×

Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid. (English) Zbl 0622.76121

A flow circulation in a closed circular-cylindrical container is produced by a rotating lid. After a transient phase from an initial state at rest a steady-flow situation is reached for a certain parameter range. In a subspace of this parameter range an undulating meridional flow occurs that may exhibit at the axis of rotation one or several separation bubbles which are interpreted as vortex breakdown.
Numerical calculations on the basis of the Navier-Stokes equations for incompressible homogeneous and Boussinesq fluids enable the study of the influence of various flow parameters on the properties of these separation bubbles. The parameters varied are the Reynolds, Prandtl, Rayleigh, and Eckert numbers together with the ratio of height to radius of the container. The stability of the fluid motions in these experiments with respect to non-axisymmetric disturbances strongly suggests that the corresponding axisymmetric solutions of the Navier-Stokes equations are stable configurations.

MSC:

76U05 General theory of rotating fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1063/1.1693752 · Zbl 0235.76014 · doi:10.1063/1.1693752
[2] Pao, Trans. ASME E: J. Appl. Mech. 37 pp 480– (1970) · doi:10.1115/1.3408531
[3] DOI: 10.1016/0045-7930(77)90018-4 · Zbl 0368.76041 · doi:10.1016/0045-7930(77)90018-4
[4] DOI: 10.1063/1.862033 · doi:10.1063/1.862033
[5] DOI: 10.1017/S0022112082000676 · doi:10.1017/S0022112082000676
[6] DOI: 10.1007/BF00571864 · doi:10.1007/BF00571864
[7] Dorfman, Izv. Acad. Nauk. SSSR, Mek. Zhid. i Gaza 1 pp 63– (1966)
[8] DOI: 10.1017/S0022112066001290 · Zbl 0139.43601 · doi:10.1017/S0022112066001290
[9] Bossel, AIAA J. 11 pp 1161– (1973)
[10] BertelÀ, Trans ASME I: J. Fluids Engng 104 pp 31– (1982)
[11] Maxworthy, Astron. Acta 17 pp 363– (1972)
[12] Lugt, Trans. ASME E: J. Appl. Mech. 49 pp 921– (1982) · doi:10.1115/1.3162645
[13] DOI: 10.1007/BF01178557 · Zbl 0269.76070 · doi:10.1007/BF01178557
[14] DOI: 10.1119/1.14276 · doi:10.1119/1.14276
[15] Leibovich, AIAA J. 22 pp 1192– (1984)
[16] DOI: 10.1146/annurev.fl.10.010178.001253 · doi:10.1146/annurev.fl.10.010178.001253
[17] DOI: 10.1016/0017-9310(76)90168-X · Zbl 0328.76066 · doi:10.1016/0017-9310(76)90168-X
[18] DOI: 10.1017/S0022112076000360 · Zbl 0336.76007 · doi:10.1017/S0022112076000360
[19] Vettin, Poggendorfs Ann. der Physik. 102 pp 246– (1857)
[20] Schmieden, Z. Angew. Math. Mech. 8 pp 460– (1928)
[21] Sarpkaya, AIAA J. 9 pp 1792– (1971)
[22] DOI: 10.1017/S0022112073002296 · Zbl 0265.76026 · doi:10.1017/S0022112073002296
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.