Zhao, Xiangkui; Wang, Huanrong Traveling waves for a generalized Beddington-DeAngelis predator-prey model. (English) Zbl 07526862 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106478, 12 p. (2022). MSC: 92B05 49J15 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{H. Wang}, Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106478, 12 p. (2022; Zbl 07526862) Full Text: DOI OpenURL
Zadorin, Anton S. Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace. (English) Zbl 07524314 Commun. Pure Appl. Anal. 21, No. 5, 1567-1580 (2022). MSC: 35C07 35C05 35D30 35K57 35Q92 PDF BibTeX XML Cite \textit{A. S. Zadorin}, Commun. Pure Appl. Anal. 21, No. 5, 1567--1580 (2022; Zbl 07524314) Full Text: DOI OpenURL
Akagi, Goro; Kuehn, Christian; Nakamura, Ken-Ichi Traveling wave dynamics for Allen-Cahn equations with strong irreversibility. (English) Zbl 07502496 Trans. Am. Math. Soc. 375, No. 5, 3173-3238 (2022). MSC: 35C07 35B40 35R35 47J35 PDF BibTeX XML Cite \textit{G. Akagi} et al., Trans. Am. Math. Soc. 375, No. 5, 3173--3238 (2022; Zbl 07502496) Full Text: DOI OpenURL
Hu, Yuxi; Wang, Zhao Linear stability of viscous shock wave for 1-D compressible Navier-Stokes equations with Maxwell’s law. (English) Zbl 07502105 Q. Appl. Math. 80, No. 2, 221-235 (2022). MSC: 35Q30 76N10 76L05 35B35 35B40 35C07 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{Z. Wang}, Q. Appl. Math. 80, No. 2, 221--235 (2022; Zbl 07502105) Full Text: DOI OpenURL
Shen, Wenxian; Shen, Zhongwei; Xue, Shuwen; Zhou, Dun Population dynamics under climate change: persistence criterion and effects of fluctuations. (English) Zbl 07501989 J. Math. Biol. 84, No. 4, Paper No. 30, 42 p. (2022). MSC: 92D25 92D40 35K57 35C07 PDF BibTeX XML Cite \textit{W. Shen} et al., J. Math. Biol. 84, No. 4, Paper No. 30, 42 p. (2022; Zbl 07501989) Full Text: DOI OpenURL
Khorbatly, Bashar; Lteif, Ralph; Israwi, Samer; Gerbi, Stéphane Mathematical modeling and numerical analysis for the higher order Boussinesq system. (English) Zbl 07488344 ESAIM, Math. Model. Numer. Anal. 56, No. 2, 593-615 (2022). MSC: 35Q35 35L45 35L60 76B45 76B55 35C07 65L99 PDF BibTeX XML Cite \textit{B. Khorbatly} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 2, 593--615 (2022; Zbl 07488344) Full Text: DOI arXiv OpenURL
Georgiev, Vladimir; Li, Yuan Nondispersive solutions to the mass critical half-wave equation in two dimensions. (English) Zbl 07481868 Commun. Partial Differ. Equations 47, No. 1, 39-88 (2022). MSC: 35Qxx 35Bxx 35Rxx PDF BibTeX XML Cite \textit{V. Georgiev} and \textit{Y. Li}, Commun. Partial Differ. Equations 47, No. 1, 39--88 (2022; Zbl 07481868) Full Text: DOI arXiv OpenURL
Liu, XiaoHua The stability of exact solitary wave solutions for simplified modified Camassa-Holm equation. (English) Zbl 1479.35681 Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106224, 15 p. (2022). MSC: 35Q35 37K45 35C07 PDF BibTeX XML Cite \textit{X. Liu}, Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106224, 15 p. (2022; Zbl 1479.35681) Full Text: DOI OpenURL
Zhu, Wenjing; Xia, Yonghui Traveling wave solutions of a generalized Burgers-\(\alpha\beta\) equation. (English) Zbl 07468311 Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 23, 11 p. (2022). Reviewer: Changjin Xu (Guiyang) MSC: 34C05 34C37 34C23 35C07 PDF BibTeX XML Cite \textit{W. Zhu} and \textit{Y. Xia}, Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 23, 11 p. (2022; Zbl 07468311) Full Text: DOI OpenURL
Wang, Kai; Zhao, Hongyong; Wang, Hao Traveling waves for a diffusive mosquito-borne epidemic model with general incidence. (English) Zbl 1481.35111 Z. Angew. Math. Phys. 73, No. 1, Paper No. 31, 28 p. (2022). MSC: 35C07 35B40 35K57 92D30 PDF BibTeX XML Cite \textit{K. Wang} et al., Z. Angew. Math. Phys. 73, No. 1, Paper No. 31, 28 p. (2022; Zbl 1481.35111) Full Text: DOI OpenURL
