Jiang, Wei; Wang, Chunyan; Meng, Yunhe Fully distributed time-varying formation tracking control of linear multi-agent systems with input delay and disturbances. (English) Zbl 1454.93013 Syst. Control Lett. 146, Article ID 104814, 11 p. (2020). MSC: 93A16 93C05 93B53 93C43 93C73 PDF BibTeX XML Cite \textit{W. Jiang} et al., Syst. Control Lett. 146, Article ID 104814, 11 p. (2020; Zbl 1454.93013) Full Text: DOI
Lu, Xiaodong; Zhang, Xianfu; Liu, Zhi Improved stability criteria for linear time-varying systems on time scales. (English) Zbl 1453.93193 Int. J. Control 93, No. 7, 1651-1658 (2020). MSC: 93D20 93D23 93C70 93C05 PDF BibTeX XML Cite \textit{X. Lu} et al., Int. J. Control 93, No. 7, 1651--1658 (2020; Zbl 1453.93193) Full Text: DOI
Malikov, A. I. Observer based control for time-varying nonlinear systems with uncertain disturbances and unknown inputs. (English) Zbl 1451.93141 Lobachevskii J. Math. 41, No. 7, 1248-1254 (2020). MSC: 93B53 93B52 93C41 93C73 93C10 PDF BibTeX XML Cite \textit{A. I. Malikov}, Lobachevskii J. Math. 41, No. 7, 1248--1254 (2020; Zbl 1451.93141) Full Text: DOI
Li, Ting; Wen, Changyun; Yang, Jun; Li, Shihua; Guo, Lei Event-triggered tracking control for nonlinear systems subject to time-varying external disturbances. (English) Zbl 1451.93241 Automatica 119, Article ID 109070, 8 p. (2020). MSC: 93C65 93D05 93C73 93B52 93C10 PDF BibTeX XML Cite \textit{T. Li} et al., Automatica 119, Article ID 109070, 8 p. (2020; Zbl 1451.93241) Full Text: DOI
Yang, Dan; Li, Xiaodi; Liu, Zhongmin; Cao, Jinde Persistence of nonautonomous logistic system with time-varying delays and impulsive perturbations. (English) Zbl 1454.34114 Nonlinear Anal., Model. Control 25, No. 4, 564-579 (2020). Reviewer: Snezhana Hristova (Plovdiv) MSC: 34K60 37C60 34K25 34K45 92D25 PDF BibTeX XML Cite \textit{D. Yang} et al., Nonlinear Anal., Model. Control 25, No. 4, 564--579 (2020; Zbl 1454.34114) Full Text: DOI
Ellouze, Ines Separation principle of time-varying systems including multiple delayed perturbations. (English) Zbl 1443.34076 Bull. Sci. Math. 161, Article ID 102869, 23 p. (2020). MSC: 34K20 34K35 93B52 34K27 PDF BibTeX XML Cite \textit{I. Ellouze}, Bull. Sci. Math. 161, Article ID 102869, 23 p. (2020; Zbl 1443.34076) Full Text: DOI
Ellouze, Ines On the practical separation principle of time-varying perturbed systems. (English) Zbl 1436.93104 IMA J. Math. Control Inf. 37, No. 1, 260-275 (2020). MSC: 93D15 93D20 93C73 93B53 93C10 PDF BibTeX XML Cite \textit{I. Ellouze}, IMA J. Math. Control Inf. 37, No. 1, 260--275 (2020; Zbl 1436.93104) Full Text: DOI
Shi, Chenyang; Vong, Seakweng Finite-time stability for discrete-time systems with time-varying delay and nonlinear perturbations by weighted inequalities. (English) Zbl 1429.93322 J. Franklin Inst. 357, No. 1, 294-313 (2020). MSC: 93D40 93C55 93C73 PDF BibTeX XML Cite \textit{C. Shi} and \textit{S. Vong}, J. Franklin Inst. 357, No. 1, 294--313 (2020; Zbl 1429.93322) Full Text: DOI
Li, Shuo; Xiang, Zhengrong Positivity, exponential stability and disturbance attenuation performance for singular switched positive systems with time-varying distributed delays. (English) Zbl 1433.93083 Appl. Math. Comput. 372, Article ID 124981, 20 p. (2020). MSC: 93C70 34K34 93C30 94C60 93D20 93D30 PDF BibTeX XML Cite \textit{S. Li} and \textit{Z. Xiang}, Appl. Math. Comput. 372, Article ID 124981, 20 p. (2020; Zbl 1433.93083) Full Text: DOI
Tikhonova, K. V. Guaranteed testing on a finite time interval. (English. Russian original) Zbl 1447.93267 Mosc. Univ. Mech. Bull. 74, No. 5, 133-136 (2019); translation from Vestn. Mosk. Univ., Ser. I 74, No. 5, 69-72 (2019). MSC: 93D05 93C05 PDF BibTeX XML Cite \textit{K. V. Tikhonova}, Mosc. Univ. Mech. Bull. 74, No. 5, 133--136 (2019; Zbl 1447.93267); translation from Vestn. Mosk. Univ., Ser. I 74, No. 5, 69--72 (2019) Full Text: DOI
Wang, Jinhuan; Xu, Yuling; Xu, Yong; Yang, Dedong Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control. (English) Zbl 1428.93014 Appl. Math. Comput. 359, 333-343 (2019). MSC: 93A14 93B12 93C73 68T42 PDF BibTeX XML Cite \textit{J. Wang} et al., Appl. Math. Comput. 359, 333--343 (2019; Zbl 1428.93014) Full Text: DOI
Martin, S.; Morărescu, I.-C.; Nešić, D. Consensus and influence power approximation in time-varying and directed networks subject to perturbations. (English) Zbl 1426.93012 Int. J. Robust Nonlinear Control 29, No. 11, 3485-3501 (2019). MSC: 93A14 68T42 93D99 93B35 93C05 93C73 93C41 91D30 90B60 PDF BibTeX XML Cite \textit{S. Martin} et al., Int. J. Robust Nonlinear Control 29, No. 11, 3485--3501 (2019; Zbl 1426.93012) Full Text: DOI
Luo, Danfeng; Shah, Kamal; Luo, Zhiguo On the novel Ulam-Hyers stability for a class of nonlinear \(\psi\)-Hilfer fractional differential equation with time-varying delays. (English) Zbl 1429.34080 Mediterr. J. Math. 16, No. 5, Paper No. 112, 15 p. (2019). MSC: 34K37 34K27 PDF BibTeX XML Cite \textit{D. Luo} et al., Mediterr. J. Math. 16, No. 5, Paper No. 112, 15 p. (2019; Zbl 1429.34080) Full Text: DOI
