×

Subelliptic operators on Lie groups: Variable coefficients. (English) Zbl 0842.43005

Let \(G\) be a Lie group with Lie algebra \(\mathfrak g\), let \(a_1, \dots, a_n\) be an algebraic basis of \(\mathfrak g\) and \(dg\) a right Haar measure. The authors consider the second-order subelliptic differential operator \(H = \sum_{\alpha : |\alpha|\leq 2} c_\alpha A^\alpha\) with real bounded coefficients \(c_\alpha : G \to \mathbb{R}\), where \(A_i = dL(a_i)\) are the corresponding generators of the left translation by \(G\) on one of the Banach spaces \(L_p(G)\), \(p \in [1,\infty)\). The authors prove that if the principal coefficients \(\{C_\alpha : |\alpha |= 2\}\) are left differentiable in the directions \(a_1,\dots, a_n\) with bounded derivates, then the operator \(H\) has a family of semigroup generator extensions on the \(L_p\)-spaces, and the corresponding holomorphic semigroups \(\{S(t)\),
\(t \geq 0\}\) are given by the positive integral kernel \[ (S(t) \varphi) (g) = \int_G K_t (g;h) \varphi(h) dh. \]

MSC:

43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
47D06 One-parameter semigroups and linear evolution equations
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
65H10 Numerical computation of solutions to systems of equations
22E25 Nilpotent and solvable Lie groups
35B45 A priori estimates in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arendt, W., Batty, C. J. K., and Robinson, D. W.: Positive semigroups generated by elliptic operator on Lie groups, J. Operator Theory 23 (1990), 369-407. · Zbl 0748.47034
[2] Bony, J. M.: Principle de maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277-304. · Zbl 0176.09703
[3] Bratteli, O. and Robinson, D. W.: Second-order elliptic operators and heat kernels on Lie groups, Trans. Amer. Soc. 325 (1991), 683-713. · Zbl 0739.22009 · doi:10.2307/2001644
[4] Bratteli, O. and Robinson, D. W.: Operators Algebras and Quantum Statistical Mechanics I, 2nd edn, Springer-Verlag, New York, 1987. · Zbl 0905.46046
[5] Butzer, P. L. and Berens, H.: Semi-groups of Operators and Approximation, Springer-Verlag, New York, 1967. · Zbl 0164.43702
[6] Carathéodory, C.: Untersuchungen Über die Grundlagen der Thermodynamik, Math. Ann. 67 (1909), 355-386. · doi:10.1007/BF01450409
[7] Cycon, H. L., Froese, R. G., Kirsch, W., and Simon, B.: Schrödinger Operators, Springer-Verlag, New York, 1987. · Zbl 0619.47005
[8] Carlen, E. A., Kusuoka, A., and Stroock, D. W.: Upper bounds for symmetric Markov transition functions, Ann. Inst. Henri Poincaré. Prob. Stat. 2 (1987), 245-287. · Zbl 0634.60066
[9] Davies, E. B.: Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math. 109 (1987), 545-570. · Zbl 0648.58037 · doi:10.2307/2374567
[10] Davies, E. B.: Pointwise bounds on the space and time derivatives of heat kernels, J. Operator Theory 21 (1989), 367-378. · Zbl 0702.35106
[11] Davies, E. B.: Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989. · Zbl 0699.35006
[12] DeLeeuw, K. and Mirkil, H.: A priori estimates for differential operators in L ?-norms, Illinois J. Math. 8 (1964), 112-124. · Zbl 0131.33202
[13] ter Elst, A. F. M. and Robinson, D. W.: Subelliptic operators on Lie groups: regularity, J. Austral. Math. Soc. 57 (1994), 179-229. · Zbl 0832.43008 · doi:10.1017/S1446788700037514
[14] ter Elst, A. F. M. and Robinson, D. W.: Complex subelliptic operators on Lie groups, Research Report, Australian National University, CMA-MR4-92, 1992. · Zbl 0816.43001