N’Gbo, N’Gbo; Xia, Yonghui Traveling wave solution of bad and good modified Boussinesq equations with conformable fractional-order derivative. (English) Zbl 07452043 Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 14, 21 p. (2022). Reviewer: Yong Ye (Shenzhen) MSC: 34A08 34C23 34C37 34C05 35C07 35R11 PDF BibTeX XML Cite \textit{N. N'Gbo} and \textit{Y. Xia}, Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 14, 21 p. (2022; Zbl 07452043) Full Text: DOI OpenURL
Tian, Xuan; Guo, Shangjiang Traveling wave solutions for nonlocal dispersal Fisher-KPP model with age structure. (English) Zbl 1472.92242 Appl. Math. Lett. 123, Article ID 107593, 6 p. (2022). MSC: 92D30 35C07 PDF BibTeX XML Cite \textit{X. Tian} and \textit{S. Guo}, Appl. Math. Lett. 123, Article ID 107593, 6 p. (2022; Zbl 1472.92242) Full Text: DOI OpenURL
Adimy, Mostafa; Chekroun, Abdennasser; Kuniya, Toshikazu Traveling waves of a differential-difference diffusive Kermack-McKendrick epidemic model with age-structured protection phase. (English) Zbl 1478.92171 J. Math. Anal. Appl. 505, No. 1, Article ID 125464, 27 p. (2022). Reviewer: Hongying Shu (Xi’an) MSC: 92D30 35C07 35K57 PDF BibTeX XML Cite \textit{M. Adimy} et al., J. Math. Anal. Appl. 505, No. 1, Article ID 125464, 27 p. (2022; Zbl 1478.92171) Full Text: DOI OpenURL
Ji, Changqing; Yang, Pan Dynamical analysis on traveling wave of a reaction-advection-diffusion equation with double free boundaries. (English) Zbl 07526993 J. Partial Differ. Equations 34, No. 4, 379-392 (2021). MSC: 35C07 35R35 35K57 PDF BibTeX XML Cite \textit{C. Ji} and \textit{P. Yang}, J. Partial Differ. Equations 34, No. 4, 379--392 (2021; Zbl 07526993) Full Text: DOI OpenURL
Wang, Xiaoli; Wang, Lizhen Traveling wave solutions of conformable time fractional Burgers type equations. (English) Zbl 07513637 AIMS Math. 6, No. 7, 7266-7284 (2021). MSC: 35C07 26A24 35Q53 PDF BibTeX XML Cite \textit{X. Wang} and \textit{L. Wang}, AIMS Math. 6, No. 7, 7266--7284 (2021; Zbl 07513637) Full Text: DOI OpenURL
Wang, Bingyi; Zhang, Yang Traveling wave solutions for a class of reaction-diffusion system. (English) Zbl 07509877 Bound. Value Probl. 2021, Paper No. 33, 15 p. (2021). MSC: 35C07 35B35 35K45 35K57 PDF BibTeX XML Cite \textit{B. Wang} and \textit{Y. Zhang}, Bound. Value Probl. 2021, Paper No. 33, 15 p. (2021; Zbl 07509877) Full Text: DOI OpenURL
Xu, Mei; Du, Bo New approaches for periodic wave solutions of a non-Newtonian filtration equation with variable delay. (English) Zbl 07509860 Bound. Value Probl. 2021, Paper No. 16, 11 p. (2021). MSC: 35C07 35K15 35K92 35Q35 PDF BibTeX XML Cite \textit{M. Xu} and \textit{B. Du}, Bound. Value Probl. 2021, Paper No. 16, 11 p. (2021; Zbl 07509860) Full Text: DOI OpenURL
Durur, Hülya Energy-carrying wave simulation of the Lonngren-wave equation in semiconductor materials. (English) Zbl 07502302 Int. J. Mod. Phys. B 35, No. 21, Article ID 2150213, 12 p. (2021). MSC: 82D37 35Q81 26C15 35C08 35C07 PDF BibTeX XML Cite \textit{H. Durur}, Int. J. Mod. Phys. B 35, No. 21, Article ID 2150213, 12 p. (2021; Zbl 07502302) Full Text: DOI OpenURL
Ahmed, Arsalan; Poonam, K. K.; Khalil, Munam; Ali, Arshad Numerical scruitinization of unsteady 3D flow of Jeffrey nanofluid with MHD in a porous medium. (English) Zbl 07490037 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 106, 18 p. (2021). MSC: 76A05 76A10 PDF BibTeX XML Cite \textit{A. Ahmed} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 106, 18 p. (2021; Zbl 07490037) Full Text: DOI OpenURL
Ling, Xing-qian; Zhang, Wei-guo Influence of nonlinear terms on orbital stability of solitary wave solutions to the generalized symmetric regularized-long-wave equation. (English) Zbl 1482.35035 J. Nonlinear Math. Phys. 28, No. 4, 390-413 (2021). MSC: 35B35 35L05 35C07 PDF BibTeX XML Cite \textit{X.-q. Ling} and \textit{W.-g. Zhang}, J. Nonlinear Math. Phys. 28, No. 4, 390--413 (2021; Zbl 1482.35035) Full Text: DOI OpenURL
