2001) · Zbl 0978.86001 · doi:10.1023/A:1011601700328
[4] Aavatsmark, I.; Eigestad, G.; Heimsund, B-O; Mallison, B.; Nordbotten, J.; Øian, E., A new finite-volume approach to efficient discretization on challenging grids, SPE J., 15, 04 (2013) · doi:10.2118/106435-MS
[5] \(ANSYS^{{\circledR }}\): Academic ICEM CFD^TM Linux 64-bit Release 17.2 (2016)
[6] Aziz, K.: Reservoir simulation grids: Opportunities and problems. Soc. Pet. Eng. 45(07). doi:10.2118/25233-PA (1993)
[7] Aziz, K., Aziz, K., Settari, A.: Petroleum reservoir simulation. Applied Science Publishers (1979)
[8] Bazr Afkan, S., Matthäi, S., Mindel, J.: The finite-element-centered finite-volume discretization method (fecfvm) for multiphase transport in porous media with sharp material discontinuities. In: 14th European Conference on the Mathematics of Oil Recovery 2014, vol. 9 (2014). doi:10.3997/2214-4609.20141841
[9] Brand, C.W., Heinemann, J.E., Aziz, K.: The grid orientation effect in reservoir simulation. Soc. Pet. Eng. 1. doi:10.2118/21228-MS (1991)
[10] Brooks, R., Corey, A.: Hydraulic properties of porous media colorado state university hydrology papers colorado state university (1964)
[11] Cao, H., Aziz, K.: Performance of impsat and impsat-aim models in compositional simulation. Soc. Pet. Eng. 01. doi:10.2118/77720-MS (2002)
[12] Cavanagh, A., Benchmark calibration and prediction of the sleipner CO2 plume from 2006 to 2012, Energy Procedia, 37, 3529-3545 (2013) · doi:10.1016/j.egypro.2013.06.246
[13] Celia, MA; Bachu, S.; Nordbotten, JM; Bandilla, KW, Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations, Water Resour. Res., 51, 9, 6846-6892 (2015) · doi:10.1002/2015WR017609
[14] Chen, W.H., Durlofsky, L.J., Engquist, B., Osher, S.: Minimization of grid orientation effects through use of higher order finite difference methods. Soc. Pet. Eng. 7. doi:10.2118/22887-PA (1993)
[15] Class, H.; Ebigbo, A.; Helmig, R.; Dahle, HK; Nordbotten, JM; Celia, MA; Audigane, P.; Darcis, M.; Ennis-King, J.; Fan, Y.; Flemisch, B.; Gasda, SE; Jin, M.; Krug, S.; Labregere, D.; Naderi Beni, A.; Pawar, RJ; Sbai, A.; Thomas, SG; Trenty, L.; Wei, L., A benchmark study on problems related to CO2 storage in geologic formations, Comput. Geosci., 13, 4, 409 (2009) · Zbl 1190.86011 · doi:10.1007/s10596-009-9146-x
[16] van der Meer, L.B., Law, D.H.-S., Gunter, W.B.: Comparison of numerical simulators for greenhouse gas storage in coalbeds, part iv: History match of field micropilot test data. In: Rubin, E., Keith, D., Gilboy, C., Wilson, M., Morris, T., Gale, J., Thambimuthu, K. (eds.) Greenhouse Gas Control Technologies, vol. 7, pp 2239-2242. Elsevier Science Ltd, Oxford (2005). doi:10.1016/B978-008044704-9/50309-8
[17] Deutsch, C., Geostatistical Reservoir Modeling. Applied geostatistics series (2002), Oxford: Oxford University Press, Oxford
[18] Ding, Y., Lemonnier, P.: Use of corner point geometry in reservoir simulation. In: Society of Petroleum Engineers (1995)
[19] Doughty, C.; Pruess, K., A similarity solution for two-phase water, air, and heat flow near a linear heat source in a porous medium, J. Geophys. Res. Solid Earth, 97, B2, 1821-1838 (1992) · doi:10.1029/91JB02768
[20] Driesner, T.; Heinrich, CA, The system h2o-nacl. part i: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000∘c, 0 to 5000bar, and 0 to 1 xNaCL, Geochim. Cosmochim. Acta, 71, 20, 4880-4901 (2007) · doi:10.1016/j.gca.2006.01.033
[21] Durlofsky, LJ, A triangle based mixed finite element-finite volume technique for modeling two phase flow through porous media, J. Comput. Phys., 105, 252-266 (1993) · Zbl 0768.76046 · doi:10.1006/jcph.1993.1072
[22] Durlofsky, L.J.: Upscaling of geocellular models for reservoir flow simulation: a review of recent progress. In: 7th International Forum on Reservoir Simulation, pp 23-27 (2003)
