Bouin, E.; Dolbeault, J.; Lafleche, L.; Schmeiser, C. Hypocoercivity and sub-exponential local equilibria. (English) Zbl 07300273 Monatsh. Math. 194, No. 1, 41-65 (2021). MSC: 82C40 76P05 35H10 35Q84 35A23 PDF BibTeX XML Cite \textit{E. Bouin} et al., Monatsh. Math. 194, No. 1, 41--65 (2021; Zbl 07300273) Full Text: DOI
Guzman, Patricio; Rosier, Lionel Null controllability of the structurally damped wave equation on the two-dimensional torus. (English) Zbl 07299441 SIAM J. Control Optim. 59, No. 1, 131-155 (2021). MSC: 35Q74 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{P. Guzman} and \textit{L. Rosier}, SIAM J. Control Optim. 59, No. 1, 131--155 (2021; Zbl 07299441) Full Text: DOI
Bonnet, Benoît; Frankowska, Hélène Differential inclusions in Wasserstein spaces: the Cauchy-Lipschitz framework. (English) Zbl 07283594 J. Differ. Equations 271, 594-637 (2021). Reviewer: Andrej V. Plotnikov (Odessa) MSC: 49J45 49J21 28B20 34A60 34G20 49Q22 60B05 PDF BibTeX XML Cite \textit{B. Bonnet} and \textit{H. Frankowska}, J. Differ. Equations 271, 594--637 (2021; Zbl 07283594) Full Text: DOI
Drogoul, Audric; Veltz, Romain Exponential stability of the stationary distribution of a mean field of spiking neural network. (English) Zbl 1451.35025 J. Differ. Equations 270, 809-842 (2021). MSC: 35B40 35R09 35Q49 92B20 PDF BibTeX XML Cite \textit{A. Drogoul} and \textit{R. Veltz}, J. Differ. Equations 270, 809--842 (2021; Zbl 1451.35025) Full Text: DOI
Alonso, Ricardo; Bagland, Véronique; Lods, Bertrand Long time dynamics for the Landau-Fermi-Dirac equation with hard potentials. (English) Zbl 1451.35153 J. Differ. Equations 270, 596-663 (2021). MSC: 35Q49 35B40 35B65 82C31 35Q82 PDF BibTeX XML Cite \textit{R. Alonso} et al., J. Differ. Equations 270, 596--663 (2021; Zbl 1451.35153) Full Text: DOI
Modena, Stefano On some recent results concerning non-uniqueness for the transport equation. (English) Zbl 07315506 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 562-568 (2020). MSC: 35A02 35F10 PDF BibTeX XML Cite \textit{S. Modena}, AIMS Ser. Appl. Math. 10, 562--568 (2020; Zbl 07315506)
Bianchini, Stefano; Bonicatto, Paolo Untangling of trajectories for non-smooth vector fields and Bressan’s compactness conjecture. (English) Zbl 07315476 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 312-327 (2020). MSC: 35F10 35L03 28A50 35D30 PDF BibTeX XML Cite \textit{S. Bianchini} and \textit{P. Bonicatto}, AIMS Ser. Appl. Math. 10, 312--327 (2020; Zbl 07315476)
Engquist, Bjorn; Yang, Yunan Seismic imaging and optimal transport. (English) Zbl 07310890 ICCM Not. 8, No. 1, 27-49 (2020). MSC: 65K10 86A15 86A22 PDF BibTeX XML Cite \textit{B. Engquist} and \textit{Y. Yang}, ICCM Not. 8, No. 1, 27--49 (2020; Zbl 07310890) Full Text: DOI
Amorim, Paulo Predator-prey interactions with hunger structure. (English) Zbl 07307305 SIAM J. Appl. Math. 80, No. 6, 2631-2656 (2020). MSC: 92D25 92D40 35L60 PDF BibTeX XML Cite \textit{P. Amorim}, SIAM J. Appl. Math. 80, No. 6, 2631--2656 (2020; Zbl 07307305) Full Text: DOI
Chartier, Philippe; Crouseilles, Nicolas; Lemou, Mohammed; Méhats, Florian Averaging of highly-oscillatory transport equations. (English) Zbl 07305669 Kinet. Relat. Models 13, No. 6, 1107-1133 (2020). MSC: 35 82B40 35Q83 PDF BibTeX XML Cite \textit{P. Chartier} et al., Kinet. Relat. Models 13, No. 6, 1107--1133 (2020; Zbl 07305669) Full Text: DOI
Aguillon, Nina; Guihéneuf, Pierre-Antoine Dynamical behavior of a nondiffusive scheme for the advection equation. (English) Zbl 07303550 Confluentes Math. 12, No. 1, 3-29 (2020). MSC: 37M10 65M15 65P40 PDF BibTeX XML Cite \textit{N. Aguillon} and \textit{P.-A. Guihéneuf}, Confluentes Math. 12, No. 1, 3--29 (2020; Zbl 07303550) Full Text: DOI
Du, Ning; Guo, Xu; Wang, Hong Fast upwind and Eulerian-Lagrangian control volume schemes for time-dependent directional space-fractional advection-dispersion equations. (English) Zbl 07303057 J. Comput. Phys. 405, Article ID 109127, 15 p. (2020). MSC: 65M08 35R09 26A33 76S05 PDF BibTeX XML Cite \textit{N. Du} et al., J. Comput. Phys. 405, Article ID 109127, 15 p. (2020; Zbl 07303057) Full Text: DOI
Liu, Chang; Zhu, Yajun; Xu, Kun Unified gas-kinetic wave-particle methods. I: Continuum and rarefied gas flow. (English) Zbl 07302289 J. Comput. Phys. 401, Article ID 108977, 29 p. (2020). MSC: 76M28 76P05 76N15 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Comput. Phys. 401, Article ID 108977, 29 p. (2020; Zbl 07302289) Full Text: DOI
Koba, Hajime On generalized diffusion and heat systems on an evolving surface with a boundary. (English) Zbl 07286642 Q. Appl. Math. 78, No. 4, 617-640 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q79 35K59 35M33 35A15 80A19 76R50 76T10 PDF BibTeX XML Cite \textit{H. Koba}, Q. Appl. Math. 78, No. 4, 617--640 (2020; Zbl 07286642) Full Text: DOI
