Dzúrik, Martin An upper bound of a generalized upper Hamiltonian number of a graph. (English) Zbl 07442416 Arch. Math., Brno 57, No. 5, 299-311 (2021). MSC: 05C12 05C45 PDF BibTeX XML Cite \textit{M. Dzúrik}, Arch. Math., Brno 57, No. 5, 299--311 (2021; Zbl 07442416) Full Text: DOI arXiv OpenURL
Zhang, Xuefei; Gong, Lei; Wang, Suyun; Zhan, Huan; Chen, Ping A sufficient condition on traceable. (Chinese. English summary) Zbl 07404403 Math. Pract. Theory 51, No. 5, 265-269 (2021). MSC: 05C38 05C40 05C35 05C07 PDF BibTeX XML Cite \textit{X. Zhang} et al., Math. Pract. Theory 51, No. 5, 265--269 (2021; Zbl 07404403) OpenURL
Goedgebeur, Jan; Ozeki, Kenta; Van Cleemput, Nico; Wiener, Gábor On the minimum leaf number of cubic graphs. (English) Zbl 1419.05045 Discrete Math. 342, No. 11, 3000-3005 (2019). MSC: 05C05 05C40 90C27 PDF BibTeX XML Cite \textit{J. Goedgebeur} et al., Discrete Math. 342, No. 11, 3000--3005 (2019; Zbl 1419.05045) Full Text: DOI arXiv OpenURL
Mafuta, Phillip; Mukwembi, Simon; Munyira, Sheunesu Spanning paths in graphs. (English) Zbl 1405.05088 Discrete Appl. Math. 255, 278-282 (2019). MSC: 05C38 05C07 05C35 PDF BibTeX XML Cite \textit{P. Mafuta} et al., Discrete Appl. Math. 255, 278--282 (2019; Zbl 1405.05088) Full Text: DOI OpenURL
Zhou, Qiannan; Wang, Ligong; Lu, Yong Some sufficient conditions on Hamiltonian and traceable graphs. (English) Zbl 1413.05217 Adv. Math., Beijing 47, No. 1, 31-40 (2018). MSC: 05C45 05C50 PDF BibTeX XML Cite \textit{Q. Zhou} et al., Adv. Math., Beijing 47, No. 1, 31--40 (2018; Zbl 1413.05217) Full Text: DOI OpenURL
Fujie, Futaba On traceable and upper traceable numbers of graphs. (English) Zbl 1374.05077 Ars Comb. 123, 97-114 (2015). Reviewer: Linda Lesniak (Kalamazoo) MSC: 05C12 05C45 PDF BibTeX XML Cite \textit{F. Fujie}, Ars Comb. 123, 97--114 (2015; Zbl 1374.05077) OpenURL
Hua, Hongbo; Zhang, Libing The total number of matchings in triangle graph of a connected graph. (English) Zbl 1349.05270 Ars Comb. 118, 243-251 (2015). MSC: 05C70 05C40 PDF BibTeX XML Cite \textit{H. Hua} and \textit{L. Zhang}, Ars Comb. 118, 243--251 (2015; Zbl 1349.05270) OpenURL
Fujie, Futaba A note on bounds for the maximum traceable number of a graph. (English) Zbl 1313.05089 Ars Comb. 113, 353-359 (2014). MSC: 05C12 05C45 PDF BibTeX XML Cite \textit{F. Fujie}, Ars Comb. 113, 353--359 (2014; Zbl 1313.05089) OpenURL
Horňák, Mirko; Marczyk, Antoni; Schiermeyer, Ingo; Woźniak, Mariusz Dense arbitrarily vertex decomposable graphs. (English) Zbl 1256.05136 Graphs Comb. 28, No. 6, 807-821 (2012). MSC: 05C42 05C69 05C38 05C70 PDF BibTeX XML Cite \textit{M. Horňák} et al., Graphs Comb. 28, No. 6, 807--821 (2012; Zbl 1256.05136) Full Text: DOI OpenURL