Bakıcıerler, Gizel; Alfaqeih, Suliman; Mısırlı, Emine Analytic solutions of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation. (English) Zbl 07482425 Physica A 582, Article ID 126255, 9 p. (2021). MSC: 82-XX 35R11 35Q60 35C07 PDF BibTeX XML Cite \textit{G. Bakıcıerler} et al., Physica A 582, Article ID 126255, 9 p. (2021; Zbl 07482425) Full Text: DOI OpenURL
Qin, Yuxin; Liu, Yinping Multiwave interaction solutions for a (3 + 1)-dimensional generalized BKP equation. (English) Zbl 07479133 Int. J. Comput. Math. 98, No. 11, 2268-2281 (2021). MSC: 35C07 35C08 35C09 35A22 35G20 PDF BibTeX XML Cite \textit{Y. Qin} and \textit{Y. Liu}, Int. J. Comput. Math. 98, No. 11, 2268--2281 (2021; Zbl 07479133) Full Text: DOI OpenURL
Sun, Jianshe Traveling wave solution of fractal KdV-Burgers-Kuramoto equation within local fractional differential operator. (English) Zbl 1482.35065 Fractals 29, No. 7, Article ID 2150231, 10 p. (2021). MSC: 35C07 35Q53 35R11 PDF BibTeX XML Cite \textit{J. Sun}, Fractals 29, No. 7, Article ID 2150231, 10 p. (2021; Zbl 1482.35065) Full Text: DOI OpenURL
He, Ji-Huan; Hou, Wei-Fan; He, Chun-Hui; Saeed, Tareq; Hayat, Tasawar Variational approach to fractal solitary waves. (English) Zbl 1482.35249 Fractals 29, No. 7, Article ID 2150199, 5 p. (2021). MSC: 35R11 35C07 35C08 35Q35 PDF BibTeX XML Cite \textit{J.-H. He} et al., Fractals 29, No. 7, Article ID 2150199, 5 p. (2021; Zbl 1482.35249) Full Text: DOI OpenURL
Wang, Zhenkun; Salmaniw, Yurij; Wang, Hao Persistence and propagation of a discrete-time map and PDE hybrid model with strong Allee effect. (English) Zbl 1480.92182 Nonlinear Anal., Real World Appl. 61, Article ID 103336, 20 p. (2021). MSC: 92D25 92D40 35K57 35C07 35B35 PDF BibTeX XML Cite \textit{Z. Wang} et al., Nonlinear Anal., Real World Appl. 61, Article ID 103336, 20 p. (2021; Zbl 1480.92182) Full Text: DOI OpenURL
Xu, Yuanqing; Zheng, Xiaoxiao; Xin, Jie New explicit and exact traveling wave solutions of \((3+1)\)-dimensional KP equation. (English) Zbl 07455680 Math. Found. Comput. 4, No. 2, 105-115 (2021). MSC: 35C05 35C07 35C08 35A25 PDF BibTeX XML Cite \textit{Y. Xu} et al., Math. Found. Comput. 4, No. 2, 105--115 (2021; Zbl 07455680) Full Text: DOI OpenURL
Li, Kun; He, Yanli Existence of traveling wave solutions in nonlocal delayed higher-dimensional lattice systems with quasi-monotone nonlinearities. (English) Zbl 07455221 Math. Slovaca 71, No. 6, 1459-1470 (2021). MSC: 37L60 34K31 34K10 PDF BibTeX XML Cite \textit{K. Li} and \textit{Y. He}, Math. Slovaca 71, No. 6, 1459--1470 (2021; Zbl 07455221) Full Text: DOI OpenURL
Chen, Yan-Yu; Ninomiya, Hirokazu; Wu, Chang-Hong Global dynamics on one-dimensional excitable media. (English) Zbl 07453669 SIAM J. Math. Anal. 53, No. 6, 7081-7112 (2021). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35C07 35B40 35B25 35K15 35K57 35R35 37B10 PDF BibTeX XML Cite \textit{Y.-Y. Chen} et al., SIAM J. Math. Anal. 53, No. 6, 7081--7112 (2021; Zbl 07453669) Full Text: DOI OpenURL
Zegeling, Paul A. Adaptive grids for non-monotone waves and instabilities in a non-equilibrium PDE model. (English) Zbl 1480.35090 Garanzha, Vladimir A. (ed.) et al., Numerical geometry, grid generation and scientific computing. Proceedings of the 10th international conference, NUMGRID 2020 / Delaunay 130, celebrating the 130th anniversary of Boris Delaunay, Moscow, Russia, November 25–27, 2020. Cham: Springer. Lect. Notes Comput. Sci. Eng. 143, 179-198 (2021). MSC: 35C07 35B32 35Q35 65M50 PDF BibTeX XML Cite \textit{P. A. Zegeling}, Lect. Notes Comput. Sci. Eng. 143, 179--198 (2021; Zbl 1480.35090) Full Text: DOI OpenURL
Du, Zengji; Yan, Shuling; Zhuang, Kaige Traveling wave fronts in a diffusive and competitive Lotka-Volterra system. (English) Zbl 1479.35192 Discrete Contin. Dyn. Syst., Ser. S 14, No. 9, 3097-3111 (2021). MSC: 35C07 35B25 35K57 35R09 34D15 92D25 PDF BibTeX XML Cite \textit{Z. Du} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 9, 3097--3111 (2021; Zbl 1479.35192) Full Text: DOI OpenURL