Henderson, Christopher; Snelson, Stanley; Tarfulea, Andrei Local solutions of the Landau equation with rough, slowly decaying initial data. (English. French summary) Zbl 07283945 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 6, 1345-1377 (2020). MSC: 35Q49 35Q20 35A09 35B65 35A01 35A02 82C40 PDF BibTeX XML Cite \textit{C. Henderson} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 6, 1345--1377 (2020; Zbl 07283945) Full Text: DOI
Modena, Stefano; Sattig, Gabriel Convex integration solutions to the transport equation with full dimensional concentration. (English) Zbl 07283935 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 5, 1075-1108 (2020). Reviewer: Antoine Tonnoir (Rouen) MSC: 35Q49 49J20 35A02 PDF BibTeX XML Cite \textit{S. Modena} and \textit{G. Sattig}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 5, 1075--1108 (2020; Zbl 07283935) Full Text: DOI
Cotter, Colin; Crisan, Dan; Holm, Darryl D.; Pan, Wei; Shevchenko, Igor A particle filter for stochastic advection by Lie transport: a case study for the damped and forced incompressible two-dimensional Euler equation. (English) Zbl 07283166 SIAM/ASA J. Uncertain. Quantif. 8, 1446-1492 (2020). MSC: 62P35 60H15 76D05 35Q31 35Q35 65C35 65C40 PDF BibTeX XML Cite \textit{C. Cotter} et al., SIAM/ASA J. Uncertain. Quantif. 8, 1446--1492 (2020; Zbl 07283166) Full Text: DOI
Fan, Yuwei; Li, Ruo; Zheng, Lingchao A nonlinear hyperbolic model for radiative transfer equation in slab geometry. (English) Zbl 07282655 SIAM J. Appl. Math. 80, No. 6, 2388-2419 (2020). Reviewer: Vladimir Čadež (Beograd) MSC: 35Q60 35L60 35L02 35L40 35L45 35L65 78A10 78A40 78M05 78M22 82C70 PDF BibTeX XML Cite \textit{Y. Fan} et al., SIAM J. Appl. Math. 80, No. 6, 2388--2419 (2020; Zbl 07282655) Full Text: DOI
Coron, Jean-Michel; Keimer, Alexander; Pflug, Lukas Nonlocal transport equations – existence and uniqueness of solutions and relation to the corresponding conservation laws. (English) Zbl 07279613 SIAM J. Math. Anal. 52, No. 6, 5500-5532 (2020). MSC: 35Q49 35L03 35L65 35L67 35D30 35B35 35A01 35A02 PDF BibTeX XML Cite \textit{J.-M. Coron} et al., SIAM J. Math. Anal. 52, No. 6, 5500--5532 (2020; Zbl 07279613) Full Text: DOI
Burgos, Rhonald Vertex correction and conductivity in 2D Dirac-like systems with non-conserving spin disorder. (English) Zbl 1448.81491 Phys. Lett., A 384, No. 22, Article ID 126428, 5 p. (2020). MSC: 81V70 81V65 PDF BibTeX XML Cite \textit{R. Burgos}, Phys. Lett., A 384, No. 22, Article ID 126428, 5 p. (2020; Zbl 1448.81491) Full Text: DOI
Molina, Mario I. The fractional discrete nonlinear Schrödinger equation. (English) Zbl 1448.35557 Phys. Lett., A 384, No. 8, Article ID 126180, 5 p. (2020). MSC: 35R11 35Q55 PDF BibTeX XML Cite \textit{M. I. Molina}, Phys. Lett., A 384, No. 8, Article ID 126180, 5 p. (2020; Zbl 1448.35557) Full Text: DOI
Aggarwal, Aekta; Sahoo, Manas Ranjan; Sen, Abhrojyoti; Vaidya, Ganesh Solutions with concentration for conservation laws with discontinuous flux and its applications to numerical schemes for hyperbolic systems. (English) Zbl 1452.35095 Stud. Appl. Math. 145, No. 2, 247-290 (2020). MSC: 35L65 35L67 35A35 35R11 65M12 PDF BibTeX XML Cite \textit{A. Aggarwal} et al., Stud. Appl. Math. 145, No. 2, 247--290 (2020; Zbl 1452.35095) Full Text: DOI
Luo, Dejun; Saal, Martin A scaling limit for the stochastic mSQG equations with multiplicative transport noises. (English) Zbl 07272854 Stoch. Dyn. 20, No. 6, Article ID 2040001, 21 p. (2020). Reviewer: Alexandra Rodkina (College Station) MSC: 60H15 35Q86 PDF BibTeX XML Cite \textit{D. Luo} and \textit{M. Saal}, Stoch. Dyn. 20, No. 6, Article ID 2040001, 21 p. (2020; Zbl 07272854) Full Text: DOI
Sun, Zheng; Hauck, Cory D. Low-memory, discrete ordinates, discontinuous Galerkin methods for radiative transport. (English) Zbl 1452.65360 SIAM J. Sci. Comput. 42, No. 4, B869-B893 (2020). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N22 65F50 65F10 35J05 85A25 PDF BibTeX XML Cite \textit{Z. Sun} and \textit{C. D. Hauck}, SIAM J. Sci. Comput. 42, No. 4, B869--B893 (2020; Zbl 1452.65360) Full Text: DOI
Kong, Fande; Wang, Yaqi; Gaston, Derek R.; Permann, Cody J.; Slaughter, Andrew E.; Lindsay, Alexander D.; DeHart, Mark D.; Martineau, Richard C. A highly parallel multilevel Newton-Krylov-Schwarz method with subspace-based coarsening and partition-based balancing for the multigroup neutron transport equation on three-dimensional unstructured meshes. (English) Zbl 1451.65221 SIAM J. Sci. Comput. 42, No. 5, C193-C220 (2020). MSC: 65N55 65Y05 65N25 65N30 65F08 65F10 82D75 35Q49 35Q82 PDF BibTeX XML Cite \textit{F. Kong} et al., SIAM J. Sci. Comput. 42, No. 5, C193--C220 (2020; Zbl 1451.65221) Full Text: DOI
Langer, Stefan; Swanson, R. C. On boundary-value problems for RANS equations and two-equation turbulence models. (English) Zbl 1451.76061 J. Sci. Comput. 85, No. 1, Paper No. 20, 32 p. (2020). MSC: 76F60 76F25 35Q30 PDF BibTeX XML Cite \textit{S. Langer} and \textit{R. C. Swanson}, J. Sci. Comput. 85, No. 1, Paper No. 20, 32 p. (2020; Zbl 1451.76061) Full Text: DOI
