×

A priori, de novo mathematical exploration of gene expression mechanism via regression viewpoint with briefly cataloged modeling antiquity. (English) Zbl 1352.62110

Summary: Various algorithms have been devised to mathematically model the dynamic mechanism of the gene expression data. Gillespie’s stochastic simulation (GSSA) has been exceptionally primal for chemical reaction synthesis with future ameliorations. Several other mathematical techniques such as differential equations, thermodynamic models and Boolean models have been implemented to optimally and effectively represent the gene functioning. We present a novel mathematical framework of gene expression, undertaking the mathematical modeling of the transcription and translation phases, which is a detour from conventional modeling approaches. These subprocesses are inherent to every gene expression, which is implicitly an experimental outcome. As we foresee, there can be modeled a generality about some basal translation or transcription values that correspond to a particular assay.

MSC:

62J05 Linear regression; mixed models
92B05 General biology and biomathematics

Software:

limma; Excel
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adam, J. A., A Mathematical Nature Walk (Princeton University Press, 2009). · Zbl 1181.00024
[2] Adam, J. A., Mathematics in nature: Modeling patterns in the natural world, Math. Intell.27(2) (2005) 81-82.
[3] Roth, C. M., Quantifying gene expression, Curr. Issues Molec. Biol.4 (2002) 93-100.
[4] Golub, T. R., Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science286(5439) (1999) 531-537.
[5] Khan, J., Wei, J. S., Ringnér, M.et al., Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nat. Med.7(6) (2001) 673-679.
[6] Watson, J. D. and Crick, F. H. C., Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid, Nature171(4356) (1953) 737-738.
[7] Nelson, D. L. and Cox, M. M. F., Lehninger Principles of Biochemistry, 4th edn. (Palgrave Macmillan, 2004).
[8] Jauhari, S. and Rizvi, S. A. M., Mining gene expression data focusing cancer therapeutics: A digest, IEEE/ACM Trans. Comput. Biol. Bioinform.11(3) (2014) 533-547.
[9] Jauhari, S. and Rizvi, S. A. M., An Indian eye to personalized medicine, Comput. Biol. Med.59 (2013) 211-220.
[10] Google, Google Cloud Platform \(|\) Genomics, https://cloud.google.com/genomics/.
[11] Chen, T., He, H. L. and Church, G. M., Modeling gene expression with differential equations, Pac. Symp. Biocomput. (1999) 29-40.
[12] Hartung, N.et al., Mathematical modeling of tumor growth and metastatic spreading: Validation in tumor-bearing mice, Cancer Res.74(22) (2014) 6397-6407.
[13] Goodwin, B. C., Oscillatory behavior in enzymatic control processes, Adv. Enzyme Regul.3 (1965) 425-437.
[14] Griffith, J. S., Mathematics of cellular control processes. I. Negative feedback to one gene, J. Theor. Biol.20(2) (1968) 202-208.
[15] Griffith, J. S., Mathematics of cellular control processes. II. Positive feedback to one gene, J. Theor. Biol.20(2) (1968) 209-216.
[16] Bintu, L., Buchler, N. E., Garcia, H. G.et al., Transcriptional regulation by the numbers: Models, Curr. Opin. Genet. Dev.15(2) (2005) 116-124.
[17] Bintu, L., Buchler, N. E., Garcia, H. G.et al., Transcriptional regulation by the numbers: Applications, Curr. Opin. Genet. Dev.15(2) (2005) 125-135.
[18] Zhou, X. and Su, Z., tCal: Transcriptional probability calculator using thermodynamic model, Bioinformatics24(22) (2008) 2639-2640.
[19] Ay, A. and Arnosti, D. N., Mathematical modeling of gene expression: A guide for the perplexed biologist, Crit. Rev. Biochem. Molec. Biol.46(2) (2011) 137-151.
[20] Kerr, M. K., Martin, M. and Churchill, G. A., Analysis of variance for gene expression microarray data, J. Comput. Biol.7(6) (2000) 819-837.
[21] Ji, H. and Liu, X. S., Analyzing ’omics data using hierarchical models, Nat. Biotechnol.28(4) (2010) 337-340.
[22] Luan, Y. and Li, H., Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data, Bioinformatics20(3) (2004) 332-339.
[23] Qu, Y. and Xu, S., Quantitative trait associated microarray gene expression data analysis, Molec. Biol. Evol.23(8) (2006) 1558-1573.
[24] Morozova, N., Zinovyev, A., Nonne, N., Pritchard, L.-L., Gorban, A. N. and Harel-Bellan, A., Kinetic signatures of micro-RNA modes of action, RNA18(9) (2012) 1635-1655.
[25] von der Haar, T., Mathematical and computational modelling of ribosomal movement and protein synthesis: An overview, Comput. Struct. Biotechnol. J.1(1) (2012) 1-7.
[26] Barnes, D. J. and Chu, D., Guide to Simulation and Modeling for Biosciences, (Springer, London, 2015), Doi: doi:10.1007/978-1-4471-6762-4.
[27] Gerst, I. and Levine, S. N., Kinetics of protein synthesis by polyribosomes, J. Theor. Biol.9(1) (1965) 16-36.
[28] Simha, R., Zimmerman, J. M. and Moacanin, J., Polymerization kinetics of biological macromolecules on templates, J. Chem. Phys.39(5) (1963) 1239.
[29] Zimmerman, J. M. and Simha, R., The kinetics of multicenter macromolecule growth along a template, J. Theor. Biol.9(2) (1965) 156-185.