Xin, Hua The patterns of envelope traveling waves of Fokas-Lenells equation with perturbation term. (Chinese. English summary) Zbl 07448771 Math. Pract. Theory 51, No. 11, 324-328 (2021). MSC: 35C07 35Q60 35B35 PDF BibTeX XML Cite \textit{H. Xin}, Math. Pract. Theory 51, No. 11, 324--328 (2021; Zbl 07448771) OpenURL
Lin, Fubiao; Zhang, Qianhong New traveling wave solutions of a class of Kadomtsev-Petviashvili and \((3 + 1)\)-dimensional KdV-type equations. (Chinese. English summary) Zbl 07448542 J. Northeast Norm. Univ., Nat. Sci. Ed. 53, No. 2, 25-29 (2021). MSC: 35C07 35Q53 PDF BibTeX XML Cite \textit{F. Lin} and \textit{Q. Zhang}, J. Northeast Norm. Univ., Nat. Sci. Ed. 53, No. 2, 25--29 (2021; Zbl 07448542) Full Text: DOI OpenURL
Zhou, Yinbo; Zhang, Yafei Minimum wave speed of traveling wave solutions for three species competition system. (Chinese. English summary) Zbl 07448426 J. Jilin Univ., Sci. 59, No. 3, 460-468 (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{Y. Zhang}, J. Jilin Univ., Sci. 59, No. 3, 460--468 (2021; Zbl 07448426) Full Text: DOI OpenURL
Yang, Sanyan; Li, Shumin The existence of traveling wave solutions in a type of combined SIR and SIS infectious disease model. (Chinese. English summary) Zbl 07448332 J. Chongqing Norm. Univ., Nat. Sci. 38, No. 3, 84-93 (2021). MSC: 35C07 35B35 92D30 PDF BibTeX XML Cite \textit{S. Yang} and \textit{S. Li}, J. Chongqing Norm. Univ., Nat. Sci. 38, No. 3, 84--93 (2021; Zbl 07448332) Full Text: DOI OpenURL
Yang, Weiming; Liao, Shu; Fang, Fang Traveling waves in a nonlocal dispersal cholera model. (Chinese. English summary) Zbl 07448174 Acta Math. Appl. Sin. 44, No. 3, 440-458 (2021). MSC: 35C07 35K57 92D30 PDF BibTeX XML Cite \textit{W. Yang} et al., Acta Math. Appl. Sin. 44, No. 3, 440--458 (2021; Zbl 07448174) OpenURL
Zhang, Lijuan; Huo, Zhenxiang; Ren, Qingqing; Wang, Fuchang Stability of the traveling wave solutions for three species Lotka-Volterra competitive-cooperative system with age structure. (Chinese. English summary) Zbl 07448161 Acta Math. Appl. Sin. 44, No. 2, 251-268 (2021). MSC: 35B35 35C07 92D25 PDF BibTeX XML Cite \textit{L. Zhang} et al., Acta Math. Appl. Sin. 44, No. 2, 251--268 (2021; Zbl 07448161) OpenURL
Guo, Jong-Shenq Traveling wave solutions for some three-species predator-prey systems. (English) Zbl 1479.35195 Tamkang J. Math. 52, No. 1, 25-36 (2021). MSC: 35C07 35B40 35K40 35K57 92D25 92D40 PDF BibTeX XML Cite \textit{J.-S. Guo}, Tamkang J. Math. 52, No. 1, 25--36 (2021; Zbl 1479.35195) Full Text: DOI OpenURL
Chen, Songlin; Ma, Wenran D’Alembert type traveling wave solution for wave equations on a finite interval with coupled initial boundary conditions. (English) Zbl 1479.35556 Math. Methods Appl. Sci. 44, No. 18, 14492-14501 (2021). MSC: 35L50 35C05 35C07 PDF BibTeX XML Cite \textit{S. Chen} and \textit{W. Ma}, Math. Methods Appl. Sci. 44, No. 18, 14492--14501 (2021; Zbl 1479.35556) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Study on the explicit solutions of the Benney-Luke equation via the variational direct method. (English) Zbl 07441950 Math. Methods Appl. Sci. 44, No. 18, 14173-14183 (2021). MSC: 76B25 76M30 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Math. Methods Appl. Sci. 44, No. 18, 14173--14183 (2021; Zbl 07441950) Full Text: DOI OpenURL
Wang, Kang-Jia; Zou, Bo-Rong On new abundant solutions of the complex nonlinear Fokas-Lenells equation in optical fiber. (English) Zbl 1479.35215 Math. Methods Appl. Sci. 44, No. 18, 13881-13893 (2021). MSC: 35C08 35C07 35A15 35Q55 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{B.-R. Zou}, Math. Methods Appl. Sci. 44, No. 18, 13881--13893 (2021; Zbl 1479.35215) Full Text: DOI OpenURL
Liu, XiaoHua Bifurcation and the exact smooth, cusp solitary and periodic wave solutions of the generalized Kudryashov-Sinelshchikov equation. (English) Zbl 1479.35071 Ric. Mat. 70, No. 2, 461-477 (2021). MSC: 35B32 35C07 35C08 35G25 PDF BibTeX XML Cite \textit{X. Liu}, Ric. Mat. 70, No. 2, 461--477 (2021; Zbl 1479.35071) Full Text: DOI OpenURL