Morimoto, Yoshinori; Xu, Chao-Jiang Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. (English) Zbl 1451.35154 Kinet. Relat. Models 13, No. 5, 951-978 (2020). MSC: 35Q49 35B65 35Q82 35S05 82D10 35Q20 35A02 35A20 PDF BibTeX XML Cite \textit{Y. Morimoto} and \textit{C.-J. Xu}, Kinet. Relat. Models 13, No. 5, 951--978 (2020; Zbl 1451.35154) Full Text: DOI
Jacobs, Matt; Léger, Flavien A fast approach to optimal transport: the back-and-forth method. (English) Zbl 1451.65078 Numer. Math. 146, No. 3, 513-544 (2020). MSC: 65K10 49M29 49N15 49Q22 PDF BibTeX XML Cite \textit{M. Jacobs} and \textit{F. Léger}, Numer. Math. 146, No. 3, 513--544 (2020; Zbl 1451.65078) Full Text: DOI
Wang, Liping; Jin, Feng-Fei Boundary output feedback stabilization of transport equation with non-local term. (English) Zbl 1451.93298 IMA J. Math. Control Inf. 37, No. 3, 752-764 (2020). MSC: 93D15 93B53 93C20 35L02 PDF BibTeX XML Cite \textit{L. Wang} and \textit{F.-F. Jin}, IMA J. Math. Control Inf. 37, No. 3, 752--764 (2020; Zbl 1451.93298) Full Text: DOI
Wang, Xiwen; Wang, Lijie; Wang, Hui; Zhang, Xin; Ren, Hanjing; Ma, Yan Eigenvalue problem for a transport equation in slab geometry. (Chinese. English summary) Zbl 07267446 Math. Pract. Theory 50, No. 8, 234-240 (2020). MSC: 47A75 45K05 47G20 PDF BibTeX XML Cite \textit{X. Wang} et al., Math. Pract. Theory 50, No. 8, 234--240 (2020; Zbl 07267446)
Núñez, Manuel On the second order geometric optics approximation to fast magnetosonic waves. (English) Zbl 1450.35164 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105032, 9 p. (2020). MSC: 35L45 35L60 35L67 78A05 35Q49 PDF BibTeX XML Cite \textit{M. Núñez}, Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105032, 9 p. (2020; Zbl 1450.35164) Full Text: DOI
Voloshchenko, A. M.; Russkov, A. A. Quadrature formulas of Gauss type for a sphere with nodes characterized by regular prism symmetry. (English. Russian original) Zbl 07264980 Comput. Math. Math. Phys. 60, No. 7, 1063-1077 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 7, 1095-1110 (2020). MSC: 65D30 65D32 PDF BibTeX XML Cite \textit{A. M. Voloshchenko} and \textit{A. A. Russkov}, Comput. Math. Math. Phys. 60, No. 7, 1063--1077 (2020; Zbl 07264980); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 7, 1095--1110 (2020) Full Text: DOI
Kwon, Young-Sam; Novotny, Antonin; Cheng, C. H. Arthur On weak solutions to a dissipative Baer-Nunziato-type system for a mixture of two compressible heat conducting gases. (English) Zbl 1450.35218 Math. Models Methods Appl. Sci. 30, No. 8, 1517-1553 (2020). MSC: 35Q35 35Q49 76N06 76N15 80A19 35B35 35D30 PDF BibTeX XML Cite \textit{Y.-S. Kwon} et al., Math. Models Methods Appl. Sci. 30, No. 8, 1517--1553 (2020; Zbl 1450.35218) Full Text: DOI
Perthame, Benoit; Sun, Weiran; Tang, Min; Yasuda, Shugo Multiple asymptotics of kinetic equations with internal states. (English) Zbl 1450.35034 Math. Models Methods Appl. Sci. 30, No. 6, 1041-1073 (2020). MSC: 35B25 35Q20 35Q49 35Q84 92C17 PDF BibTeX XML Cite \textit{B. Perthame} et al., Math. Models Methods Appl. Sci. 30, No. 6, 1041--1073 (2020; Zbl 1450.35034) Full Text: DOI
Deriaz, Erwan; Haldenwang, Pierre Non-linear CFL conditions issued from the von Neumann stability analysis for the transport equation. (English) Zbl 1452.65154 J. Sci. Comput. 85, No. 1, Paper No. 5, 16 p. (2020). MSC: 65M06 65N06 65L06 65M12 15A18 PDF BibTeX XML Cite \textit{E. Deriaz} and \textit{P. Haldenwang}, J. Sci. Comput. 85, No. 1, Paper No. 5, 16 p. (2020; Zbl 1452.65154) Full Text: DOI
Komorowski, Tomasz; Olla, Stefano Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat. (English) Zbl 07261443 J. Funct. Anal. 279, No. 12, Article ID 108764, 60 p. (2020). MSC: 82C31 82C40 82C70 42A38 PDF BibTeX XML Cite \textit{T. Komorowski} and \textit{S. Olla}, J. Funct. Anal. 279, No. 12, Article ID 108764, 60 p. (2020; Zbl 07261443) Full Text: DOI
Gvalani, Rishabh S.; Schlichting, André Barriers of the McKean-Vlasov energy via a mountain pass theorem in the space of probability measures. (English) Zbl 07261432 J. Funct. Anal. 279, No. 11, Article ID 108720, 34 p. (2020). MSC: 60 92 PDF BibTeX XML Cite \textit{R. S. Gvalani} and \textit{A. Schlichting}, J. Funct. Anal. 279, No. 11, Article ID 108720, 34 p. (2020; Zbl 07261432) Full Text: DOI
Tervo, J.; Herty, M. On approximation of a hyper-singular transport operator and existence of solutions. (English) Zbl 1448.35358 Methods Appl. Anal. 27, No. 2, 125-152 (2020). MSC: 35Q20 35Q49 35R09 35A15 45E99 92C50 PDF BibTeX XML Cite \textit{J. Tervo} and \textit{M. Herty}, Methods Appl. Anal. 27, No. 2, 125--152 (2020; Zbl 1448.35358) Full Text: DOI
Derevtsov, Evgeny Yu.; Volkov, Yuriy S.; Schuster, Thomas Differential equations and uniqueness theorems for the generalized attenuated ray transforms of tensor fields. (English) Zbl 07250746 Sergeyev, Yaroslav D. (ed.) et al., Numerical computations: theory and algorithms. Third international conference, NUMTA 2019, Crotone, Italy, June 15–21, 2019. Revised selected papers. Part II. Cham: Springer (ISBN 978-3-030-40615-8/pbk; 978-3-030-40616-5/ebook). Lecture Notes in Computer Science 11974, 97-111 (2020). MSC: 65 PDF BibTeX XML Cite \textit{E. Yu. Derevtsov} et al., Lect. Notes Comput. Sci. 11974, 97--111 (2020; Zbl 07250746) Full Text: DOI