[23] Ebigbo, A.; Class, H.; Helmig, R., CO2 Leakage through an abandoned well: problem-oriented benchmarks, Comput. Geosci., 11, 2, 103-115 (2007) · Zbl 1147.86316 · doi:10.1007/s10596-006-9033-7
[24] Edwards, MG; Rogers, CF, Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2, 4, 259-290 (1998) · Zbl 0945.76049 · doi:10.1023/A:1011510505406
[25] Forsyth, PA, A control-volume finite element method for local mesh refinement in thermal reservoir simulation, SPE Reserv. Eng., 5, 4, 561-566 (1990) · doi:10.2118/18415-PA
[26] Fung, L.S.-K., Collins, D.A., Nghiem, L.X.: An adaptive-implicit switching criterion based on numerical stability analysis. Soc. Pet. Eng. 02. doi:10.2118/16003-PA (1989)
[27] Geiger, S.; Roberts, S.; Matthäi, SK; Zoppou, C.; Burri, A., Combining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic media, Geofluids, 4, 4, 284-299 (2004) · doi:10.1111/j.1468-8123.2004.00093.x
[28] Geiger, S.; Driesner, T.; Heinrich, C.; Matthäi, S., Multiphase thermohaline convection in the earth’s crust: I. a new finite element - finite volume solution technique combined with a new equation of state for nacl-h2o, Transp. Porous Media, 63, 3, 399-434 (2006) · doi:10.1007/s11242-005-0108-z
[29] Goovaerts, P.; Goovaerts, D., Geostatistics for Natural Resources Evaluation. Applied geostatistics series (1997), Oxford: Oxford University Press, Oxford
[30] Grabenstetter, J., Li, Y.-K., Collins, D.A., Nghiem, L.X.: Stability-based switching criterion for adaptive-implicit compositional reservoir simulation. Soc. Pet. Eng. 01. doi:10.2118/21225-MS (1991)
[31] Gringarten, E., Arpat, G., Haouesse, M., Dutranois, A., Deny, L., Jayr, S., Tertois, A.-L., Mallet, J.-L., Bernal, A., Nghiem, L.: New grids for robust reservoir modeling. Soc. Pet. Eng. 01. doi:10.2118/116649-MS (2008)
[32] Gringarten, E., Haouesse, M., Arpat, G., Nghiem, L.: Advantages of using vertical stair step faults in reservoir grids for flow simulation. Soc. Pet. Eng. 01. doi:10.2118/119188-MS (2009)
[33] Heinemann, Z.; von Hantelmann, G.; Gerken, G.; Montanuniversitat, L., Using local grid refinement in a multiple-application reservoir simulator, Soc. Pet. Eng. J., SPE, 11255, 11 (1983)
[34] Helmig, R.: Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Environmental engineering springer (1997)
[35] Huber, R.; Helmig, R., Multiphase flow in heterogeneous porous media: a classical finite element method versus an implicit pressure-explicit saturation-based mixed finite element-finite volume approach, Int. J. Numer. Methods Fluids, 29, 8, 899-920 (1999) · Zbl 0938.76053 · doi:10.1002/(SICI)1097-0363(19990430)29:8<899::AID-FLD715>3.0.CO;2-W
[36] Huppert, HE; Neufeld, JA, The fluid mechanics of carbon dioxide sequestration, Ann. Rev. Fluid Mech., 46, 1, 255-272 (2014) · Zbl 1297.76184 · doi:10.1146/annurev-fluid-011212-140627
[37] Issautier, B.; Viseur, S.; Audigane, P.; Nindre, Y-M, Impacts of fluvial reservoir heterogeneity on connectivity: Implications in estimating geological storage capacity for co2, Int. J. Greenh. Gas Con., 20, 333-349 (2014) · doi:10.1016/j.ijggc.2013.11.009
[38] Journel, A.; Huijbregts, C., Mining Geostatistics (2003), Caldwell: Blackburn Press, Caldwell
[39] Juanes, R., Kim, J., Matringe, S.F., Thomas, K.: Implementation and application of a hybrid multipoint flux approximation for reservoir simulation on corner-point grids. In: SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA. Society of Petroleum Engineers. doi:10.2118/95928-MS (2005)
[40] Kim, J.G., Deo, M.D.: Comparison of the performance of a discrete fracture multiphase model with those using conventional models. In: SPE Reservoir Simulation Symposium, SPE51928, pp 14-17 (1999)
[41] Li, B.; Benson, S., Influence of small-scale heterogeneity on upward co2 plume migration in storage aquifers, Adv. Water Resour., 83, 389-404 (2015) · doi:10.1016/j.advwatres.2015.07.010
[42] Lindeberg, E., Bergmo, P. Gale, J., Kaya, Y. (eds.): The Long- Term Fate of CO_2 Injected into an Aquifer. Pergamon, Oxford (2003)