Zhang, Wanli; Yang, Shiju; Li, Chuandong; Zhang, Wei; Yang, Xinsong Stochastic exponential synchronization of memristive neural networks with time-varying delays via quantized control. (English) Zbl 1441.93334 Neural Netw. 104, 93-103 (2018). MSC: 93E15 93D23 93C43 93C40 93B70 PDF BibTeX XML Cite \textit{W. Zhang} et al., Neural Netw. 104, 93--103 (2018; Zbl 1441.93334) Full Text: DOI
Li, Rongchang; Zhang, Qingling Robust \(H \infty\) sliding mode observer design for a class of Takagi-sugeno fuzzy descriptor systems with time-varying delay. (English) Zbl 1427.93061 Appl. Math. Comput. 337, 158-178 (2018). MSC: 93B36 34K36 93B07 93C70 PDF BibTeX XML Cite \textit{R. Li} and \textit{Q. Zhang}, Appl. Math. Comput. 337, 158--178 (2018; Zbl 1427.93061) Full Text: DOI
Liu, Guobao; Xu, Shengyuan; Wei, Yunliang; Qi, Zhidong; Zhang, Zhengqiang New insight into reachable set estimation for uncertain singular time-delay systems. (English) Zbl 1426.93023 Appl. Math. Comput. 320, 769-780 (2018). MSC: 93B03 93C70 PDF BibTeX XML Cite \textit{G. Liu} et al., Appl. Math. Comput. 320, 769--780 (2018; Zbl 1426.93023) Full Text: DOI
Barabanov, Evgenij; Czornik, Adam; Niezabitowski, Michał; Vaidzelevich, Aliaksei Influence of parametric perturbations on Lyapunov exponents of discrete linear time-varying systems. (English) Zbl 1408.93086 Syst. Control Lett. 122, 54-59 (2018). MSC: 93C73 93D30 93D05 93C05 PDF BibTeX XML Cite \textit{E. Barabanov} et al., Syst. Control Lett. 122, 54--59 (2018; Zbl 1408.93086) Full Text: DOI
Zhou, Zhen; Wang, Hongbin; Hu, Zhongquan Event-based time varying formation control for multiple quadrotor UAVs with Markovian switching topologies. (English) Zbl 1407.93278 Complexity 2018, Article ID 8124861, 15 p. (2018). MSC: 93C85 93C65 93E03 68T40 93C70 93D05 PDF BibTeX XML Cite \textit{Z. Zhou} et al., Complexity 2018, Article ID 8124861, 15 p. (2018; Zbl 1407.93278) Full Text: DOI
Taieb, Nizar Hadj; Hammami, Mohamed Ali Some new results on the global uniform asymptotic stability of time-varying dynamical systems. (English) Zbl 1402.93216 IMA J. Math. Control Inf. 35, No. 3, 901-922 (2018). MSC: 93D20 93C10 93C73 PDF BibTeX XML Cite \textit{N. H. Taieb} and \textit{M. A. Hammami}, IMA J. Math. Control Inf. 35, No. 3, 901--922 (2018; Zbl 1402.93216) Full Text: DOI
Chen, Dong; Sun, Di-hua; Zhao, Min; Yang, Liang-yi; Zhou, Tong; Xie, Fei Distributed robust \(\mathcal{H}_\infty\) control of connected eco-driving system with time-varying delay and external disturbances in the vicinity of traffic signals. (English) Zbl 1398.93094 Nonlinear Dyn. 92, No. 4, 1829-1844 (2018). MSC: 93B36 90B20 93C73 PDF BibTeX XML Cite \textit{D. Chen} et al., Nonlinear Dyn. 92, No. 4, 1829--1844 (2018; Zbl 1398.93094) Full Text: DOI
Yang, Jun; Sun, Jiankun; Zheng, Wei Xing; Li, Shihua Periodic event-triggered robust output feedback control for nonlinear uncertain systems with time-varying disturbance. (English) Zbl 1401.93106 Automatica 94, 324-333 (2018). MSC: 93B52 93C65 93B35 93C10 93C41 93C73 PDF BibTeX XML Cite \textit{J. Yang} et al., Automatica 94, 324--333 (2018; Zbl 1401.93106) Full Text: DOI
Cui, Yukang; Shen, Jun; Chen, Yong Stability analysis for positive singular systems with distributed delays. (English) Zbl 1400.93245 Automatica 94, 170-177 (2018). MSC: 93D05 93C70 93D20 PDF BibTeX XML Cite \textit{Y. Cui} et al., Automatica 94, 170--177 (2018; Zbl 1400.93245) Full Text: DOI
Zhu, Xingao; Sun, Yuangong; Xie, Xue-Jun State bounding for nonlinear time-varying systems with delay and disturbance. (English) Zbl 1398.93143 J. Franklin Inst. 355, No. 16, 8213-8224 (2018). MSC: 93C10 93C73 93B17 93C15 PDF BibTeX XML Cite \textit{X. Zhu} et al., J. Franklin Inst. 355, No. 16, 8213--8224 (2018; Zbl 1398.93143) Full Text: DOI
Yu, Jianglong; Dong, Xiwang; Liang, Zixuan; Li, Qingdong; Ren, Zhang Practical time-varying formation tracking for high-order nonlinear multiagent systems with multiple leaders based on the distributed disturbance observer. (English) Zbl 1396.93016 Int. J. Robust Nonlinear Control 28, No. 9, 3258-3272 (2018). MSC: 93A14 68T42 93C10 93C15 93C73 93D05 PDF BibTeX XML Cite \textit{J. Yu} et al., Int. J. Robust Nonlinear Control 28, No. 9, 3258--3272 (2018; Zbl 1396.93016) Full Text: DOI
Dmitruk, N. M. Optimal strategy with one closing instant for a linear optimal guaranteed control problem. (English. Russian original) Zbl 1396.49029 Comput. Math. Math. Phys. 58, No. 5, 642-658 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 5, 664-681 (2018). MSC: 49M30 93C73 93C05 93B52 93B40 PDF BibTeX XML Cite \textit{N. M. Dmitruk}, Comput. Math. Math. Phys. 58, No. 5, 642--658 (2018; Zbl 1396.49029); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 5, 664--681 (2018) Full Text: DOI