Anikin, A. Yu.; Dobrokhotov, S. Yu. Diophantine tori and pragmatic calculation of quasimodes for operators with integrable principal symbol. (English) Zbl 1452.37071 Russ. J. Math. Phys. 27, No. 3, 299-308 (2020). Reviewer: Luigi Rodino (Torino) MSC: 37K55 37J40 35J10 35S05 35S10 34L40 68W30 PDF BibTeX XML Cite \textit{A. Yu. Anikin} and \textit{S. Yu. Dobrokhotov}, Russ. J. Math. Phys. 27, No. 3, 299--308 (2020; Zbl 1452.37071) Full Text: DOI
Amoussou, Amour Gbaguidi; Moussa, Freedath Djibril; Ogouyandjou, Carlos; Diop, Mamadou Abdoul Non-Lipschitz stochastic functional differential equations on Riemanian manifolds. (English) Zbl 07245488 Gulf J. Math. 8, No. 2, 46-54 (2020). MSC: 60H10 60H20 60H25 31C12 PDF BibTeX XML Cite \textit{A. G. Amoussou} et al., Gulf J. Math. 8, No. 2, 46--54 (2020; Zbl 07245488) Full Text: Link
Bambi Pemba, D. J.; Ondami, B. Numerical approximation by the method of lines with finite-volume approach of a solute transport equation in periodic heterogeneous porous medium. (English) Zbl 07243654 Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 6, 18 p. (2020). MSC: 46C05 46C99 26D15 26D10 PDF BibTeX XML Cite \textit{D. J. Bambi Pemba} and \textit{B. Ondami}, Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 6, 18 p. (2020; Zbl 07243654) Full Text: Link
Blake, J. C. H.; Graham, I. G.; Scheben, F.; Spence, A. The radiative transport equation with heterogeneous cross-sections. (English) Zbl 1447.35325 Wood, David R. (ed.) et al., 2018 MATRIX annals. Cham: Springer. MATRIX Book Ser. 3, 5-15 (2020). MSC: 35Q82 35Q49 82D75 80A21 35P10 PDF BibTeX XML Cite \textit{J. C. H. Blake} et al., MATRIX Book Ser. 3, 5--15 (2020; Zbl 1447.35325) Full Text: DOI
Chung, Francis J.; Hoskins, Jeremy G.; Schotland, John C. On the transport method for hybrid inverse problems. (English) Zbl 1446.65149 Beilina, Larisa (ed.) et al., Mathematical and numerical approaches for multi-wave inverse problems. Selected papers based on the presentations at the conference, CIRM, Marseille, France, April 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 328, 15-20 (2020). MSC: 65N21 65N12 35J15 35R30 35Q49 PDF BibTeX XML Cite \textit{F. J. Chung} et al., Springer Proc. Math. Stat. 328, 15--20 (2020; Zbl 1446.65149) Full Text: DOI
Bouin, Emeric; Dolbeault, Jean; Mischler, Stéphane; Mouhot, Clément; Schmeiser, Christian Hypocoercivity without confinement. (English) Zbl 1448.82035 Pure Appl. Anal. 2, No. 2, 203-232 (2020). MSC: 82C40 76P05 35H10 35K65 35P15 35P25 35Q84 PDF BibTeX XML Cite \textit{E. Bouin} et al., Pure Appl. Anal. 2, No. 2, 203--232 (2020; Zbl 1448.82035) Full Text: DOI
Peng, Zhichao; Cheng, Yingda; Qiu, Jing-Mei; Li, Fengyan Stability-enhanced AP IMEX-LDG schemes for linear kinetic transport equations under a diffusive scaling. (English) Zbl 1440.65147 J. Comput. Phys. 415, Article ID 109485, 35 p. (2020). MSC: 65M60 65M12 35Q49 PDF BibTeX XML Cite \textit{Z. Peng} et al., J. Comput. Phys. 415, Article ID 109485, 35 p. (2020; Zbl 1440.65147) Full Text: DOI
Kantner, Markus; Koprucki, Thomas Non-isothermal Scharfetter-Gummel scheme for electro-thermal transport simulation in degenerate semiconductors. (English) Zbl 07239602 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 173-182 (2020). MSC: 65N08 35K05 35K08 35Q79 35Q82 80M12 82B35 82D37 81V74 PDF BibTeX XML Cite \textit{M. Kantner} and \textit{T. Koprucki}, in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 173--182 (2020; Zbl 07239602) Full Text: DOI
Berman, Robert J. The Sinkhorn algorithm, parabolic optimal transport and geometric Monge-Ampère equations. (English) Zbl 07239360 Numer. Math. 145, No. 4, 771-836 (2020). Reviewer: Dian K. Palagachev (Bari) MSC: 35J60 35K55 90C08 65N99 PDF BibTeX XML Cite \textit{R. J. Berman}, Numer. Math. 145, No. 4, 771--836 (2020; Zbl 07239360) Full Text: DOI
Barcellos, Luiz F. F. Chaves; Bodmann, Bardo E. J.; Vilhena, Marco T. On a parametric representation of the angular neutron flux in the energy range from 1 eV to 10 MeV. (English) Zbl 1447.82038 Constanda, Christian (ed.), Computational and analytic methods in science and engineering. Selected papers based on the presentations at the 19th international conference on computational and mathematical methods in science and engineering, CMMSE’19, Rota, Spain, June 30 – July 6, 2019. Cham: Birkhäuser. 45-59 (2020). MSC: 82D75 35Q20 82M31 65C05 PDF BibTeX XML Cite \textit{L. F. F. C. Barcellos} et al., in: Computational and analytic methods in science and engineering. Selected papers based on the presentations at the 19th international conference on computational and mathematical methods in science and engineering, CMMSE'19, Rota, Spain, June 30 -- July 6, 2019. Cham: Birkhäuser. 45--59 (2020; Zbl 1447.82038) Full Text: DOI
