×

MCQ4Structures to compute similarity of molecule structures. (English) Zbl 1339.92005

Summary: Comparison of molecular structures in order to identify their similarity is an important step in solving various problems derived from computational biology, like structure alignment and modelling, motif search or clustering. Thus, there is a constant need for the development of good measures to determine distances between the structures and tools to display these distances in an easily interpretable form. In the paper we present MCQ4Structures, a new method and tool for structural similarity computation based on molecule tertiary structure representation in torsional angle space. We discuss its unique features as compared with the other measures, including RMSD and LGA, and we show its experimental use in comparison of a number of 3D structures as well as evaluation of models predicted within RNA-Puzzles contest. MCQ4Structures software is available as a free Java WebStart application at: http://www.cs.put.poznan.pl/tzok/mcq/. The source code licensed under BSD can be downloaded from the same website.

MSC:

92-04 Software, source code, etc. for problems pertaining to biology
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
92D20 Protein sequences, DNA sequences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adamiak RW, Blazewicz J, Formanowicz P, Gdaniec Z, Kasprzak M, Popenda M, Szachniuk M (2004) An algorithm for an automatic NOE pathways analysis of 2D NMR spectra of RNA duplexes. J Comput Biol 11(1):163-179 · doi:10.1089/106652704773416948
[2] Altona C, Sundaralingam M (1972) Conformational analysis of the sugar ring in nucleosides and nucleotides. a new description using the concept of pseudorotation. J Am Chem Soc 94(23):8205-8212 · doi:10.1021/ja00778a043
[3] Blazewicz J, Szachniuk M, Wojtowicz A (2005) RNA tertiary structure determination: NOE pathways construction by tabu search. Bioinformatics 21(10):2356-2361 · doi:10.1093/bioinformatics/bti351
[4] Cruz JA, Blanchet M-F, Boniecki M, Bujnicki JM, Chen S-J, Cao S, Das R, Ding F, Dokholyan NV, Flores SC, Huang L, Lavender CA, Lisi V, Major F, Mikolajczak K, Patel DJ, Philips A, Puton T, Santalucia J, Sijenyi F, Hermann T, Rother K, Rother M, Serganov A, Skorupski M, Soltysinski T, Sripakdeevong P, Tuszynska I, Weeks KM, Waldsich C, Wildauer M, Leontis NB, Westhof E (2012) RNA-puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. RNA 18:610-625 · doi:10.1261/rna.031054.111
[5] Daniluk P, Lesyng B (2011) A novel method to compare protein structures using local descriptors. BMC Bioinformatics 12(1):344 · doi:10.1186/1471-2105-12-344
[6] Dibrov S, McLean J, Hermann T (2011) Regulatory motif from the thymidylate synthase mRNA. Acta Crystallogr 67:97-104
[7] Duarte C, Pyle A (1998) Stepping through an RNA structure: a novel approach to conformational analysis. J Mol Biol 284(5):1465-1478 · doi:10.1006/jmbi.1998.2233
[8] Ferré F, Ponty Y, Lorenz WA, Clote P (2007) DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities. Nucleic Acids Res 35(2):W659-W668 · doi:10.1093/nar/gkm334
[9] Fisher NI (1996) Statistical analysis of circular data. Cambridge University Press, Cambridge
[10] Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22(21):2695-2696 · doi:10.1093/bioinformatics/btl461
[11] Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90-95 · doi:10.1109/MCSE.2007.55
[12] Jmol (2012) An open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
[13] Jovine L, Djordjevic S, Rhodes D (2000) The crystal structure of yeast phenylalanine tRNA at 2.0 A resolution: cleavage by Mg(2+) in 15-year old crystals. J Mol Biol 301(2):401-414 · doi:10.1006/jmbi.2000.3950
[14] Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 32(5):922-923 · doi:10.1107/S0567739476001873
[15] Kirillova S, Tosatto S, Carugo O (2010) FRASS: the web-server for RNA structural comparison. BMC Bioinformatics 11(1):327 · doi:10.1186/1471-2105-11-327
[16] Lima LMT, de Almeida Silva V, de Castro Palmieri L, Oliveira MCB, Foguel D, Polikarpov I (2010) Identification of a novel ligand binding motif in the transthyretin channel. Bioorg Med Chem 18(1):100-110 · doi:10.1016/j.bmc.2009.11.025
[17] Moult J, Fidelis K, Kryshtafovych A, Tramontano A (2011) Critical assessment of methods of protein structure prediction (CASP)-round IX. Proteins Struct Funct Bioinformatics 79(S10):1-5 · doi:10.1002/prot.23200
[18] Ortiz A, Strauss C, Olmea O (2002) MAMMOTH (Matching molecular models obtained from theory): an automated method for model comparison. Protein Sci 11(11):2606-2621 · doi:10.1110/ps.0215902
[19] Palmieri L, Freire J, Palhano F, Azevedo E, Foguel D, Lima L (2010) Crystal structure of human transthyretin variant A25T-#2
[20] Popenda M, Szachniuk M, Blazewicz M, Wasik S, Burke EK, Blazewicz J, Adamiak RW (2010) RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. BMC Bioinformatics 11(1):231 · doi:10.1186/1471-2105-11-231
[21] Popenda M, Szachniuk M, Antczak M, Purzycka K, Lukasiak P, Bartol N, Blazewicz J, Adamiak RW (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40(14):e112 · doi:10.1093/nar/gks339
[22] Prlic A, Yates A, Bliven SE, Rose PW, Jacobsen J, Troshin PV, Chapman M, Gao J, Koh CH, Foisy S, Holland R, Rimsa G, Heuer ML, Brandstätter-Müller H, Bourne PE, Willis S (2012) BioJava: an open-source framework for bioinformatics in 2012. Bioinformatics 28(20):2693-2695 · doi:10.1093/bioinformatics/bts494
[23] Rother K, Rother M, Boniecki M, Puton T, Bujnicki JM (2011) RNA and protein 3D structure modeling: similarities and differences. J Mol Model 17(9):2325-2336 · doi:10.1007/s00894-010-0951-x
[24] Scheraga H (1969) Calculation of polypeptide conformation. Harvey Lect 63:99-138
[25] Schrödinger, LLC (2012) The PyMOL molecular graphics system, Version 1.5.0.1
[26] Shi H, Moore PB (2000) The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. RNA 6(8):1091-1105 · doi:10.1017/S1355838200000364
[27] Wang C-W, Chen K-T, Lu CL (2010) iPARTS: an improved tool of pairwise alignment of RNA tertiary structures. Nucleic Acids Res 38(2):W340-W347 · doi:10.1093/nar/gkq483
[28] Westhof E, Auffinger P (2000) RNA tertiary structure. Encycl Anal Chem 45:5222-5232
[29] Williams D, Fleming I (1996) Spectroscopic methods in organic chemistry. McGraw-Hill, New York
[30] Williams SB, Vakonakis I, Golden SS, LiWang AC (2002) Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Proc Natl Acad Sci USA 99(24):15357-15362 · doi:10.1073/pnas.232517099
[31] Williams T, Kelley C, many others (2012) Gnuplot 4.6: an interactive plotting program. http://gnuplot.sourceforge.net/
[32] Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31(13):3370-3374 · doi:10.1093/nar/gkg571
[33] Zok T, Popenda M, Szachniuk M (2008) Comparison of RNA structures—concepts and measures. TU Clausthal Technical Report Series IfI-08-03:42-44 · Zbl 1339.92005
[34] Zok T, Szachniuk M, Antczak M (2011) Comparison of RNA structures in torsional angle space. Mach Learn Rep 01/2011:14-18
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.