[43] Lu, P., Shaw, J.S., Eccles, T.K., Mishev, I.D., Beckner, B.L.: Experience with numerical stability, formulation, and parallel efficiency of adaptive implicit methods. Soc. Pet. Eng. 01. doi:10.2118/118977-MS (2009)
[44] Mathias, SA; Hardisty, PE; Trudell, MR; Zimmerman, RW, Approximate solutions for pressure buildup during co2 injection in brine aquifers, Transp. Porous Media, 79, 2, 265 (2008) · doi:10.1007/s11242-008-9316-7
[45] Moortgat, J., Adaptive implicit finite element methods for multicomponent compressible flow in heterogeneous and fractured porous media, Water Resour. Res., 53, 1, 73-92 (2017) · doi:10.1002/2016WR019644
[46] Mouton, T.; Borouchaki, H.; Bennis, C., Hybrid mesh generation for reservoir flow simulation: Extension to highly deformed corner point geometry grids, Finite Elem. Anal. Des., 46, 1, 152-164 (2010) · doi:10.1016/j.finel.2009.06.033
[47] Muron, P.: Méthodes Numériques 3-D De Restauration Des Structures Géologiques Faillées. PhD thesis, Institut National Polytechnique de Lorraine (2005)
[48] Muskat, M.; Wyckoff, RD; Botset, HG; Meres, MW, Flow of gas-liquid mixtures through sands, Trans. AIME, 123, 1, 69-96 (1937) · doi:10.2118/937069-G
[49] Nacul, E., S.U.D. of Petroleum Engineering: Use of Domain Decomposition and Local Grid Refinement in Reservoir Simulation Number v. 2 in Use of Domain Decomposition and Local Grid Refinement in Reservoir Simulation. Stanford University (1991)
[50] Nick, H.; Matthäi, S., Comparison of three fe-fv numerical schemes for single- and two-phase flow simulation of fractured porous media, Transp. Porous Media, 90, 421-444 (2011) · doi:10.1007/s11242-011-9793-y
[51] Niessner, J.; Helmig, R., Multi-scale modelling of two-phase-two-component processes in heterogeneous porous media, Numer. Linear Algebra Appl., 13, 699-715 (2006) · Zbl 1174.76366 · doi:10.1002/nla.497
[52] Nilsen, H.; Lie, K-A; Natvig, J.; Krogstad, S., Accurate modeling of faults by multipoint, mimetic, and mixed methods, SPE J., 17, 568-579 (2012) · doi:10.2118/149690-PA
[53] Nordbotten, JM; Celia, MA; Bachu, S., Injection and storage of co2 in deep saline aquifers: Analytical solution for co2 plume evolution during injection, Transp. Porous Media, 58, 3, 339-360 (2005) · doi:10.1007/s11242-004-0670-9
[54] Nordbotten, JM; Celia, MA; Bachu, S.; Dahle, HK, Semianalytical solution for co2 leakage through an abandoned well, Environ. Sci. Technol., 39, 2, 602-611 (2005) · doi:10.1021/es035338i
[55] O’Sullivan, MJ, A similarity method for geothermal well test analysis, Water Resour. Res., 17, 2, 390-398 (1981) · doi:10.1029/WR017i002p00390
[56] Paluszny, A.; Matthäi, SK; Hohmeyer, M., Hybrid finite element-finite volume discretization of complex geologic structures and a new simulation workflow demonstrated on fractured rocks, Geofluids, 7, 2, 186-208 (2007) · doi:10.1111/j.1468-8123.2007.00180.x
[57] Pellerin, J.; Botella, A.; Bonneau, F.; Mazuyer, A.; Chauvin, B.; Lévy, B.; Caumon, G., Ringmesh: a programming library for developing mesh-based geomodeling applications, Comput. Geosci., 104, 93-100 (2017) · doi:10.1016/j.cageo.2017.03.005
[58] Prevost, M.: Accurate Coarse Reservoir Modeling Using Unstructured Grids, Flow-based Upscaling and Streamline Simulation Stanford University (2004)
[59] Pruess, K.: ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO^2. Lawrence Berkeley Natl. Lab. berkeley, CA USA (2005)
[60] Pruess, K., On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir, Environ. Geol., 54, 8, 1677-1686 (2008) · doi:10.1007/s00254-007-0945-x
[61] Pruess, K.; García, J., Multiphase flow dynamics during CO2 disposal into saline aquifers, Environ. Geol., 42, 2, 282-295 (2002) · doi:10.1007/s00254-001-0498-3
[62] Pruess, K., Garcia, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., Xu, T.: Intercomparison of numerical simulation codes for geologic disposal of CO2. Lawrence Berkeley National Laboratory 11 (2002)
