×

A novel method for calculating relative free energy of similar molecules in two environments. (English) Zbl 1376.80009

Summary: Calculating relative free energies is a topic of substantial interest and has many applications including solvation and binding free energies, which are used in computational drug discovery. However, there remain the challenges of accuracy, simple implementation, robustness and efficiency, which prevent the calculations from being automated and limit their use. Here we present an exact and complete decoupling analysis in which the partition functions of the compared systems decompose into the partition functions of the common and different subsystems. This decoupling analysis is applicable to submolecules with coupled degrees of freedom such as the methyl group and to any potential function (including the typical dihedral potentials), enabling to remove less terms in the transformation which results in a more efficient calculation. Then we show mathematically, in the context of partition function decoupling, that the two compared systems can be simulated separately, eliminating the need to design a composite system. We demonstrate the decoupling analysis and the separate transformations in a relative free energy calculation using MD simulations for a general force field and compare to another calculation and to experimental results. We present a unified soft-core technique that ensures the monotonicity of the numerically integrated function (analytical proof) which is important for the selection of intermediates. We show mathematically that in this soft-core technique the numerically integrated function can be non-steep only when we transform the systems separately, which can simplify the numerical integration. Finally, we show that when the systems have rugged energy landscape they can be equilibrated without introducing another sampling dimension which can also enable to use the simulation results for other free energy calculations.

MSC:

80A50 Chemistry (general) in thermodynamics and heat transfer
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)

Software:

Gromacs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids (1987), Clarendon press Oxford · Zbl 0703.68099
[2] Binder, K.; Heermann, D. W., Monte Carlo Simulation in Statistical Physics: An Introduction (2010), Springer · Zbl 0884.65003
[3] Landau, D. P.; Binder, K., A Guide to Monte Carlo Simulations in Statistical Physics (2014), Cambridge University Press
[4] Frenkel, D.; Smit, B., Understanding Molecular Simulation: From Algorithms to Applications (1996), Academic Press, Inc.: Academic Press, Inc. Orlando, FL, USA · Zbl 0889.65132
[5] Newman, M.; Barkema, G., Monte Carlo Methods in Statistical Physics (1999), Oxford University Press: Oxford University Press New York, USA, (Chapter 1-4) · Zbl 1012.82019
[6] Chipot, C.; Pohorille, A., Free Energy Calculations: Theory and Applications in Chemistry and Biology, Vol. 86 (2007), Springer
[7] Zuckerman, D. M., Annu. Rev. Biophys., 40, 41-62 (2011)
[8] Kollman, P., Chem. Rev., 93, 7, 2395-2417 (1993)
[9] Deng, Y.; Roux, B., J. Phys. Chem. B, 113, 8, 2234-2246 (2009)
[10] Woods, C.; Malaisree, M.; Hannongbua, S.; Mulholland, A., J. Chem. Phys., 134, 5, 4114 (2011)
[11] Straatsma, T.; Berendsen, H., J. Chem. Phys., 89, 5876 (1988)
[12] Khavrutskii, I. V.; Wallqvist, A., J. Chem. Theory Comput., 6, 11, 3427-3441 (2010)
[13] Jorgensen, W. L.; Briggs, J. M.; Gao, J., J. Am. Chem. Soc., 109, 22, 6857-6858 (1987)
[14] Chodera, J. D.; Mobley, D. L.; Shirts, M. R.; Dixon, R. W.; Branson, K.; Pande, V. S., Curr. Opin. Struct. Biol., 21, 2, 150-160 (2011)
[15] Zwanzig, R., J. Chem. Phys., 22, 1420 (1954)
[16] Kirkwood, J., J. Chem. Phys., 3, 300 (1935) · Zbl 0012.04704
[17] Straatsma, T.; McCammon, J., J. Chem. Phys., 95, 1175 (1991)
[18] Bennett, C., J. Comput. Phys., 22, 2, 245-268 (1976)
[19] Kumar, S.; Rosenberg, J.; Bouzida, D.; Swendsen, R.; Kollman, P., J. Comput. Chem., 13, 8, 1011-1021 (1992)
[20] Wang, F.; Landau, D., Phys. Rev. Lett., 86, 10, 2050 (2001)
[21] Landau, D.; Tsai, S.-H.; Exler, M., Amer. J. Phys., 72, 10, 1294-1302 (2004)
[22] Wu, P.; Hu, X.; Yang, W., J. Phys. Chem. Lett., 2, 17, 2099-2103 (2011)
[23] Abrams, J. B.; Rosso, L.; Tuckerman, M. E., J. Chem. Phys., 125, 7, 074115 (2006)
[24] Jarzynski, C., Phys. Rev. Lett., 78, 14, 2690 (1997)
[25] Crooks, G. E., Phys. Rev. E, 61, 3, 2361 (2000)
[26] Jorgensen, W. L., Acc. Chem. Res., 42, 6, 724-733 (2009)
[27] Ferrenberg, A.; Swendsen, R., Phys. Rev. Lett., 61, 23, 2635 (1988)
[28] Hansmann, U., Chem. Phys. Lett., 281, 1-3, 140-150 (1997)
[29] Earl, D.; Deem, M., Phys. Chem. Chem. Phys., 7, 23, 3910-3916 (2005)
[30] Shirts, M. R., Computational Drug Discovery and Design, 425-467 (2012), Springer
[31] Pearlman, D. A., J. Phys. Chem., 98, 5, 1487-1493 (1994)
[32] Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M., J. Phys. Chem. B, 107, 35, 9535-9551 (2003)
[33] Farhi, A.; Hed, G.; Bon, M.; Caticha, N.; Mak, C.; Domany, E., Physica A, 392, 5836-5844 (2013), (submitted to PRE on May 2012)
[36] Liu, S.; Wu, Y.; Lin, T.; Abel, R.; Redmann, J. P.; Summa, C. M.; Jaber, V. R.; Lim, N. M.; Mobley, D. L., J. Comput. Aid. Mol. Des., 27, 9, 755-770 (2013)
[37] Schäfer, H.; Van Gunsteren, W. F.; Mark, A. E., J. Comput. Chem., 20, 15, 1604-1617 (1999)
[38] Farhi, A.; Singh, B., New J. Phys., 18, 023039 (2016)
[39] Buelens, F. P.; Grubmüller, H., J. Comput. Chem., 33, 1, 25-33 (2012)
[40] Mugnai, M. L.; Elber, R., J. Chem. Theory Comput., 8, 9, 3022-3033 (2012)
[41] Mayo, S. L.; Olafson, B. D.; Goddard, W. A., J Phys. Chem., 94, 26, 8897-8909 (1990)
[42] Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K., J. Comput. Chem., 26, 16, 1781-1802 (2005)
[43] Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E., J. Chem. Theory Comput., 4, 3, 435-447 (2008)
[44] Abraham, M.; Van Der Spoel, D.; Lindahl, E.; Hess, B., GROMACS User Manual Version, 5, 4 (2015)
[45] Hünenberger, P. H.; McCammon, J. A., J. Chem. Phys., 110, 4, 1856-1872 (1999)
[46] Malde, A. K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P. C.; Oostenbrink, C.; Mark, A. E., J. Chem. Theory Comput., 7, 12, 4026-4037 (2011)
[47] Rizzo, R. C.; Aynechi, T.; Case, D. A.; Kuntz, I. D., J. Chem. Theory Comput., 2, 1, 128-139 (2006)
[48] Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van Gunsteren, W. F., Chem. Phys. Lett., 222, 6, 529-539 (1994)
[49] Pathria, R. K., Statistical Mechanics (1972), Butterworth-Heinemann · Zbl 0862.00007
[50] Fukunishi, H.; Watanabe, O.; Takada, S., J. Chem. Phys., 116, 9058 (2002)
[51] Trebst, S.; Troyer, M.; Hansmann, U., J. Chem. Phys., 124, 174903 (2006)
[52] Nadler, W.; Hansmann, U. H., J. Phys. Chem. B, 112, 34, 10386-10387 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.