Bo, Wei-Jian; Wang, Xiaohui; Han, Bang-Sheng; Li, Yan Asymptotic spreading of a time periodic diffusion equation with degenerate monostable nonlinearity. (English) Zbl 1477.35058 Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 106030, 21 p. (2021). MSC: 35C07 35B10 35K20 35K57 PDF BibTeX XML Cite \textit{W.-J. Bo} et al., Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 106030, 21 p. (2021; Zbl 1477.35058) Full Text: DOI OpenURL
Jia, Lianguang; Tang, Li The classification of traveling wave solutions to space-time fractional resonance nonlinear Schrödinger type equation with a special kind of fractional derivative. (English) Zbl 1477.35060 Adv. Math. Phys. 2021, Article ID 1256745, 9 p. (2021). MSC: 35C07 35R11 35Q55 PDF BibTeX XML Cite \textit{L. Jia} and \textit{L. Tang}, Adv. Math. Phys. 2021, Article ID 1256745, 9 p. (2021; Zbl 1477.35060) Full Text: DOI OpenURL
Tala-Tebue, Eric; Korkmaz, Alper; Rezazadeh, Hadi; Raza, Nauman New auxiliary equation approach to derive solutions of fractional resonant Schrödinger equation. (English) Zbl 1477.35247 Anal. Math. Phys. 11, No. 4, Paper No. 167, 13 p. (2021). MSC: 35Q55 35C07 35C09 35A24 26A33 35R11 PDF BibTeX XML Cite \textit{E. Tala-Tebue} et al., Anal. Math. Phys. 11, No. 4, Paper No. 167, 13 p. (2021; Zbl 1477.35247) Full Text: DOI OpenURL
Xu, Guoan; Zhang, Yi On the existence of solitary wave solutions for perturbed Degasperis-Procesi equation. (English) Zbl 07421282 Qual. Theory Dyn. Syst. 20, No. 3, Paper No. 80, 10 p. (2021). Reviewer: Yong Ye (Shenzhen) MSC: 34C05 34C37 34E15 34C23 35C07 76B15 34E10 PDF BibTeX XML Cite \textit{G. Xu} and \textit{Y. Zhang}, Qual. Theory Dyn. Syst. 20, No. 3, Paper No. 80, 10 p. (2021; Zbl 07421282) Full Text: DOI OpenURL
Ma, Li-Yuan; Zhang, Yan-Li; Tang, Li; Shen, Shou-Feng New rational and breather solutions of a higher-order integrable nonlinear Schrödinger equation. (English) Zbl 1479.35811 Appl. Math. Lett. 122, Article ID 107539, 6 p. (2021). MSC: 35Q55 35Q41 35C08 35C07 37K10 37K35 35G20 PDF BibTeX XML Cite \textit{L.-Y. Ma} et al., Appl. Math. Lett. 122, Article ID 107539, 6 p. (2021; Zbl 1479.35811) Full Text: DOI OpenURL
Zhang, Huiyang; Xia, Yonghui; N’gbo, Paul-Rene Global existence and uniqueness of a periodic wave solution of the generalized Burgers-Fisher equation. (English) Zbl 1475.35103 Appl. Math. Lett. 121, Article ID 107353, 7 p. (2021). MSC: 35C07 35K58 PDF BibTeX XML Cite \textit{H. Zhang} et al., Appl. Math. Lett. 121, Article ID 107353, 7 p. (2021; Zbl 1475.35103) Full Text: DOI OpenURL
Han, Tianyong; Li, Zhao; Zhang, Xue Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation. (English) Zbl 07409499 Phys. Lett., A 395, Article ID 127217, 5 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{T. Han} et al., Phys. Lett., A 395, Article ID 127217, 5 p. (2021; Zbl 07409499) Full Text: DOI OpenURL
Leta, Temesgen Desta; Liu, Wenjun; Ding, Jian Dynamics of traveling wave solutions to fully nonlinear heavy ion-acoustic degenerate relativistic quantum plasmas. (Chinese. English summary) Zbl 07403541 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 2, 496-506 (2021). MSC: 35C07 35Q40 81R20 PDF BibTeX XML Cite \textit{T. D. Leta} et al., Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 2, 496--506 (2021; Zbl 07403541) OpenURL
Wu, Weixin; Teng, Zhidong Traveling wave solutions in a nonlocal dispersal SIR epidemic model with general nonlinear incidence. (English) Zbl 1470.92364 Acta Appl. Math. 175, Paper No. 4, 23 p. (2021). MSC: 92D30 35Q92 35C07 PDF BibTeX XML Cite \textit{W. Wu} and \textit{Z. Teng}, Acta Appl. Math. 175, Paper No. 4, 23 p. (2021; Zbl 1470.92364) Full Text: DOI OpenURL
He, Yanli; Li, Kun Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications. (English) Zbl 07396171 Appl. Math., Praha 66, No. 4, 641-656 (2021). MSC: 37L60 34K10 39A10 PDF BibTeX XML Cite \textit{Y. He} and \textit{K. Li}, Appl. Math., Praha 66, No. 4, 641--656 (2021; Zbl 07396171) Full Text: DOI OpenURL