Roul, Pradip; Rohil, Vikas; Espinosa-Paredes, Gilberto; Prasad Goura, V. M. K.; Gedam, R. S.; Obaidurrahman, K. Design and analysis of a numerical method for fractional neutron diffusion equation with delayed neutrons. (English) Zbl 1446.65117 Appl. Numer. Math. 157, 634-653 (2020). MSC: 65M60 65N06 65M12 35R11 26A33 82D75 35Q82 35R07 35K10 PDF BibTeX XML Cite \textit{P. Roul} et al., Appl. Numer. Math. 157, 634--653 (2020; Zbl 1446.65117) Full Text: DOI
Bárcena-Petisco, Jon Asier Uniform controllability of a Stokes problem with a transport term in the zero-diffusion limit. (English) Zbl 1444.35016 SIAM J. Control Optim. 58, No. 3, 1597-1625 (2020). MSC: 35B25 35P10 35Q35 93B05 93C20 PDF BibTeX XML Cite \textit{J. A. Bárcena-Petisco}, SIAM J. Control Optim. 58, No. 3, 1597--1625 (2020; Zbl 1444.35016) Full Text: DOI
Wang, Chunmei; Wang, Junping A primal-dual finite element method for first-order transport problems. (English) Zbl 1437.65201 J. Comput. Phys. 417, Article ID 109571, 22 p. (2020). MSC: 65N30 35Q49 65N15 PDF BibTeX XML Cite \textit{C. Wang} and \textit{J. Wang}, J. Comput. Phys. 417, Article ID 109571, 22 p. (2020; Zbl 1437.65201) Full Text: DOI
Schneider, Florian; Leibner, Tobias First-order continuous- and discontinuous-Galerkin moment models for a linear kinetic equation: model derivation and realizability theory. (English) Zbl 1437.65141 J. Comput. Phys. 416, Article ID 109547, 26 p. (2020). MSC: 65M60 35Q49 46F05 PDF BibTeX XML Cite \textit{F. Schneider} and \textit{T. Leibner}, J. Comput. Phys. 416, Article ID 109547, 26 p. (2020; Zbl 1437.65141) Full Text: DOI
Kosik, Robert; Cervenka, Johann; Thesberg, Mischa; Kosina, Hans A revised Wigner function approach for stationary quantum transport. (English) Zbl 1443.81049 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 12th international conference, LSSC 2019, Sozopol, Bulgaria, June 10–14, 2019. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 11958, 403-410 (2020). MSC: 81S30 81U26 82C70 PDF BibTeX XML Cite \textit{R. Kosik} et al., Lect. Notes Comput. Sci. 11958, 403--410 (2020; Zbl 1443.81049) Full Text: DOI
Grigoriev, Vasiliy V.; Iliev, Oleg; Vabishchevich, Petr N. Computational identification of adsorption and desorption parameters for pore scale transport in random porous media. (English) Zbl 1452.76263 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 12th international conference, LSSC 2019, Sozopol, Bulgaria, June 10–14, 2019. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 11958, 115-122 (2020). MSC: 76V05 76S05 76R99 76M10 76M35 PDF BibTeX XML Cite \textit{V. V. Grigoriev} et al., Lect. Notes Comput. Sci. 11958, 115--122 (2020; Zbl 1452.76263) Full Text: DOI
Hao, Zimo; Wu, Mingyan; Zhang, Xicheng Schauder estimates for nonlocal kinetic equations and applications. (English. French summary) Zbl 1448.35318 J. Math. Pures Appl. (9) 140, 139-184 (2020). MSC: 35K65 35K08 35Q49 35R60 35R09 60H10 PDF BibTeX XML Cite \textit{Z. Hao} et al., J. Math. Pures Appl. (9) 140, 139--184 (2020; Zbl 1448.35318) Full Text: DOI
Laso, Manuel; Jimeno, Nieves Homogenization of transport properties of composites based on stochastic dynamics. (English) Zbl 1436.65014 J. Comput. Phys. 413, Article ID 109460, 24 p. (2020). MSC: 65C30 65M06 60H15 82C31 PDF BibTeX XML Cite \textit{M. Laso} and \textit{N. Jimeno}, J. Comput. Phys. 413, Article ID 109460, 24 p. (2020; Zbl 1436.65014) Full Text: DOI
Zhang, Tie; Zhang, Shangyou The weak Galerkin finite element method for the transport-reaction equation. (English) Zbl 1436.65193 J. Comput. Phys. 410, Article ID 109399, 12 p. (2020). MSC: 65N30 65N15 35Q49 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{S. Zhang}, J. Comput. Phys. 410, Article ID 109399, 12 p. (2020; Zbl 1436.65193) Full Text: DOI
Shu, Yan From Hopf-Lax formula to optimal weak transfer plan. (English) Zbl 1442.35068 SIAM J. Math. Anal. 52, No. 3, 3052-3072 (2020). MSC: 35F21 35R02 37L50 70H20 PDF BibTeX XML Cite \textit{Y. Shu}, SIAM J. Math. Anal. 52, No. 3, 3052--3072 (2020; Zbl 1442.35068) Full Text: DOI
Schenker, Jeffrey; Tilocco, F. Zak; Zhang, Shiwen Diffusion in the mean for a periodic Schrödinger equation perturbed by a fluctuating potential. (English) Zbl 1441.82024 Commun. Math. Phys. 377, No. 2, 1597-1635 (2020). MSC: 82C41 82C44 82C70 60K37 35Q55 81S22 60F05 35K05 PDF BibTeX XML Cite \textit{J. Schenker} et al., Commun. Math. Phys. 377, No. 2, 1597--1635 (2020; Zbl 1441.82024) Full Text: DOI
Lagergren, John H.; Nardini, John T.; Lavigne, G. Michael; Rutter, Erica M.; Flores, Kevin B. Learning partial differential equations for biological transport models from noisy spatio-temporal data. (English) Zbl 1439.35493 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2234, Article ID 20190800, 21 p. (2020). MSC: 35Q92 62F10 92B20 PDF BibTeX XML Cite \textit{J. H. Lagergren} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2234, Article ID 20190800, 21 p. (2020; Zbl 1439.35493) Full Text: DOI