An, Hao; Wu, Qianqian; Xia, Hongwei; Wang, Changhong Fast tracking control of air-breathing hypersonic vehicles with time-varying uncertain parameters. (English) Zbl 1390.93561 Nonlinear Dyn. 91, No. 3, 1835-1852 (2018). MSC: 93C85 93C40 93C73 PDF BibTeX XML Cite \textit{H. An} et al., Nonlinear Dyn. 91, No. 3, 1835--1852 (2018; Zbl 1390.93561) Full Text: DOI
Yan, Yifang; Yang, Chunyu; Ma, Xiaoping; Zhou, Linna Sampled-data \(H_\infty\) filtering for Markovian jump singularly perturbed systems with time-varying delay and missing measurements. (English) Zbl 1385.93081 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 49, No. 3, 464-478 (2018). MSC: 93E11 93E10 93B36 60J75 93C70 93C15 PDF BibTeX XML Cite \textit{Y. Yan} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 49, No. 3, 464--478 (2018; Zbl 1385.93081) Full Text: DOI
Stamov, Gani; Stamova, Ivanka Modelling and almost periodic processes in impulsive Lasota-Wazewska equations of fractional order with time-varying delays. (English) Zbl 1427.34112 Quaest. Math. 40, No. 8, 1041-1057 (2017). MSC: 34K60 34K14 34K37 34K45 92C37 34K20 PDF BibTeX XML Cite \textit{G. Stamov} and \textit{I. Stamova}, Quaest. Math. 40, No. 8, 1041--1057 (2017; Zbl 1427.34112) Full Text: DOI
Zhang, Chao; Yan, Hongsen Identification of nonlinear time-varying system with noise based on multi-dimensional Taylor network with optimal structure. (Chinese. English summary) Zbl 1399.93043 J. Southeast Univ., Nat. Sci. 47, No. 6, 1086-1093 (2017). MSC: 93B30 93C10 93E24 93B15 93C73 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{H. Yan}, J. Southeast Univ., Nat. Sci. 47, No. 6, 1086--1093 (2017; Zbl 1399.93043) Full Text: DOI
Stojanovic, Sreten B. Robust finite-time stability of discrete time systems with interval time-varying delay and nonlinear perturbations. (English) Zbl 1380.93196 J. Franklin Inst. 354, No. 11, 4549-4572 (2017). MSC: 93D09 93C55 93C10 93C73 93D30 PDF BibTeX XML Cite \textit{S. B. Stojanovic}, J. Franklin Inst. 354, No. 11, 4549--4572 (2017; Zbl 1380.93196) Full Text: DOI
Ou, Meiying; Sun, Haibin; Gu, Shengwei; Zhang, Yangyi Distributed finite-time trajectory tracking control for multiple nonholonomic mobile robots with uncertainties and external disturbances. (English) Zbl 1386.93206 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 48, No. 15, 3233-3245 (2017). MSC: 93C85 68T40 93C41 70F25 93C73 93C15 PDF BibTeX XML Cite \textit{M. Ou} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 48, No. 15, 3233--3245 (2017; Zbl 1386.93206) Full Text: DOI
Li, Yankai; Sun, Haibin; Zong, Guangdeng; Hou, Linlin Anti-disturbance control for time-varying delay Markovian jump nonlinear systems with multiple disturbances. (English) Zbl 1386.93095 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 48, No. 15, 3186-3200 (2017). MSC: 93B35 60J75 93C30 93C73 93C15 PDF BibTeX XML Cite \textit{Y. Li} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 48, No. 15, 3186--3200 (2017; Zbl 1386.93095) Full Text: DOI
Li, Yanan; Sun, Yuangong; Meng, Fanwei New criteria for exponential stability of switched time-varying systems with delays and nonlinear disturbances. (English) Zbl 1373.93271 Nonlinear Anal., Hybrid Syst. 26, 284-291 (2017). MSC: 93D20 93C73 93C30 PDF BibTeX XML Cite \textit{Y. Li} et al., Nonlinear Anal., Hybrid Syst. 26, 284--291 (2017; Zbl 1373.93271) Full Text: DOI
Sun, Yuangong; Meng, Fanwei Reachable set estimation for a class of nonlinear time-varying systems. (English) Zbl 1373.93061 Complexity 2017, Article ID 5876371, 6 p. (2017). MSC: 93B03 93C10 93C73 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{F. Meng}, Complexity 2017, Article ID 5876371, 6 p. (2017; Zbl 1373.93061) Full Text: DOI
Yang, Jun; Zhang, Qian; Hua, Changchun; Peng, Dan Stability analysis for fractional order singular systems with time-varying. (Chinese. English summary) Zbl 1389.34233 Math. Pract. Theory 47, No. 7, 254-260 (2017). MSC: 34K20 34K37 34K26 PDF BibTeX XML Cite \textit{J. Yang} et al., Math. Pract. Theory 47, No. 7, 254--260 (2017; Zbl 1389.34233)
Babiarz, Artur; Czornik, Adam; Makarov, Evgenii; Niezabitowski, Michał; Popova, Svetlana Pole placement theorem for discrete time-varying linear systems. (English) Zbl 1358.93084 SIAM J. Control Optim. 55, No. 2, 671-692 (2017). MSC: 93B55 37J40 39A06 39A22 PDF BibTeX XML Cite \textit{A. Babiarz} et al., SIAM J. Control Optim. 55, No. 2, 671--692 (2017; Zbl 1358.93084) Full Text: DOI
Mohajerpoor, Reza; Shanmugam, Lakshmanan; Abdi, Hamid; Rakkiyappan, Rajan; Nahavandi, Saeid; Park, Ju H. Improved delay-dependent stability criteria for neutral systems with mixed interval time-varying delays and nonlinear disturbances. (English) Zbl 1355.93141 J. Franklin Inst. 354, No. 2, 1169-1194 (2017). MSC: 93D05 93C73 93D30 93C10 PDF BibTeX XML Cite \textit{R. Mohajerpoor} et al., J. Franklin Inst. 354, No. 2, 1169--1194 (2017; Zbl 1355.93141) Full Text: DOI