Cho, Sung Woong; Hwang, Hyung Ju; Son, Hwijae Traveling wave solutions of partial differential equations via neural networks. (English) Zbl 07395833 J. Sci. Comput. 89, No. 1, Paper No. 21, 26 p. (2021). MSC: 65-XX 35C07 68T99 92C17 PDF BibTeX XML Cite \textit{S. W. Cho} et al., J. Sci. Comput. 89, No. 1, Paper No. 21, 26 p. (2021; Zbl 07395833) Full Text: DOI arXiv OpenURL
Salas, Alvaro H. Analytical approximant for a damped KdV equation. (English) Zbl 1469.35190 Int. J. Math. Comput. Sci. 16, No. 4, 1631-1636 (2021). MSC: 35Q53 86A05 PDF BibTeX XML Cite \textit{A. H. Salas}, Int. J. Math. Comput. Sci. 16, No. 4, 1631--1636 (2021; Zbl 1469.35190) Full Text: Link OpenURL
Li, Kun; Li, Xiong Traveling waves in a nonlocal delayed epidemic model with diffusion. (English) Zbl 1471.92323 Math. Methods Appl. Sci. 44, No. 13, 10823-10836 (2021). MSC: 92D30 35C07 35K57 34D20 PDF BibTeX XML Cite \textit{K. Li} and \textit{X. Li}, Math. Methods Appl. Sci. 44, No. 13, 10823--10836 (2021; Zbl 1471.92323) Full Text: DOI OpenURL
Zhao, Zhihong; Li, Yan; Feng, Zhaosheng Traveling wave phenomena in a nonlocal dispersal predator-prey system with the Beddington-DeAngelis functional response and harvesting. (English) Zbl 1471.92277 Math. Biosci. Eng. 18, No. 2, 1629-1652 (2021). MSC: 92D25 35C07 35B40 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Math. Biosci. Eng. 18, No. 2, 1629--1652 (2021; Zbl 1471.92277) Full Text: DOI OpenURL
Zhang, Yijian; Xia, Yonghui Traveling wave solutions of generalized Dullin-Gottwald-Holm equation with parabolic law nonlinearity. (English) Zbl 1477.34064 Qual. Theory Dyn. Syst. 20, No. 3, Paper No. 67, 38 p. (2021). MSC: 34C23 34C05 34C37 34A05 35C07 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Y. Xia}, Qual. Theory Dyn. Syst. 20, No. 3, Paper No. 67, 38 p. (2021; Zbl 1477.34064) Full Text: DOI OpenURL
Wang, Tingting; Yang, Shaojie; Han, Xuanxuan Symmetric waves are traveling waves for the rotation-Camassa-Holm equation. (English) Zbl 1471.76017 J. Math. Fluid Mech. 23, No. 3, Paper No. 84, 4 p. (2021). MSC: 76B15 76U60 86A05 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Math. Fluid Mech. 23, No. 3, Paper No. 84, 4 p. (2021; Zbl 1471.76017) Full Text: DOI OpenURL
Islam, Tarikul; Akter, Armina Further fresh and general traveling wave solutions to some fractional order nonlinear evolution equations in mathematical physics. (English) Zbl 07379474 Arab J. Math. Sci. 27, No. 2, 151-170 (2021). MSC: 34A08 35R11 35C07 34A25 PDF BibTeX XML Cite \textit{T. Islam} and \textit{A. Akter}, Arab J. Math. Sci. 27, No. 2, 151--170 (2021; Zbl 07379474) Full Text: DOI OpenURL
Chen, Yu-Shuo; Guo, Jong-Shenq Traveling wave solutions for a three-species predator-prey model with two aborigine preys. (English) Zbl 1470.35111 Japan J. Ind. Appl. Math. 38, No. 2, 455-471 (2021). MSC: 35C07 35K57 34B40 92D25 92D40 PDF BibTeX XML Cite \textit{Y.-S. Chen} and \textit{J.-S. Guo}, Japan J. Ind. Appl. Math. 38, No. 2, 455--471 (2021; Zbl 1470.35111) Full Text: DOI OpenURL
Liao, Shu; Yang, Weiming; Fang, Fang Traveling waves for a cholera vaccination model with nonlocal dispersal. (English) Zbl 1476.37103 Math. Methods Appl. Sci. 44, No. 6, 5150-5171 (2021). MSC: 37N25 35K57 35C07 92D30 PDF BibTeX XML Cite \textit{S. Liao} et al., Math. Methods Appl. Sci. 44, No. 6, 5150--5171 (2021; Zbl 1476.37103) Full Text: DOI OpenURL
Raza, Nauman; ur Rahman, Riaz; Seadawy, Aly; Jhangeer, Adil Computational and bright soliton solutions and sensitivity behavior of Camassa-Holm and nonlinear Schrödinger dynamical equation. (English) Zbl 1465.35361 Int. J. Mod. Phys. B 35, No. 11, Article ID 2150157, 10 p. (2021). MSC: 35Q55 35C07 35C08 PDF BibTeX XML Cite \textit{N. Raza} et al., Int. J. Mod. Phys. B 35, No. 11, Article ID 2150157, 10 p. (2021; Zbl 1465.35361) Full Text: DOI OpenURL