[30] MacDonald, C. T., Gibbs, J. H. and Pipkin, A. C., Kinetics of biopolymerization on nucleic acid templates, Biopolymers6(1) (1968) 1-25.
[31] MacDonald, C. T. and Gibbs, J. H., Concerning the kinetics of polypeptide synthesis on polyribosomes, Biopolymers7(5) (1969) 707-725.
[32] Krakauer, D. C. and Jansen, V. A. A., Red queen dynamics of protein translation, J. Theor. Biol.218(1) (2002) 97-109.
[33] Singh, U. N., Polyribosomes and unstable messenger RNA: A stochastic model of protein synthesis, J. Theor. Biol.25(3) (1969) 444-460.
[34] Singh, U. N., Polyribosomes and unstable messenger RNA III: Temporal relationship between the syntheses of mRNA and inducible enzymet, J. Theor. Biol.40(3) (1973) 553-571.
[35] Singh, U. N. and Gupta, R. S., Polyribosomes and unstable messenger RNA II: Some further implications of the tape theory of protein synthesis, J. Theor. Biol.30(3) (1971) 603-619.
[36] Pienaar, E. and Viljoen, H. J., The tri-frame model, J. Theor. Biol.251(4) (2008) 616-627. · Zbl 1398.92081
[37] Gilchrist, M. A. and Wagner, A., A model of protein translation including codon bias, nonsense errors, and ribosome recycling, J. Theor. Biol.239(4) (2006) 417-434. · Zbl 1445.92108
[38] Bulmer, M., The selection-mutation-drift theory of synonymous codon usage, Genetics129(3) (1991) 897-907.
[39] Varenne, S. and Lazdunski, C., Effect of distribution of unfavourable codons on the maximum rate of gene expression by an heterologous organism, J. Theor. Biol.120(1) (1986) 99-110.
[40] Valleriani, A. and Lipowsky, R., Turnover of messenger RNA: Polysome statistics beyond the steady state, European Phys. Lett.89 (2010) 58,003-58,007.
[41] Farrance, I. and Frenkel, R., Uncertainty in measurement: A review of Monte Carlo simulation using Microsoft Excel for the calculation of uncertainties through functional relationships, including uncertainties in empirically derived constants, Clin. Biochem. Rev.35(1) (2014) 37-61.
[42] Singh, A. and Soltani, M., Quantifying intrinsic and extrinsic variability in stochastic gene expression models, PLoS One8(12) (2013).
[43] Dar, R. D.et al., Transcriptional burst frequency and burst size are equally modulated across the human genome, Proc. Natl. Acad. Sci.109(43) (2012) 17,454-17,459.
[44] Gedeon, T.et al., Delayed protein synthesis reduces the correlation between mRNA and protein fluctuations, Biophys. J.103(3) (2012) 377-385.
[45] Taniguchi, Y.et al., Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells, Science329(5991) (2010) 533-538.
[46] Maquat, L. E., Tarn, W. Y. and Isken, O., The pioneer round of translation: Features and functions, Cell142(3) (2010) 368-374.
[47] Stergachis, A. B.et al., Exonic transcription factor binding directs codon choice and affects protein evolution, Science342(6164) (2013) 1367-1372.
[48] Gillespie, D. T., A rigorous derivation of the chemical master equation, Phys. A Statist. Mech. Appl.188(1-3) (1992) 404-425.
[49] Komarov, I. and D’Souza, R. M., Accelerating the Gillespie exact stochastic simulation algorithm using hybrid parallel execution on graphics processing units, PLoS One7(11) (2012) 1-9.
[50] Kaufman, R. J., Control of gene expression at the level of translation initiation, Curr. Opin. Biotechnol.5(5) (1994) 550-557.
[51] Abaza, I. and Gebauer, F., Trading translation with RNA-binding proteins trading translation with RNA-binding proteins, RNA14 (2008) 404-409.
[52] Szostak, E. and Gebauer, F., Translational control by \(3{}^\prime \)-UTR-binding proteins, Brief. Funct. Genomics12(1) (2013) 58-65.
[53] Kohane, I. S., Kho, A. T. and Butte, A. J., Microarrays for an Integrative Genomics (MIT Press, 2003), https://mitpress.mit.edu/books/microarrays-integrative-genomics.
[54] Bewick, V., Cheek, L. and Ball, J., Statistics Review 7: Correlation and regression, Crit. Care7(6) (2003) 451-459.
[55] Crawford, S. L., Correlation and regression, Circulation114(19) (2006) 2083-2088.
[56] Johnson, R. A. and Wichern, D. W., Applied Multivariate Statistical Analysis, 5th edn. (Prentice Hall, 2002).
[57] Hidalgo, B. and Goodman, M., Multivariate or multivariable regression?Amer. J. Public Health103(1) (2013) 39-40.
[58] Pearson, K. and Lee, A., On the generalised probable error in multiple normal correlation, Biometrika6(1) (1908) 59.
[59] Allen, D. M., The relationship between variable selection and data augmentation and a method for prediction, Technometrics16(1) (1974) 125. · Zbl 0286.62044
[60] Segal, M. R., Dahlquist, K. D. and Conklin, B. R., Regression approaches for microarray data analysis, J. Comput. Biol.10(6) (2003) 961-980.
[61] Smyth, G., Limma: Linear models for microarray data, in Bioinforma Comput. Biol. Solut. Using R Bioconductor2005 (2005) 397-420.
[62] Wolkenhauer, O., Mathematical modelling in the post-genome era: Understanding genome expression and regulation — A system theoretic approach, Biosystems65(1) (2002) 1-18.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.