Kuzmin, Dmitri; Hajduk, Hennes; Rupp, Andreas Locally bound-preserving enriched Galerkin methods for the linear advection equation. (English) Zbl 07211838 Comput. Fluids 205, Article ID 104525, 14 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{D. Kuzmin} et al., Comput. Fluids 205, Article ID 104525, 14 p. (2020; Zbl 07211838) Full Text: DOI
Erbar, Matthias; Kopfer, Eva Super Ricci flows for weighted graphs. (English) Zbl 1444.53061 J. Funct. Anal. 279, No. 6, Article ID 108607, 50 p. (2020). MSC: 53E20 60J27 35K05 35R01 PDF BibTeX XML Cite \textit{M. Erbar} and \textit{E. Kopfer}, J. Funct. Anal. 279, No. 6, Article ID 108607, 50 p. (2020; Zbl 1444.53061) Full Text: DOI
Ekohela, Clesh Deseskel Elion; Bissanga, Gabriel; Batchi, Macaire Long time behavior of higher-order anisotropic perturbed phase field system with regular potentials. (English) Zbl 1442.35363 Asymptotic Anal. 116, No. 3-4, 149-217 (2020). MSC: 35Q49 80A22 35B41 35B40 35B65 PDF BibTeX XML Cite \textit{C. D. E. Ekohela} et al., Asymptotic Anal. 116, No. 3--4, 149--217 (2020; Zbl 1442.35363) Full Text: DOI
Lods, B.; Mokhtar-Kharroubi, M.; Rudnicki, R. Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators. (English) Zbl 1439.82037 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 877-923 (2020). MSC: 82C40 35F15 47D06 35B40 35R06 35R60 35Q49 PDF BibTeX XML Cite \textit{B. Lods} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 877--923 (2020; Zbl 1439.82037) Full Text: DOI
Delarue, François; Lacker, Daniel; Ramanan, Kavita From the master equation to mean field game limit theory: large deviations and concentration of measure. (English) Zbl 1445.60025 Ann. Probab. 48, No. 1, 211-263 (2020). Reviewer: Edward Omey (Brussel) MSC: 60F10 60E15 60H10 91A07 91A15 91G80 60K35 PDF BibTeX XML Cite \textit{F. Delarue} et al., Ann. Probab. 48, No. 1, 211--263 (2020; Zbl 1445.60025) Full Text: DOI Euclid
Hu, Jingwei; Huang, Xiaodong A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson-Nernst-Planck equations. (English) Zbl 1442.35459 Numer. Math. 145, No. 1, 77-115 (2020). MSC: 35Q84 35J05 82D37 35Q92 92C17 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{J. Hu} and \textit{X. Huang}, Numer. Math. 145, No. 1, 77--115 (2020; Zbl 1442.35459) Full Text: DOI
Shil’kov, A. V. Lebesgue moment method for solving the neutron transport equation. (Russian. English summary) Zbl 1439.82060 Mat. Model. 32, No. 5, 59-94 (2020). MSC: 82D75 PDF BibTeX XML Cite \textit{A. V. Shil'kov}, Mat. Model. 32, No. 5, 59--94 (2020; Zbl 1439.82060) Full Text: DOI MNR
Shil’kov, A. V. Tensor expansions of the angular particle distribution. (Russian. English summary) Zbl 1439.82059 Mat. Model. 32, No. 3, 61-80 (2020). MSC: 82D75 41A50 PDF BibTeX XML Cite \textit{A. V. Shil'kov}, Mat. Model. 32, No. 3, 61--80 (2020; Zbl 1439.82059) Full Text: DOI MNR
Kleshhenkov, A. V.; Sorokina, V. V.; Chikin, A. L.; Chikina, L. G. Modeling of the process of entering the suspended solids runoff of the river Don to the Taganrog Bay of the sea of Azov. (Russian. English summary) Zbl 1439.86010 Mat. Model. 32, No. 3, 47-60 (2020). MSC: 86-10 76-10 76T20 PDF BibTeX XML Cite \textit{A. V. Kleshhenkov} et al., Mat. Model. 32, No. 3, 47--60 (2020; Zbl 1439.86010) Full Text: DOI MNR
Aristova, E. N.; Ovcharov, G. I. Hermite characteristic scheme for linear inhomogeneous transport equation. (Russian. English summary) Zbl 1440.65119 Mat. Model. 32, No. 3, 3-18 (2020). MSC: 65M25 65M06 65D05 65D30 35Q49 PDF BibTeX XML Cite \textit{E. N. Aristova} and \textit{G. I. Ovcharov}, Mat. Model. 32, No. 3, 3--18 (2020; Zbl 1440.65119) Full Text: DOI MNR
Aristova, E. N.; Astafurov, G. O. About the influence on the accuracy of cubature formulas on the integral characteristics of solutions of the transport equation. (Russian. English summary) Zbl 07206194 Mat. Model. 32, No. 1, 15-30 (2020). MSC: 65 78 PDF BibTeX XML Cite \textit{E. N. Aristova} and \textit{G. O. Astafurov}, Mat. Model. 32, No. 1, 15--30 (2020; Zbl 07206194) Full Text: DOI MNR
Liu, Qunjie; Zhang, Shun Adaptive least-squares finite element methods for linear transport equations based on an H(div) flux reformulation. (English) Zbl 1442.65383 Comput. Methods Appl. Mech. Eng. 366, Article ID 113041, 24 p. (2020). MSC: 65N30 35L50 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{S. Zhang}, Comput. Methods Appl. Mech. Eng. 366, Article ID 113041, 24 p. (2020; Zbl 1442.65383) Full Text: DOI
An, Dong; Lin, Lin Quantum dynamics with the parallel transport gauge. (English) Zbl 1440.65113 Multiscale Model. Simul. 18, No. 2, 612-645 (2020). MSC: 65M20 65M15 35Q41 35Q55 65P10 81V70 81Q05 35B25 35Q49 82M36 78A60 81V55 PDF BibTeX XML Cite \textit{D. An} and \textit{L. Lin}, Multiscale Model. Simul. 18, No. 2, 612--645 (2020; Zbl 1440.65113) Full Text: DOI