Dong, Yali; Liu, Wanjun; Li, Tianrui; Liang, Shuang Finite-time boundedness analysis and \(H_\infty\) control for switched neutral systems with mixed time-varying delays. (English) Zbl 1355.93148 J. Franklin Inst. 354, No. 2, 787-811 (2017). MSC: 93D15 93B36 93C30 93C95 93C73 PDF BibTeX XML Cite \textit{Y. Dong} et al., J. Franklin Inst. 354, No. 2, 787--811 (2017; Zbl 1355.93148) Full Text: DOI
Han, Yueqiao; Kao, Yonggui; Gao, Cunchen Robust sliding mode control for uncertain discrete singular systems with time-varying delays and external disturbances. (English) Zbl 1351.93035 Automatica 75, 210-216 (2017). MSC: 93B12 93B35 93C41 93C73 PDF BibTeX XML Cite \textit{Y. Han} et al., Automatica 75, 210--216 (2017; Zbl 1351.93035) Full Text: DOI
Rakkiyappan, R.; Lakshmanan, S.; Sivasamy, R.; Lim, C. P. Leakage-delay-dependent stability analysis of Markovian jumping linear systems with time-varying delays and nonlinear perturbations. (English) Zbl 07159926 Appl. Math. Modelling 40, No. 7-8, 5026-5043 (2016). MSC: 34 92 PDF BibTeX XML Cite \textit{R. Rakkiyappan} et al., Appl. Math. Modelling 40, No. 7--8, 5026--5043 (2016; Zbl 07159926) Full Text: DOI
Liu, Jiao; Lian, Jie; Zhuang, Yan Robust stability for switched positive systems with \(D\)-perturbation and time-varying delay. (English) Zbl 1429.93280 Inf. Sci. 369, 522-531 (2016). MSC: 93D09 93D30 93C28 93C30 93C43 93C73 PDF BibTeX XML Cite \textit{J. Liu} et al., Inf. Sci. 369, 522--531 (2016; Zbl 1429.93280) Full Text: DOI
Min, Hui-Fang; Duan, Na Adaptive NN output-feedback control for stochastic time-delay nonlinear systems with unknown control coefficients and perturbations. (English) Zbl 1416.93106 Nonlinear Anal., Model. Control 21, No. 4, 515-530 (2016). MSC: 93C40 93B52 93B40 93E03 93C10 93C73 PDF BibTeX XML Cite \textit{H.-F. Min} and \textit{N. Duan}, Nonlinear Anal., Model. Control 21, No. 4, 515--530 (2016; Zbl 1416.93106) Full Text: DOI
Ren, Jiaojiao; Zhu, Hong; Zhong, Shouming; Zhou, Xia Robust stability of uncertain Markovian jump neural networks with mode-dependent time-varying delays and nonlinear perturbations. (English) Zbl 1419.93046 Adv. Difference Equ. 2016, Paper No. 327, 26 p. (2016). MSC: 93D09 34B45 34K20 PDF BibTeX XML Cite \textit{J. Ren} et al., Adv. Difference Equ. 2016, Paper No. 327, 26 p. (2016; Zbl 1419.93046) Full Text: DOI
Zhao, Jiemei; Sheng, Yin Reachable set estimation for discrete-time systems with interval time-varying delays and bounded disturbances. (English) Zbl 1398.93044 J. Control Sci. Eng. 2016, Article ID 5214147, 7 p. (2016). MSC: 93B03 93C55 93C73 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{Y. Sheng}, J. Control Sci. Eng. 2016, Article ID 5214147, 7 p. (2016; Zbl 1398.93044) Full Text: DOI
Liang, Shuang; Dong, Yali Robust stability and stabilization of a class of uncertain nonlinear discrete-time stochastic systems with interval time-varying delays. (English) Zbl 1398.93357 J. Control Sci. Eng. 2016, Article ID 1319092, 13 p. (2016). MSC: 93E15 93D21 93C41 93C10 93C55 93E03 93C73 PDF BibTeX XML Cite \textit{S. Liang} and \textit{Y. Dong}, J. Control Sci. Eng. 2016, Article ID 1319092, 13 p. (2016; Zbl 1398.93357) Full Text: DOI
Du, Jialu; Hu, Xin; Krstić, Miroslav; Sun, Yuqing Robust dynamic positioning of ships with disturbances under input saturation. (English) Zbl 1371.93061 Automatica 73, 207-214 (2016). MSC: 93B35 93C73 93C15 93C10 PDF BibTeX XML Cite \textit{J. Du} et al., Automatica 73, 207--214 (2016; Zbl 1371.93061) Full Text: DOI
Zhao, Zhanshan; Li, Xiaomeng; Zhang, Jing; Sun, Liankun Stability criteria for a class of time-varying delay systems. (Chinese. English summary) Zbl 1374.93284 Control Decis. 31, No. 11, 2090-2094 (2016). MSC: 93D05 93C10 93C73 93D30 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Control Decis. 31, No. 11, 2090--2094 (2016; Zbl 1374.93284) Full Text: DOI
Yan, Rongyi; He, Xiao; Zhou, Donghua Robust diagnosis of intermittent faults for linear stochastic systems subject to time-varying perturbations. (Chinese. English summary) Zbl 1374.93338 Acta Autom. Sin. 42, No. 7, 1004-1013 (2016). MSC: 93E10 94C12 PDF BibTeX XML Cite \textit{R. Yan} et al., Acta Autom. Sin. 42, No. 7, 1004--1013 (2016; Zbl 1374.93338) Full Text: DOI
Aleksandrov, Vladimir V.; Aleksandrova, O. V.; Konovalenko, I. S.; Tikhonova, Katerina V. Perturbed stable systems on a plane. I. (English. Russian original) Zbl 1372.37044 Mosc. Univ. Mech. Bull. 71, No. 5, 108-113 (2016); translation from Vestn. Mosk. Univ., Ser. I 71, No. 5, 30-36 (2016). MSC: 37C10 37C20 34D10 34C10 34C15 PDF BibTeX XML Cite \textit{V. V. Aleksandrov} et al., Mosc. Univ. Mech. Bull. 71, No. 5, 108--113 (2016; Zbl 1372.37044); translation from Vestn. Mosk. Univ., Ser. I 71, No. 5, 30--36 (2016) Full Text: DOI