Zhou, Yuan; Manukure, Solomon; McAnally, Morgan Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation. (English) Zbl 1469.35084 J. Geom. Phys. 167, Article ID 104275, 7 p. (2021). MSC: 35C11 35C07 35C08 35Q35 35Q51 PDF BibTeX XML Cite \textit{Y. Zhou} et al., J. Geom. Phys. 167, Article ID 104275, 7 p. (2021; Zbl 1469.35084) Full Text: DOI OpenURL
De Angelis, Fabio; De Angelis, Monica On solutions to a FitzHugh-Rinzel type model. (English) Zbl 1469.35003 Ric. Mat. 70, No. 1, 51-65 (2021). MSC: 35A08 35C05 35C07 35K45 35R09 92B20 92C20 PDF BibTeX XML Cite \textit{F. De Angelis} and \textit{M. De Angelis}, Ric. Mat. 70, No. 1, 51--65 (2021; Zbl 1469.35003) Full Text: DOI arXiv OpenURL
Xu, Yuanfen; Zhang, Li’na Existence of traveling wave solutions for the Boussinesq equation. (Chinese. English summary) Zbl 1474.35185 J. Zhejiang Univ., Sci. Ed. 48, No. 2, 196-199 (2021). MSC: 35C07 35Q35 PDF BibTeX XML Cite \textit{Y. Xu} and \textit{L. Zhang}, J. Zhejiang Univ., Sci. Ed. 48, No. 2, 196--199 (2021; Zbl 1474.35185) Full Text: DOI OpenURL
Lin, Fubiao; Zhang, Qianhong Exact solutions of the Liouville equation and reduced transformation equation and \(\psi (\xi)\) expansion method. (Chinese. English summary) Zbl 1474.35534 J. Jilin Univ., Sci. 59, No. 1, 27-33 (2021). MSC: 35Q35 35C07 PDF BibTeX XML Cite \textit{F. Lin} and \textit{Q. Zhang}, J. Jilin Univ., Sci. 59, No. 1, 27--33 (2021; Zbl 1474.35534) Full Text: DOI OpenURL
Luo, Jingxi Exact analytical solution of a novel modified nonlinear Schrödinger equation: solitary quantum waves on a lattice. (English) Zbl 1466.81013 Stud. Appl. Math. 146, No. 2, 550-562 (2021). MSC: 81Q05 35Q55 81Q35 81U15 35C07 35C08 82D25 PDF BibTeX XML Cite \textit{J. Luo}, Stud. Appl. Math. 146, No. 2, 550--562 (2021; Zbl 1466.81013) Full Text: DOI arXiv OpenURL
Hörmann, Günther Solution concepts, well-posedness, and wave breaking for the Fornberg-Whitham equation. (English) Zbl 1467.35002 Monatsh. Math. 195, No. 3, 421-449 (2021). MSC: 35-02 35L65 35B44 35C07 PDF BibTeX XML Cite \textit{G. Hörmann}, Monatsh. Math. 195, No. 3, 421--449 (2021; Zbl 1467.35002) Full Text: DOI arXiv OpenURL
Bruell, Gabriele; Dhara, Raj Narayan Waves of maximal height for a class of nonlocal equations with homogeneous symbols. (English) Zbl 1467.35085 Indiana Univ. Math. J. 70, No. 2, 711-742 (2021). MSC: 35C07 35B10 35B32 35B65 35S30 35Q53 45M15 PDF BibTeX XML Cite \textit{G. Bruell} and \textit{R. N. Dhara}, Indiana Univ. Math. J. 70, No. 2, 711--742 (2021; Zbl 1467.35085) Full Text: DOI arXiv OpenURL
Jimbo, Shuichi; Morita, Yoshihisa Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph. (English) Zbl 1465.35280 Discrete Contin. Dyn. Syst. 41, No. 9, 4013-4039 (2021). MSC: 35K57 35B08 35B35 35B40 35C07 35R02 PDF BibTeX XML Cite \textit{S. Jimbo} and \textit{Y. Morita}, Discrete Contin. Dyn. Syst. 41, No. 9, 4013--4039 (2021; Zbl 1465.35280) Full Text: DOI OpenURL
Zhang, Ran; Liu, Shengqiang On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. (English) Zbl 1469.37057 Discrete Contin. Dyn. Syst., Ser. B 26, No. 2, 1197-1204 (2021). MSC: 37L60 37N25 92D25 35C07 92D30 PDF BibTeX XML Cite \textit{R. Zhang} and \textit{S. Liu}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 2, 1197--1204 (2021; Zbl 1469.37057) Full Text: DOI OpenURL
Zhou, Yan; Zhuang, Jinsen; Li, Jibin Bifurcations and exact traveling wave solutions in two nonlinear wave systems. (English) Zbl 1476.37085 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 6, Article ID 2150093, 15 p. (2021). Reviewer: Irina V. Konopleva (Ul’yanovsk) MSC: 37K50 37N10 37N15 35B32 35C07 35C08 35L05 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 6, Article ID 2150093, 15 p. (2021; Zbl 1476.37085) Full Text: DOI OpenURL
Ikeda, Kota; Ei, Shin-Ichiro Center manifold theory for the motions of camphor boats with delta function. (English) Zbl 1476.37088 J. Dyn. Differ. Equations 33, No. 2, 621-657 (2021). Reviewer: Irina V. Konopleva (Ul’yanovsk) MSC: 37L10 35C07 35K57 PDF BibTeX XML Cite \textit{K. Ikeda} and \textit{S.-I. Ei}, J. Dyn. Differ. Equations 33, No. 2, 621--657 (2021; Zbl 1476.37088) Full Text: DOI Link OpenURL