Okamoto, Futaba; Zhang, Ping The total traceable number of a graph. (English) Zbl 1242.05082 Util. Math. 85, 13-31 (2011). Reviewer: G. N. Prasanth (Alappuzha) MSC: 05C12 05C45 PDF BibTeX XML Cite \textit{F. Okamoto} and \textit{P. Zhang}, Util. Math. 85, 13--31 (2011; Zbl 1242.05082) OpenURL
Marczyk, Antoni An Ore-type condition for arbitrarily vertex decomposable graphs. (English) Zbl 1179.05089 Discrete Math. 309, No. 11, 3588-3594 (2009). MSC: 05C70 PDF BibTeX XML Cite \textit{A. Marczyk}, Discrete Math. 309, No. 11, 3588--3594 (2009; Zbl 1179.05089) Full Text: DOI OpenURL
Okamoto, Futaba; Zhang, Ping On upper traceable numbers of graphs. (English) Zbl 1199.05095 Math. Bohem. 133, No. 4, 389-405 (2008). MSC: 05C12 05C45 PDF BibTeX XML Cite \textit{F. Okamoto} and \textit{P. Zhang}, Math. Bohem. 133, No. 4, 389--405 (2008; Zbl 1199.05095) Full Text: EuDML EMIS OpenURL
Okamoto, Futaba; Zhang, Ping; Saenpholphat, Varaporn The upper traceable number of a graph. (English) Zbl 1174.05040 Czech. Math. J. 58, No. 1, 271-287 (2008). MSC: 05C12 05C45 PDF BibTeX XML Cite \textit{F. Okamoto} et al., Czech. Math. J. 58, No. 1, 271--287 (2008; Zbl 1174.05040) Full Text: DOI EuDML Link OpenURL
Okamoto, Futaba; Zhang, Ping Graphs with prescribed traceable number and related parameters. (English) Zbl 1144.05027 Congr. Numerantium 188, 11-32 (2007). Reviewer: Frank Plastria (Brussels) MSC: 05C12 05C45 PDF BibTeX XML Cite \textit{F. Okamoto} and \textit{P. Zhang}, Congr. Numerantium 188, 11--32 (2007; Zbl 1144.05027) OpenURL
Marczyk, Antoni A note on arbitrarily vertex decomposable graphs. (English) Zbl 1134.05083 Opusc. Math. 26, No. 1, 109-118 (2006). MSC: 05C70 PDF BibTeX XML Cite \textit{A. Marczyk}, Opusc. Math. 26, No. 1, 109--118 (2006; Zbl 1134.05083) OpenURL
Saenpholphat, Varaporn; Okamoto, Futaba; Zhang, Ping Measures of traceability in graphs. (English) Zbl 1112.05032 Math. Bohem. 131, No. 1, 63-83 (2006). MSC: 05C12 05C45 PDF BibTeX XML Cite \textit{V. Saenpholphat} et al., Math. Bohem. 131, No. 1, 63--83 (2006; Zbl 1112.05032) Full Text: EuDML Link OpenURL
Sonntag, Martin Hamiltonicity and traceability of the lexicographic product of hypergraphs. (English) Zbl 0751.05072 J. Inf. Process. Cybern. 27, No. 5-6, 289-301 (1991). Reviewer: G.Schaar (Freiberg) MSC: 05C65 05C45 05C38 PDF BibTeX XML Cite \textit{M. Sonntag}, J. Inf. Process. Cybern. 27, No. 5--6, 289--301 (1991; Zbl 0751.05072) OpenURL
Hendry, George R. T. Scattering number and extremal non-Hamiltonian graphs. (English) Zbl 0655.05044 Discrete Math. 71, No. 2, 165-175 (1988). Reviewer: P.Horák MSC: 05C45 05C35 PDF BibTeX XML Cite \textit{G. R. T. Hendry}, Discrete Math. 71, No. 2, 165--175 (1988; Zbl 0655.05044) Full Text: DOI OpenURL
Skupien, Zdzislaw On maximal non-Hamiltonian graphs. (English) Zbl 0442.05045 Rostocker Math. Kolloq. 11, 97-106 (1979). MSC: 05C45 05C38 05C35 05C30 PDF BibTeX XML Cite \textit{Z. Skupien}, Rostocker Math. Kolloq. 11, 97--106 (1979; Zbl 0442.05045) OpenURL