Banshchikova, Irina Nikolaevna An example of a linear discrete system with unstable Lyapunov exponents. (Russian. English summary) Zbl 1362.93093 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 26, No. 2, 169-176 (2016). MSC: 93C55 93C05 93D30 39A06 39A30 PDF BibTeX XML Cite \textit{I. N. Banshchikova}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 26, No. 2, 169--176 (2016; Zbl 1362.93093) Full Text: DOI MNR
Banshchikova, Irina Nikolaevna; Popova, Svetlana Nikolaevna On the spectral set of a linear discrete system with stable Lyapunov exponents. (Russian. English summary) Zbl 1362.93094 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 26, No. 1, 15-26 (2016). MSC: 93C55 93C05 93D30 39A06 39A30 PDF BibTeX XML Cite \textit{I. N. Banshchikova} and \textit{S. N. Popova}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 26, No. 1, 15--26 (2016; Zbl 1362.93094) Full Text: DOI MNR
Hua, Liubin; Li, Yongjin On Hyers-Ulam stability of almost-periodic solutions for cellular neural networks with time-varying delays in leakage terms on time scales. (English) Zbl 1362.34132 Commun. Appl. Anal. 20, No. 2-3, 367-378 (2016). MSC: 34N05 34K13 34K27 47N20 PDF BibTeX XML Cite \textit{L. Hua} and \textit{Y. Li}, Commun. Appl. Anal. 20, No. 2--3, 367--378 (2016; Zbl 1362.34132)
Ye, Zhiyong; Ji, Huihui; Zhang, He Passivity analysis of Markovian switching complex dynamic networks with multiple time-varying delays and stochastic perturbations. (English) Zbl 1355.60101 Chaos Solitons Fractals 83, 147-157 (2016). MSC: 60J10 90B15 37H99 34K50 PDF BibTeX XML Cite \textit{Z. Ye} et al., Chaos Solitons Fractals 83, 147--157 (2016; Zbl 1355.60101) Full Text: DOI
Shi, Lei; Yang, Xinsong; Li, Yingchun; Feng, Zuzhen Finite-time synchronization of nonidentical chaotic systems with multiple time-varying delays and bounded perturbations. (English) Zbl 1349.34210 Nonlinear Dyn. 83, No. 1-2, 75-87 (2016). MSC: 34D06 37D45 34D10 PDF BibTeX XML Cite \textit{L. Shi} et al., Nonlinear Dyn. 83, No. 1--2, 75--87 (2016; Zbl 1349.34210) Full Text: DOI
Yu, Qiongxia; Hou, Zhongsheng; Chi, Ronghu Adaptive iterative learning control for nonlinear uncertain systems with both state and input constraints. (English) Zbl 1347.93145 J. Franklin Inst. 353, No. 15, 3920-3943 (2016). MSC: 93C10 68T05 93B40 93C41 93C73 PDF BibTeX XML Cite \textit{Q. Yu} et al., J. Franklin Inst. 353, No. 15, 3920--3943 (2016; Zbl 1347.93145) Full Text: DOI
Zhou, Xianghui; Li, Xiong; Zhou, Wuneng; Gao, Pan Stability for stochastic perturbed neural networks with multiple time-varying delays. (Chinese. English summary) Zbl 1363.34275 Math. Pract. Theory 46, No. 3, 246-253 (2016). MSC: 34K50 34K27 34K20 92B20 PDF BibTeX XML Cite \textit{X. Zhou} et al., Math. Pract. Theory 46, No. 3, 246--253 (2016; Zbl 1363.34275)
Nam, Phan T.; Trinh, Hieu M.; Pathirana, Pubudu N. Componentwise ultimate bounds for positive discrete time-delay systems perturbed by interval disturbances. (English) Zbl 1344.93049 Automatica 72, 153-157 (2016). MSC: 93B60 93C05 93C10 93C73 PDF BibTeX XML Cite \textit{P. T. Nam} et al., Automatica 72, 153--157 (2016; Zbl 1344.93049) Full Text: DOI
Puga, Saul; Bonilla, Moises; Malabre, Michel; Mondié, Sabine; Lozano, Rogelio Singularly perturbed implicit control law for linear time-varying delay MIMO systems. (English) Zbl 1334.93122 Int. J. Robust Nonlinear Control 26, No. 7, 1395-1421 (2016). MSC: 93C70 93C05 93C15 93C35 PDF BibTeX XML Cite \textit{S. Puga} et al., Int. J. Robust Nonlinear Control 26, No. 7, 1395--1421 (2016; Zbl 1334.93122) Full Text: DOI
Viegas, Daniel; Batista, Pedro; Oliveira, Paulo; Silvestre, Carlos On the stability of the continuous-time Kalman filter subject to exponentially decaying perturbations. (English) Zbl 1335.93128 Syst. Control Lett. 89, 41-46 (2016). MSC: 93E11 93E10 93C73 PDF BibTeX XML Cite \textit{D. Viegas} et al., Syst. Control Lett. 89, 41--46 (2016; Zbl 1335.93128) Full Text: DOI
Ghanmi, B.; Hammami, M. A. Practical exponential stability for time-varying systems with nonlinear delayed perturbations. (English) Zbl 1337.34075 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 23, No. 1, 75-89 (2016). Reviewer: Olusola Akinyele (Bowie) MSC: 34K20 34K27 37C60 PDF BibTeX XML Cite \textit{B. Ghanmi} and \textit{M. A. Hammami}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 23, No. 1, 75--89 (2016; Zbl 1337.34075) Full Text: Link Link
Du, Juanjuan; Liu, Yuzhong Robust stability for switched systems with time-varying delay and nonlinear perturbations. (English) Zbl 1349.93314 J. Shenyang Norm. Univ., Nat. Sci. 33, No. 3, 341-345 (2015). MSC: 93D09 93D20 93C73 93C30 93C10 93D05 PDF BibTeX XML Cite \textit{J. Du} and \textit{Y. Liu}, J. Shenyang Norm. Univ., Nat. Sci. 33, No. 3, 341--345 (2015; Zbl 1349.93314) Full Text: DOI