Guo, Boling; Li, Fangfang Global smooth solution for the spin-polarized transport equation with Landau-Lifshitz-Bloch equation. (English) Zbl 1448.35279 Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2825-2840 (2020). MSC: 35K15 35Q60 PDF BibTeX XML Cite \textit{B. Guo} and \textit{F. Li}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2825--2840 (2020; Zbl 1448.35279) Full Text: DOI
Coti Zelati, Michele Stable mixing estimates in the infinite Péclet number limit. (English) Zbl 1445.35056 J. Funct. Anal. 279, No. 4, Article ID 108562, 24 p. (2020). Reviewer: Andrei Perjan (Chişinău) MSC: 35B40 35K15 35Q35 76F25 76R50 PDF BibTeX XML Cite \textit{M. Coti Zelati}, J. Funct. Anal. 279, No. 4, Article ID 108562, 24 p. (2020; Zbl 1445.35056) Full Text: DOI
Druet, Pierre-Etienne; Jüngel, Ansgar Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient. (English) Zbl 1442.35188 SIAM J. Math. Anal. 52, No. 2, 2179-2197 (2020). MSC: 35K45 35L65 35Q79 35M31 35Q92 92C17 PDF BibTeX XML Cite \textit{P.-E. Druet} and \textit{A. Jüngel}, SIAM J. Math. Anal. 52, No. 2, 2179--2197 (2020; Zbl 1442.35188) Full Text: DOI
Allwright, Amy; Atangana, Abdon Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems. (English) Zbl 07200451 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 443-466 (2020). MSC: 65 47 PDF BibTeX XML Cite \textit{A. Allwright} and \textit{A. Atangana}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 443--466 (2020; Zbl 07200451) Full Text: DOI
Mollinedo, David A. C. \(W^{1,p}\)-solutions of the transport equation by stochastic perturbation. (English) Zbl 1434.60163 Braz. J. Probab. Stat. 34, No. 1, 188-201 (2020). MSC: 60H15 35F10 35R60 PDF BibTeX XML Cite \textit{D. A. C. Mollinedo}, Braz. J. Probab. Stat. 34, No. 1, 188--201 (2020; Zbl 1434.60163) Full Text: DOI Euclid
Buet, Christophe; Despres, Bruno; Morel, Guillaume Trefftz discontinuous Galerkin basis functions for a class of Friedrichs systems coming from linear transport. (English) Zbl 1437.35523 Adv. Comput. Math. 46, No. 3, Paper No. 41, 27 p. (2020). MSC: 35Q20 65N30 35Q49 PDF BibTeX XML Cite \textit{C. Buet} et al., Adv. Comput. Math. 46, No. 3, Paper No. 41, 27 p. (2020; Zbl 1437.35523) Full Text: DOI
Bouin, Emeric; Dolbeault, Jean; Schmeiser, Christian Diffusion and kinetic transport with very weak confinement. (English) Zbl 1434.35237 Kinet. Relat. Models 13, No. 2, 345-371 (2020). MSC: 35Q84 35B40 82C40 76P05 26D10 PDF BibTeX XML Cite \textit{E. Bouin} et al., Kinet. Relat. Models 13, No. 2, 345--371 (2020; Zbl 1434.35237) Full Text: DOI
Savin, Ovidiu; Yu, Hui Regularity of optimal transport between planar convex domains. (English) Zbl 1440.35118 Duke Math. J. 169, No. 7, 1305-1327 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J60 35J96 PDF BibTeX XML Cite \textit{O. Savin} and \textit{H. Yu}, Duke Math. J. 169, No. 7, 1305--1327 (2020; Zbl 1440.35118) Full Text: DOI Euclid
Fujiwara, Hiroshi; Sadiq, Kamran; Tamasan, Alexandru Numerical reconstruction of radiative sources in an absorbing and nondiffusing scattering medium in two dimensions. (English) Zbl 1447.65118 SIAM J. Imaging Sci. 13, No. 1, 535-555 (2020). Reviewer: Michael Jung (Dresden) MSC: 65N21 30E20 44A15 78A46 35Q60 44A12 PDF BibTeX XML Cite \textit{H. Fujiwara} et al., SIAM J. Imaging Sci. 13, No. 1, 535--555 (2020; Zbl 1447.65118) Full Text: DOI
Frank, Florian; Rupp, Andreas; Kuzmin, Dmitri Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equation. (English) Zbl 1441.76059 Comput. Methods Appl. Mech. Eng. 359, Article ID 112665, 25 p. (2020). MSC: 76M10 65M60 PDF BibTeX XML Cite \textit{F. Frank} et al., Comput. Methods Appl. Mech. Eng. 359, Article ID 112665, 25 p. (2020; Zbl 1441.76059) Full Text: DOI
Hajduk, Hennes; Kuzmin, Dmitri; Kolev, Tzanio; Abgrall, Remi Matrix-free subcell residual distribution for Bernstein finite element discretizations of linear advection equations. (English) Zbl 1441.65078 Comput. Methods Appl. Mech. Eng. 359, Article ID 112658, 26 p. (2020). MSC: 65M60 PDF BibTeX XML Cite \textit{H. Hajduk} et al., Comput. Methods Appl. Mech. Eng. 359, Article ID 112658, 26 p. (2020; Zbl 1441.65078) Full Text: DOI
Savin, Ovidiu; Yu, Hui Global \(W^{2,1+\varepsilon}\) estimates for Monge-Ampère equation with natural boundary condition. (English. French summary) Zbl 1436.35215 J. Math. Pures Appl. (9) 137, 275-289 (2020). MSC: 35J96 35J25 35J60 PDF BibTeX XML Cite \textit{O. Savin} and \textit{H. Yu}, J. Math. Pures Appl. (9) 137, 275--289 (2020; Zbl 1436.35215) Full Text: DOI
Delarue, François; Lagoutière, Frédéric; Vauchelet, Nicolas Convergence analysis of upwind type schemes for the aggregation equation with pointy potential. (English) Zbl 1436.65120 Ann. Henri Lebesgue 3, 217-260 (2020). MSC: 65M08 65M12 35D30 35L60 92D25 35Q92 35Q49 49K20 35R06 PDF BibTeX XML Cite \textit{F. Delarue} et al., Ann. Henri Lebesgue 3, 217--260 (2020; Zbl 1436.65120) Full Text: DOI