[63] Pruess, K.; Garcia, J.; Kovscek, T.; Oldenburg, C.; Rutqvist, J.; Steefel, C.; Xu, T., Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2, Energy, 29, 9, 1431-1444 (2004) · doi:10.1016/j.energy.2004.03.077
[64] Quandalle, P.; Besset, P., The use of flexible gridding for improved reservoir modeling, Soc. Pet. Eng., SPE-11239, 11 (1983)
[65] Shao, Q., Matthäi, S., Gross, L.: Efficient Modelling of Co2 Injection and Plume Spreading with Discrete Event Simulation (Des). In: 14th International Conference on Greenhouse Gas Control Technologies Conference Melbroune 21-26 October 2018 (GHGT-14), vol. 10 (2018)
[66] Shao, Q.; Matthäi, S.; Gross, L., Efficient modelling of solute transport in heterogeneous media with discrete event simulation, J. Comput. Phys., 384, 134-150 (2019) · Zbl 1451.76125 · doi:10.1016/j.jcp.2019.01.026
[67] Spycher, N.; Pruess, K.; Ennis-King, J., Co2-h2o mixtures in the geological sequestration of co2. i. assessment and calculation of mutual solubilities from 12 to 100∘c and up to 600 bar, Geochim. Cosmochim. Acta, 67, 16, 3015-3031 (2003) · doi:10.1016/S0016-7037(03)00273-4
[68] Stéphenne, K., Start-up of world’s first commercial post-combustion coal fired ccs project: Contribution of shell cansolv to saskpower boundary dam iccs project, Energy Procedia, 63, 6106-6110 (2014) · doi:10.1016/j.egypro.2014.11.642
[69] Stüben, K.: Algebraic Multigrid (AMG): An Introduction with Applications. GMD-report GMD-forschungszentrum Informationstechnik (1999)
[70] Tan, T.B.: Implementation of an improved adaptive-implicit method in a thermal compositional simulator. Soc. Pet. Eng. 11. doi:10.2118/16028-PA (1988)
[71] Thomas, G.W., Thurnau, D.H.: The mathematical basis of the adaptive implicit method. Soc. Pet. Eng. 01. doi:10.2118/10495-MS (1982)
[72] Thomas, G.W., Thurnau, D.H.: Reservoir simulation using an adaptive implicit method. Soc. Pet. Eng. 10. doi:10.2118/10120-PA (1983)
[73] Tran, L.; Kim, J.; Matthäi, S., Simulation of two-phase flow in porous media with sharp material discontinuities, Adv. Water Resour., 142, 103636 (2020) · doi:10.1016/j.advwatres.2020.103636
[74] van Genuchten, MT, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1, Soil Sci. Soc. Am. J., 44, 892-898 (1980) · doi:10.2136/sssaj1980.03615995004400050002x
[75] Verma, A.; Pruess, K., Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations, J. Geophys. Res. Solid Earth, 93, B2, 1159-1173 (1988) · doi:10.1029/JB093iB02p01159
[76] Verma, S.K.: Flexible grids for reservoir simulation. Phd thesis, Stanford University, Stanford, CA USA (1996)
[77] von Rosenberg, D., Local mesh refinement for finite difference methods, Soc. Pet. Eng., SPE, 10974, 9 (1982)
[78] Weis, P.; Driesner, T.; Coumou, D.; Geiger, S., Hydrothermal, multiphase convection of h2o-nacl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison, Geofluids, 14, 3, 347-371 (2014) · doi:10.1111/gfl.12080
[79] Wheeler, MF; Yotov, I., A multipoint flux mixed finite element method, SIAM J. Numer. Anal., 44, 5, 2082-2106 (2006) · Zbl 1121.76040 · doi:10.1137/050638473
[80] Young, L.C.: Rigorous treatment of distorted grids in 3d. Soc. Pet. Eng. 1-14. doi:10.2118/51899-MS9 (1999)
[81] Young, L.C., Russell, T.F.: Implementation of an adaptive implicit method. Soc. Pet. Eng. 01. doi:10.2118/25245-MS (1993)
[82] Zhou, Q.; Birkholzer, JT; Tsang, C-F; Rutqvist, J., A method for quick assessment of co2 storage capacity in closed and semi-closed saline formations, Int. J. Greenh. Gas Con., 2, 4, 626-639 (2008) · doi:10.1016/j.ijggc.2008.02.004
[83] Zhou, Y., Tchelepi, H.A., Mallison, B.T.: Automatic differentiation framework for compositional simulation on unstructured grids with multi-point discretization schemes. Soc. Pet. Eng. J. 1. doi:10.2118/141592-MS (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.