Zhao, Guanglei; Wang, Jingcheng Reset control systems with time-varying delay: delay-dependent stability and \(\mathcal{L}_2\) gain performance improvement. (English) Zbl 1338.93292 Asian J. Control 17, No. 6, 2460-2468 (2015). MSC: 93D05 93C15 93C73 93C05 PDF BibTeX XML Cite \textit{G. Zhao} and \textit{J. Wang}, Asian J. Control 17, No. 6, 2460--2468 (2015; Zbl 1338.93292) Full Text: DOI
Huang, Congzhi; Sira-Ramírez, Hebertt Flatness-based active disturbance rejection control for linear systems with unknown time-varying coefficients. (English) Zbl 1335.93039 Int. J. Control 88, No. 12, 2578-2587 (2015). MSC: 93B35 93C05 93C15 93C73 PDF BibTeX XML Cite \textit{C. Huang} and \textit{H. Sira-Ramírez}, Int. J. Control 88, No. 12, 2578--2587 (2015; Zbl 1335.93039) Full Text: DOI
Li, Ruoxia; Wu, Huaiqin; Zhang, Xiaowei; Yao, Rong Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. (English) Zbl 1336.34115 Math. Control Relat. Fields 5, No. 4, 827-844 (2015). MSC: 34K60 34K27 34K50 34D06 93C23 94C05 34K25 PDF BibTeX XML Cite \textit{R. Li} et al., Math. Control Relat. Fields 5, No. 4, 827--844 (2015; Zbl 1336.34115) Full Text: DOI
Berg, Jordan M.; Wickramasinghe, I. P. Manjula Vibrational control without averaging. (English) Zbl 1330.93212 Automatica 58, 72-81 (2015). MSC: 93D99 93C70 PDF BibTeX XML Cite \textit{J. M. Berg} and \textit{I. P. M. Wickramasinghe}, Automatica 58, 72--81 (2015; Zbl 1330.93212) Full Text: DOI
Qian, Yibo; Xiang, Zhengrong; Karimi, Hamid Reza Disturbance tolerance and rejection of discrete switched systems with time-varying delay and saturating actuator. (English) Zbl 1310.93043 Nonlinear Anal., Hybrid Syst. 16, 81-92 (2015). MSC: 93B35 93C73 93C30 93C10 93C55 PDF BibTeX XML Cite \textit{Y. Qian} et al., Nonlinear Anal., Hybrid Syst. 16, 81--92 (2015; Zbl 1310.93043) Full Text: DOI
Hui, Jun-Jun; Kong, Xiang-Yu; Zhang, He-Xin; Zhou, Xin Delay-partitioning approach for systems with interval time-varying delay and nonlinear perturbations. (English) Zbl 1316.34074 J. Comput. Appl. Math. 281, 74-81 (2015). Reviewer: Olusola Akinyele (Bowie) MSC: 34K20 93D09 34K06 34K27 PDF BibTeX XML Cite \textit{J.-J. Hui} et al., J. Comput. Appl. Math. 281, 74--81 (2015; Zbl 1316.34074) Full Text: DOI
Park, M. J.; Kwon, O. M.; Park, Ju H.; Lee, S. M.; Cha, E. J. Synchronization of discrete-time complex dynamical networks with interval time-varying delays via non-fragile controller with randomly occurring perturbation. (English) Zbl 1395.93352 J. Franklin Inst. 351, No. 10, 4850-4871 (2014). MSC: 93C55 93B52 93C73 93B35 PDF BibTeX XML Cite \textit{M. J. Park} et al., J. Franklin Inst. 351, No. 10, 4850--4871 (2014; Zbl 1395.93352) Full Text: DOI
Wang, Wenqin; Nguang, Sing Kiong; Zhong, Shouming; Liu, Feng Novel delay-dependent stability criterion for time-varying delay systems with parameter uncertainties and nonlinear perturbations. (English) Zbl 1354.93120 Inf. Sci. 281, 321-333 (2014). MSC: 93D09 93C10 93C73 93D30 PDF BibTeX XML Cite \textit{W. Wang} et al., Inf. Sci. 281, 321--333 (2014; Zbl 1354.93120) Full Text: DOI
Syed Ali, M. Robust stability of stochastic fuzzy impulsive recurrent neural networks with time-varying delays. (English) Zbl 1339.93118 Iran. J. Fuzzy Syst. 11, No. 4, 1-13 (2014). MSC: 93E15 93C42 93D09 93D20 93C70 92B20 PDF BibTeX XML Cite \textit{M. Syed Ali}, Iran. J. Fuzzy Syst. 11, No. 4, 1--13 (2014; Zbl 1339.93118) Full Text: Link
Wang, Huijiao; Xue, Anke; Lu, Renquan New stability criteria for singular systems with time-varying delay and nonlinear perturbations. (English) Zbl 1317.93138 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 45, No. 12, 2576-2589 (2014). MSC: 93C15 93C73 93D99 PDF BibTeX XML Cite \textit{H. Wang} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 45, No. 12, 2576--2589 (2014; Zbl 1317.93138) Full Text: DOI
Li, Boren Robust stabilization for multiple time-varying delay systems with nonlinear perturbations. (Chinese. English summary) Zbl 1313.93167 J. Syst. Sci. Math. Sci. 34, No. 4, 392-401 (2014). MSC: 93D21 93C05 93C10 93C73 93D09 PDF BibTeX XML Cite \textit{B. Li}, J. Syst. Sci. Math. Sci. 34, No. 4, 392--401 (2014; Zbl 1313.93167)
Thuan, M. V.; Phat, V. N.; Fernando, T.; Trinh, H. Exponential stabilization of time-varying delay systems with non-linear perturbations. (English) Zbl 1303.93150 IMA J. Math. Control Inf. 31, No. 4, 441-464 (2014). MSC: 93D20 93C73 93C10 93C15 PDF BibTeX XML Cite \textit{M. V. Thuan} et al., IMA J. Math. Control Inf. 31, No. 4, 441--464 (2014; Zbl 1303.93150) Full Text: DOI
Caruntu, Constantin Florin; Lazar, Corneliu Network delay predictive compensation based on time-delay modelling as disturbance. (English) Zbl 1308.93018 Int. J. Control 87, No. 10, 2012-2026 (2014). MSC: 93A15 90B18 93A30 93C73 93C55 93C10 PDF BibTeX XML Cite \textit{C. F. Caruntu} and \textit{C. Lazar}, Int. J. Control 87, No. 10, 2012--2026 (2014; Zbl 1308.93018) Full Text: DOI