Hamel, F.; Lavigne, F.; Martin, G.; Roques, L. Dynamics of adaptation in an anisotropic phenotype-fitness landscape. (English) Zbl 1437.35670 Nonlinear Anal., Real World Appl. 54, Article ID 103107, 33 p. (2020). MSC: 35Q92 92D15 35A01 35K65 35Q49 92D25 92C15 PDF BibTeX XML Cite \textit{F. Hamel} et al., Nonlinear Anal., Real World Appl. 54, Article ID 103107, 33 p. (2020; Zbl 1437.35670) Full Text: DOI
Duprez, Michel; Morancey, Morgan; Rossi, Francesco Minimal time for the continuity equation controlled by a localized perturbation of the velocity vector field. (English) Zbl 1436.93021 J. Differ. Equations 269, No. 1, 82-124 (2020). MSC: 93B05 93C20 93C73 35L02 PDF BibTeX XML Cite \textit{M. Duprez} et al., J. Differ. Equations 269, No. 1, 82--124 (2020; Zbl 1436.93021) Full Text: DOI
Favre, Gianluca; Schmeiser, Christian Hypocoercivity and fast reaction limit for linear reaction networks with kinetic transport. (English) Zbl 1437.35524 J. Stat. Phys. 178, No. 6, 1319-1335 (2020). MSC: 35Q20 82C40 82C70 35B40 PDF BibTeX XML Cite \textit{G. Favre} and \textit{C. Schmeiser}, J. Stat. Phys. 178, No. 6, 1319--1335 (2020; Zbl 1437.35524) Full Text: DOI
Marulli, Marta; Edwards, Aurélie; Milišić, Vuk; Vauchelet, Nicolas On the role of the epithelium in a model of sodium exchange in renal tubules. (English) Zbl 1436.92007 Math. Biosci. 321, Article ID 108308, 12 p. (2020). MSC: 92C35 35Q92 PDF BibTeX XML Cite \textit{M. Marulli} et al., Math. Biosci. 321, Article ID 108308, 12 p. (2020; Zbl 1436.92007) Full Text: DOI
Tu, Xi; Yin, Zhaoyang Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space. (English) Zbl 1439.35433 Monatsh. Math. 191, No. 4, 801-829 (2020). MSC: 35Q53 35A01 35A02 42B25 35B44 35B65 35D35 35Q49 PDF BibTeX XML Cite \textit{X. Tu} and \textit{Z. Yin}, Monatsh. Math. 191, No. 4, 801--829 (2020; Zbl 1439.35433) Full Text: DOI
Capilla, M. T.; Talavera, C. F.; Ginestar, D.; Verdú, G. Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies. (English) Zbl 1436.82023 J. Comput. Appl. Math. 375, Article ID 112814, 21 p. (2020). MSC: 82C70 82D75 65M06 65N35 65M12 82M20 82M22 33C55 35Q20 PDF BibTeX XML Cite \textit{M. T. Capilla} et al., J. Comput. Appl. Math. 375, Article ID 112814, 21 p. (2020; Zbl 1436.82023) Full Text: DOI
Molotkov, I. A. Maslov’s model of stationary cooling, overheating, and energy localization in an accident reactor. (English) Zbl 1435.80008 Russ. J. Math. Phys. 27, No. 1, 104-110 (2020). MSC: 80A19 76S05 35B32 35R09 45K05 82D75 82C35 PDF BibTeX XML Cite \textit{I. A. Molotkov}, Russ. J. Math. Phys. 27, No. 1, 104--110 (2020; Zbl 1435.80008) Full Text: DOI
Cavalli, Benedetta On a family of critical growth-fragmentation semigroups and refracted Lévy processes. (English) Zbl 1439.35487 Acta Appl. Math. 166, No. 1, 161-186 (2020). MSC: 35Q92 47D06 47G20 45K05 60G51 60J99 92D25 35B40 35Q49 92C37 PDF BibTeX XML Cite \textit{B. Cavalli}, Acta Appl. Math. 166, No. 1, 161--186 (2020; Zbl 1439.35487) Full Text: DOI
Angelova, V.; Hached, M.; Jbilou, K. Approximate solutions to large nonsymmetric differential Riccati problems with applications to transport theory. (English) Zbl 07177899 Numer. Linear Algebra Appl. 27, No. 1, e2272, 17 p. (2020). Reviewer: Stefano Pozza (Praha) MSC: 65F45 65F10 PDF BibTeX XML Cite \textit{V. Angelova} et al., Numer. Linear Algebra Appl. 27, No. 1, e2272, 17 p. (2020; Zbl 07177899) Full Text: DOI
Carlen, Eric A.; Maas, Jan Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems. (English) Zbl 1445.46049 J. Stat. Phys. 178, No. 2, 319-378 (2020). MSC: 46L55 46L89 PDF BibTeX XML Cite \textit{E. A. Carlen} and \textit{J. Maas}, J. Stat. Phys. 178, No. 2, 319--378 (2020; Zbl 1445.46049) Full Text: DOI
Camiola, Vito Dario; Mascali, Giovanni; Romano, Vittorio Charge transport in low dimensional semiconductor structures. The maximum entropy approach. (English) Zbl 1447.82002 Mathematics in Industry 31. The European Consortium for Mathematics in Industry. Cham: Springer (ISBN 978-3-030-35992-8/hbk; 978-3-030-35993-5/ebook). xvi, 337 p. (2020). Reviewer: Eugene Postnikov (Kursk) MSC: 82-02 82D37 82D80 35Q82 35Q55 35Q20 PDF BibTeX XML Cite \textit{V. D. Camiola} et al., Charge transport in low dimensional semiconductor structures. The maximum entropy approach. Cham: Springer (2020; Zbl 1447.82002) Full Text: DOI
Estrada-Rodriguez, Gissell; Gimperlein, Heiko Interacting particles with Lévy strategies: limits of transport equations for swarm robotic systems. (English) Zbl 1437.93091 SIAM J. Appl. Math. 80, No. 1, 476-498 (2020). Reviewer: Clementina Mladenova (Sofia) MSC: 93C85 93A16 93C20 35Q93 35R11 PDF BibTeX XML Cite \textit{G. Estrada-Rodriguez} and \textit{H. Gimperlein}, SIAM J. Appl. Math. 80, No. 1, 476--498 (2020; Zbl 1437.93091) Full Text: DOI Link
Loy, Nadia; Preziosi, Luigi Kinetic models with non-local sensing determining cell polarization and speed according to independent cues. (English) Zbl 1432.92020 J. Math. Biol. 80, No. 1-2, 373-421 (2020). MSC: 92C17 92C37 35Q92 PDF BibTeX XML Cite \textit{N. Loy} and \textit{L. Preziosi}, J. Math. Biol. 80, No. 1--2, 373--421 (2020; Zbl 1432.92020) Full Text: DOI