Oden, J. T.; Demkowicz, L.; Rachowicz, W.; Westermann, T. A. A posteriori error analysis in finite elements: The element residual method for symmetrizable problems with applications to compressible Euler and Navier-Stokes equations. (English) Zbl 0727.73072 Comput. Methods Appl. Mech. Eng. 82, No. 1-3, 183-203 (1990). In this paper, we propose a generalization of the element residual method (ERM) to symmetrizable problems which includes such problems of interest as the time-step-dependent boundary value problems resulting from the time discretization of the Euler or Navier-Stokes equations. The natural norm is then identified as the linearized entropy corresponding to a particular solution vector (steady state solution for steady state problems). Cited in 22 Documents MSC: 74S05 Finite element methods applied to problems in solid mechanics 76M10 Finite element methods applied to problems in fluid mechanics 65N15 Error bounds for boundary value problems involving PDEs Keywords:time-step-dependent boundary value problems; time discretization; natural norm; linearized entropy PDF BibTeX XML Cite \textit{J. T. Oden} et al., Comput. Methods Appl. Mech. Eng. 82, No. 1--3, 183--203 (1990; Zbl 0727.73072) Full Text: DOI OpenURL References: [1] Babuška, I.; Rheinboldt, W.C., A posteriori error estimates for the finite element method, Internat. J. numer. methods engrg., 12, 1597-1615, (1978) · Zbl 0396.65068 [2] Oden, J.T.; Demkowicz, L., Advances in adaptive improvements: A survey of adaptive finite element methods in computational mechanics, () · Zbl 0602.76097 [3] Bank, R.E.; Weiser, A., Some a posteriori error estimates for elliptic partial differential equations, Math. comp., 44, 170, 283-301, (1985) · Zbl 0569.65079 [4] Demkowicz, L.; Oden, J.T.; Strouboulis, T., Adaptive finite element methods for flow problems with moving boundaries. part I: variational principles and a posteriori estimates, Comput. methods appl. mech. engrg., 46, 217-251, (1984) · Zbl 0583.76025 [5] Oden, J.T.; Demkowicz, L.; Strouboulis, T.; Devloo, P., (), 249-280 [6] Oden, J.T.; Demkowicz, L.; Rachowicz, W.; Westermann, T.A., Toward a universal h-p adaptive finite element strategy, part 2. A posteriori error estimation, Comput. methods appl. mech. engrg., 77, 113-180, (1989) · Zbl 0723.73075 [7] O.C. Zienkiewicz, Private communication, April 1989. [8] Harten, A., On the symmetric form of systems of conservation laws with entropy, J. comput. phys., 49, 151-164, (1983) · Zbl 0503.76088 [9] L. Demkowicz, J.T. Oden, W. Rachowicz and O. Hardy, An h-p Taylor-Galerkin finite element method for compressible Euler equations (in preparation). · Zbl 0745.76036 [10] Hughes, T.J.R.; Franca, L.P.; Mallet, M., New finite element formulation for computational fluid dynamics: I. symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. methods appl. mech. engrg., 54, 223-234, (1986) · Zbl 0572.76068 [11] Demkowicz, L.; Oden, J.T.; Rachowicz, W., A new finite element method for solving compressible Navier-Stokes equations based on an operator splitting method and h-p adaptivity, Comput. methods appl. mech. engrg., (1990), to appear · Zbl 0731.76041 [12] Bank, R.; Welfert, B.D., A posteriori error estimates for the Stokes equations: A comparison, Comput. methods appl. mech. engrg., 82, 323-340, (1990) · Zbl 0725.65106 [13] Majda, A., Compressible fluid flow and systems of conservation laws in several space variables, (1984), Springer New York · Zbl 0537.76001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.