Song, Xingyong; Wang, Yu; Sun, Zongxuan Robust stabilizer design for linear time-varying internal model based output regulation and its application to an electrohydraulic system. (English) Zbl 1298.93295 Automatica 50, No. 4, 1128-1134 (2014). MSC: 93D21 93C05 93C73 PDF BibTeX XML Cite \textit{X. Song} et al., Automatica 50, No. 4, 1128--1134 (2014; Zbl 1298.93295) Full Text: DOI
Berger, Thomas Robustness of stability of time-varying index-1 DAEs. (English) Zbl 1294.93066 Math. Control Signals Syst. 26, No. 3, 403-433 (2014). MSC: 93D09 93B35 93C73 93C15 PDF BibTeX XML Cite \textit{T. Berger}, Math. Control Signals Syst. 26, No. 3, 403--433 (2014; Zbl 1294.93066) Full Text: DOI
Singkibud, Cheerapong; Mukdasai, Kanit Improved delay-range-dependent stability criteria for discrete-time linear systems with interval time-varying delay and nonlinear perturbations. (English) Zbl 1297.34068 Int. J. Pure Appl. Math. 93, No. 3, 427-447 (2014). MSC: 34D20 34K20 PDF BibTeX XML Cite \textit{C. Singkibud} and \textit{K. Mukdasai}, Int. J. Pure Appl. Math. 93, No. 3, 427--447 (2014; Zbl 1297.34068) Full Text: DOI Link
Puga, S.; Bonilla, M.; Malabre, M.; Lozano, R. Singularly perturbed implicit control law for linear time varying SISO systems. (English) Zbl 1291.93202 Int. J. Robust Nonlinear Control 24, No. 10, 1530-1549 (2014). MSC: 93C70 93D20 93C05 93C15 PDF BibTeX XML Cite \textit{S. Puga} et al., Int. J. Robust Nonlinear Control 24, No. 10, 1530--1549 (2014; Zbl 1291.93202) Full Text: DOI
Ngoc, Pham Huu Anh Robust stability of positive linear systems under time-varying perturbations. (English) Zbl 1294.34060 Numer. Funct. Anal. Optim. 35, No. 6, 739-751 (2014). MSC: 34D20 93D09 34D10 34A30 PDF BibTeX XML Cite \textit{P. H. A. Ngoc}, Numer. Funct. Anal. Optim. 35, No. 6, 739--751 (2014; Zbl 1294.34060) Full Text: DOI
Ngoc, Pham Huu Anh New criteria for exponential stability of nonlinear time-varying differential systems. (English) Zbl 1279.93091 Int. J. Robust Nonlinear Control 24, No. 2, 264-275 (2014). MSC: 93D20 93D09 93C15 93C10 93C73 PDF BibTeX XML Cite \textit{P. H. A. Ngoc}, Int. J. Robust Nonlinear Control 24, No. 2, 264--275 (2014; Zbl 1279.93091) Full Text: DOI
Xiong, Peiying; Huang, Lihong On \(p\)th moment exponential stability of stochastic fuzzy cellular neural networks with time-varying delays and impulses. (English) Zbl 1390.34216 Adv. Difference Equ. 2013, Paper No. 172, 11 p. (2013). MSC: 34K20 34K50 34K36 34A37 PDF BibTeX XML Cite \textit{P. Xiong} and \textit{L. Huang}, Adv. Difference Equ. 2013, Paper No. 172, 11 p. (2013; Zbl 1390.34216) Full Text: DOI
Lien, Chang-Hua; Yu, Ker-Wei; Chen, Jenq-Der; Chung, Long-Yeu Sufficient conditions for global exponential stability of discrete switched time-delay systems with linear fractional perturbations via switching signal design. (English) Zbl 1365.93264 Adv. Difference Equ. 2013, Paper No. 39, 15 p. (2013). MSC: 93C55 93D05 93D09 93D15 93D20 PDF BibTeX XML Cite \textit{C.-H. Lien} et al., Adv. Difference Equ. 2013, Paper No. 39, 15 p. (2013; Zbl 1365.93264) Full Text: DOI
Ramakrishnan, K.; Ray, Goshaidas Robust stability criteria for a class of uncertain discrete-time systems with time-varying delay. (English) Zbl 1351.93111 Appl. Math. Modelling 37, No. 3, 1468-1479 (2013). MSC: 93D09 39A30 PDF BibTeX XML Cite \textit{K. Ramakrishnan} and \textit{G. Ray}, Appl. Math. Modelling 37, No. 3, 1468--1479 (2013; Zbl 1351.93111) Full Text: DOI
Wang, Jingyi; Feng, Jianwen; Xu, Chen; Zhao, Yi Exponential synchronization of stochastic perturbed complex networks with time-varying delays via periodically intermittent pinning. (English) Zbl 1359.60075 Commun. Nonlinear Sci. Numer. Simul. 18, No. 11, 3146-3157 (2013). MSC: 60H10 34H10 34K50 93A14 PDF BibTeX XML Cite \textit{J. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 18, No. 11, 3146--3157 (2013; Zbl 1359.60075) Full Text: DOI
Liu, Yajuan; Lee, S. M.; Kwon, O. M.; Park, Ju H. Delay-dependent exponential stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations. (English) Zbl 1293.93633 J. Franklin Inst. 350, No. 10, 3313-3327 (2013). MSC: 93D20 93D05 34K40 93C73 93C10 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Franklin Inst. 350, No. 10, 3313--3327 (2013; Zbl 1293.93633) Full Text: DOI
Cheng, Jun; Zhu, Hong; Zhong, Shouming; Li, Guihua Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations. (English) Zbl 1293.34091 Appl. Math. Comput. 219, No. 14, 7741-7753 (2013). MSC: 34K20 34K40 93D09 34K27 PDF BibTeX XML Cite \textit{J. Cheng} et al., Appl. Math. Comput. 219, No. 14, 7741--7753 (2013; Zbl 1293.34091) Full Text: DOI
Czornik, Adam; Niezabitowski, Michał On the spectrum of discrete time-varying linear systems. (English) Zbl 1287.93037 Nonlinear Anal., Hybrid Syst. 9, 27-41 (2013). MSC: 93B60 93C55 93C05 93C73 PDF BibTeX XML Cite \textit{A. Czornik} and \textit{M. Niezabitowski}, Nonlinear Anal., Hybrid Syst. 9, 27--41 (2013; Zbl 1287.93037) Full Text: DOI