[15] ter Elst, A. F. M. and Robinson, D. W.: Subcoercivity and subelliptic operators on Lie groups, Poten. Anal. 3 (1994), 283-337. · Zbl 0923.22005 · doi:10.1007/BF01468248
[16] ter Elst, A. F. M. and Robinson, D. W.: Subcoercive and subelliptic operators on Lie groups: variable coefficients, Publ. RIMS, Kyoto Univ. 29 (1993), 745-801. · Zbl 0816.43002 · doi:10.2977/prims/1195166574
[17] Fabes, E. B. and Stroock, D. W.: A new proof of Moser’s Harnack inequality using the old ideas of Nash, Arch. Rat. Mech. Anal. 96 (1986), 327-338. · Zbl 0652.35052 · doi:10.1007/BF00251802
[18] Jerison, D. S. and Sánchez-Calle, A.: Estimates for the heat kernel for a sum of squares of vector fields, Ind. Univ. J. Math. 35 (1986), 835-854. · Zbl 0639.58026 · doi:10.1512/iumj.1986.35.35043
[19] Jørgensen, P. E. T.: Representation of differential operators on a Lie group, J. Funct. Anal. 20 (1975), 105-135. · Zbl 0311.43003 · doi:10.1016/0022-1236(75)90045-2
[20] Nash, J.: Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954. · Zbl 0096.06902 · doi:10.2307/2372841
[21] Nelson, E.: Analytic vectors, Ann. Math. 70 (1959), 572-615. · Zbl 0091.10704 · doi:10.2307/1970331
[22] Norris, J. R. and Stroock, D. W.: Estimates on the fundamental solution to heat flows with uniformly elliptic coefficients, Preprint (1990). · Zbl 0694.35075
[23] Ornstein, D.: A non-inequality for differential operators in the L 1-norm, Arch. Rat. Mech. Anal. 11 (1962), 40-49. · Zbl 0106.29602 · doi:10.1007/BF00253928
[24] Ouhabaz, E.-M.: L ?-contractivity of semigroups generated by sectorial forms, J. London Math. Soc. 46 (1992), 529-542. · Zbl 0788.47034 · doi:10.1112/jlms/s2-46.3.529
[25] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[26] Pesenson, I. Z.: On interpolation spaces on Lie groups, Soviet Math. Dokl. 20 (1979), 611-616. · Zbl 0432.46037
[27] Reed, M. and Simon, B.: Methods of Modern Mathematical physics II, Academic Press, New York, 1975. · Zbl 0308.47002
[28] Robinson, D. W.: Elliptic Operators and Lie Groups, Oxford Univ. Press, Oxford, 1991. · Zbl 0747.47030
[29] Robinson, D. W.: Elliptic differential operators on Lie groups, J. Funct. Anal. 97 (1991), 373-402. · Zbl 0764.47025 · doi:10.1016/0022-1236(91)90008-S
[30] Rothschild, L. P. and Stein, E. M.: Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1977), 247-320. · Zbl 0346.35030 · doi:10.1007/BF02392419
[31] Saloff-Coste, L. and Stroock, D. W.: Operateurs uniformement sous-elliptiques sur les groupes de Lie, J. Funct. Anal. 98 (1991), 97-121. · Zbl 0734.58041 · doi:10.1016/0022-1236(91)90092-J
[32] Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1991), 143-160. · Zbl 0582.58004 · doi:10.1007/BF01388721
[33] Stewart, B.: Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc. 199 (1974), 141-161. · Zbl 0264.35043 · doi:10.1090/S0002-9947-1974-0358067-4
[34] Stroock, D. W.: Estimates on the heat kernel for second order divergence form operators, Lecture notes (1990).
[35] Trèves, F.: Introduction to Pseudodifferential and Fourier Integral Operators I, Plenum Press, New York, 1980. · Zbl 0453.47027
[36] Varopoulos, N. Th.: Analysis on Lie groups, J. Funct. Anal. 76 (1988), 346-410. · Zbl 0634.22008 · doi:10.1016/0022-1236(88)90041-9
[37] Varopoulos, N. Th., Saloff-Coste, L. and Coulhon, T.: Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992. · Zbl 0813.22003
[38] Yosida, K.: Functional Analysis, 4th edn, Springer-Verlag, New York, 1974. · Zbl 0286.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.