Wan, Yiming; Dong, Wei; Wu, Hao; Ye, Hao Integrated fault detection system design for linear discrete time-varying systems with bounded power disturbances. (English) Zbl 1285.93069 Int. J. Robust Nonlinear Control 23, No. 16, 1781-1802 (2013). MSC: 93C73 93B40 93C55 93C05 93B35 PDF BibTeX XML Cite \textit{Y. Wan} et al., Int. J. Robust Nonlinear Control 23, No. 16, 1781--1802 (2013; Zbl 1285.93069) Full Text: DOI
Liu, Hongfang; Tu, Lilan; Yu, Le Synchronization-based topology identification of uncertain stochastic delay complex networks. (English) Zbl 1299.93281 Wuhan Univ. J. Nat. Sci. 18, No. 4, 337-342 (2013). MSC: 93E12 05C82 91D30 93C73 PDF BibTeX XML Cite \textit{H. Liu} et al., Wuhan Univ. J. Nat. Sci. 18, No. 4, 337--342 (2013; Zbl 1299.93281) Full Text: DOI
Ghanmi, B.; Taieb, N. Hadj; Hammami, M. A. Growth conditions for exponential stability of time-varying perturbed systems. (English) Zbl 1278.93213 Int. J. Control 86, No. 6, 1086-1097 (2013). MSC: 93D20 93C73 93C15 PDF BibTeX XML Cite \textit{B. Ghanmi} et al., Int. J. Control 86, No. 6, 1086--1097 (2013; Zbl 1278.93213) Full Text: DOI
Wang, Lei; Li, Xiaodi \(\mu \)-stability of impulsive differential systems with unbounded time-varying delays and nonlinear perturbations. (English) Zbl 1315.34079 Math. Methods Appl. Sci. 36, No. 11, 1140-1446 (2013). Reviewer: Binxiang Dai (Changsha) MSC: 34K20 34K45 PDF BibTeX XML Cite \textit{L. Wang} and \textit{X. Li}, Math. Methods Appl. Sci. 36, No. 11, 1140--1446 (2013; Zbl 1315.34079) Full Text: DOI
That, Nguyen D.; Nam, Phan T.; Ha, Q. P. Reachable set bounding for linear discrete-time systems with delays and bounded disturbances. (English) Zbl 1264.93020 J. Optim. Theory Appl. 157, No. 1, 96-107 (2013). MSC: 93B03 93C55 93C05 93D30 93C73 PDF BibTeX XML Cite \textit{N. D. That} et al., J. Optim. Theory Appl. 157, No. 1, 96--107 (2013; Zbl 1264.93020) Full Text: DOI
Lien, Chang-Hua; Chen, Jenq-Der; Yu, Ker-Wei; Chung, Long-Yeu Robust delay-dependent \(H_\infty\) control for uncertain switched time-delay systems via sampled-data state feedback input. (English) Zbl 1356.93027 Comput. Math. Appl. 64, No. 5, 1187-1196 (2012). MSC: 93B36 PDF BibTeX XML Cite \textit{C.-H. Lien} et al., Comput. Math. Appl. 64, No. 5, 1187--1196 (2012; Zbl 1356.93027) Full Text: DOI
Botmart, Thongchai; Niamsup, Piyapong Delay-dependent robust stability criteria for linear systems with interval time-varying delays and nonlinear perturbations. (English) Zbl 1302.93120 Adv. Nonlinear Var. Inequal. 15, No. 1, 13-30 (2012). MSC: 93C10 93D09 34K40 PDF BibTeX XML Cite \textit{T. Botmart} and \textit{P. Niamsup}, Adv. Nonlinear Var. Inequal. 15, No. 1, 13--30 (2012; Zbl 1302.93120)
Ramakrishnan, K.; Ray, Goshaidas Robust stability criterion for Markovian jump systems with nonlinear perturbations and mode-dependent time delays. (English) Zbl 1277.93082 Int. J. Gen. Syst. 41, No. 4, 373-393 (2012). MSC: 93E15 93D09 60J75 93C73 PDF BibTeX XML Cite \textit{K. Ramakrishnan} and \textit{G. Ray}, Int. J. Gen. Syst. 41, No. 4, 373--393 (2012; Zbl 1277.93082) Full Text: DOI
Dong, Yali; Wang, Xueli; Mei, Shengwei; Li, Weixun Exponential stabilization of nonlinear uncertain systems with time-varying delay. (English) Zbl 1276.93067 J. Eng. Math. 77, 225-237 (2012). MSC: 93D20 93C10 93B52 93C73 93D30 93D09 93D21 PDF BibTeX XML Cite \textit{Y. Dong} et al., J. Eng. Math. 77, 225--237 (2012; Zbl 1276.93067) Full Text: DOI
Huang, Yi; Xue, Wenchao Active disturbance rejection control: methodology, applications and theoretical analysis. (Chinese. English summary) Zbl 1289.93034 J. Syst. Sci. Math. Sci. 32, No. 10, 1287-1307 (2012). MSC: 93B35 93B50 93C10 93C73 PDF BibTeX XML Cite \textit{Y. Huang} and \textit{W. Xue}, J. Syst. Sci. Math. Sci. 32, No. 10, 1287--1307 (2012; Zbl 1289.93034)
Wang, Gexia; Li, Lihua; Wu, Binghui Robust stability of nonlinear model-based networked control systems with time-varying transmission times. (English) Zbl 1253.93104 Nonlinear Dyn. 69, No. 3, 1351-1363 (2012). MSC: 93D09 93D20 93C10 93C73 93C15 PDF BibTeX XML Cite \textit{G. Wang} et al., Nonlinear Dyn. 69, No. 3, 1351--1363 (2012; Zbl 1253.93104) Full Text: DOI
Peñarrocha, Ignacio; Sanchis, Roberto; Albertos, Pedro Estimation in multisensor networked systems with scarce measurements and time varying delays. (English) Zbl 1250.93120 Syst. Control Lett. 61, No. 4, 555-562 (2012). MSC: 93E10 93C57 93C73 PDF BibTeX XML Cite \textit{I. Peñarrocha} et al., Syst. Control Lett. 61, No. 4, 555--562 (2012; Zbl 1250.93120) Full Text: DOI
Zheng, Y. G.; Wang, Z. H. Stability analysis of nonlinear dynamic systems with slowly and periodically varying delay. (English) Zbl 1256.93090 Commun. Nonlinear Sci. Numer. Simul. 17, No. 10, 3999-4009 (2012). MSC: 93D20 93C73 PDF BibTeX XML Cite \textit{Y. G. Zheng} and \textit{Z. H. Wang}, Commun. Nonlinear Sci. Numer. Simul. 17, No. 10, 3999--4009 (2012; Zbl 1256.93090) Full Text: DOI