Wu, Shi-Liang; Chen, Linya; Hsu, Cheng-Hsiung Traveling wave solutions for a diffusive age-structured SIR epidemic model. (English) Zbl 1467.37093 Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105769, 19 p. (2021). MSC: 37N25 35C07 92D30 PDF BibTeX XML Cite \textit{S.-L. Wu} et al., Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105769, 19 p. (2021; Zbl 1467.37093) Full Text: DOI OpenURL
Gündoǧdu, Hami; Gözükizil, Ömer Faruk On the new type of solutions to Benney-Luke equation. (English) Zbl 1474.35178 Bol. Soc. Parana. Mat. (3) 39, No. 5, 103-111 (2021). MSC: 35C07 35C09 PDF BibTeX XML Cite \textit{H. Gündoǧdu} and \textit{Ö. F. Gözükizil}, Bol. Soc. Parana. Mat. (3) 39, No. 5, 103--111 (2021; Zbl 1474.35178) Full Text: Link OpenURL
Watanabe, Hiroshi Traveling waves to one-dimensional Cauchy problems for scalar parabolic-hyperbolic conservation laws. (English) Zbl 1462.35128 J. Differ. Equations 286, 474-493 (2021). MSC: 35C07 35K65 35K55 35L65 35L67 PDF BibTeX XML Cite \textit{H. Watanabe}, J. Differ. Equations 286, 474--493 (2021; Zbl 1462.35128) Full Text: DOI OpenURL
Du, Yihong; Gui, Changfeng; Wang, Kelei; Zhou, Maolin Semi-waves with \(\Lambda\)-shaped free boundary for nonlinear Stefan problems: existence. (English) Zbl 1461.35249 Proc. Am. Math. Soc. 149, No. 5, 2091-2104 (2021). MSC: 35R35 35C07 35K20 35K58 PDF BibTeX XML Cite \textit{Y. Du} et al., Proc. Am. Math. Soc. 149, No. 5, 2091--2104 (2021; Zbl 1461.35249) Full Text: DOI OpenURL
Li, Jibin; Chen, Guanrong; Zhou, Yan Bifurcations and exact traveling wave solutions of two shallow water two-component systems. (English) Zbl 1456.35163 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150001, 13 p. (2021). MSC: 35Q35 37K40 35C07 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150001, 13 p. (2021; Zbl 1456.35163) Full Text: DOI OpenURL
Wei, Jingdong; Zhou, Jiangbo; Zhen, Zaili; Tian, Lixin Time periodic traveling waves in a three-component non-autonomous and reaction-diffusion epidemic model. (English) Zbl 1458.35109 Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021). MSC: 35C07 35B10 35K57 35B40 92D30 PDF BibTeX XML Cite \textit{J. Wei} et al., Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021; Zbl 1458.35109) Full Text: DOI OpenURL
Leta, Temesgen Desta; Liu, Wenjun; Ding, Jian Existence of periodic, solitary and compacton travelling wave solutions of a \((3+1)\)-dimensional time-fractional nonlinear evolution equations with applications. (English) Zbl 1464.34021 Anal. Math. Phys. 11, No. 1, Paper No. 34, 26 p. (2021). Reviewer: Xiang-Sheng Wang (Lafayette) MSC: 34A08 34A05 34C23 34C37 34C25 35C07 35R11 PDF BibTeX XML Cite \textit{T. D. Leta} et al., Anal. Math. Phys. 11, No. 1, Paper No. 34, 26 p. (2021; Zbl 1464.34021) Full Text: DOI OpenURL
Liu, Xiaolin; Ouyang, Zigen; Huang, Zhe; Ou, Chunhua Spreading speed of the periodic Lotka-Volterra competition model. (English) Zbl 1460.35201 J. Differ. Equations 275, 533-553 (2021). Reviewer: Guobao Zhang (Lanzhou) MSC: 35K57 35K40 92D25 35C07 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Differ. Equations 275, 533--553 (2021; Zbl 1460.35201) Full Text: DOI OpenURL
Zheng, Xiaoxiao; Xiao, Qizhen; Ouyang, Zigen A smooth soliton solution and a periodic cuspon solution of the Novikov equation. (English) Zbl 1453.35042 Appl. Math. Lett. 112, Article ID 106786, 7 p. (2021). MSC: 35C07 35C08 35B10 35G25 35B32 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 112, Article ID 106786, 7 p. (2021; Zbl 1453.35042) Full Text: DOI OpenURL
Du, Zengji; Liu, Jiang; Ren, Yulin Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach. (English) Zbl 1452.35219 J. Differ. Equations 270, 1019-1042 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 92C17 35C07 34D15 35B25 PDF BibTeX XML Cite \textit{Z. Du} et al., J. Differ. Equations 270, 1019--1042 (2021; Zbl 1452.35219) Full Text: DOI OpenURL
Zhao, Yunmei; He, Yinghui; Yang, Huizhang The two variable \((\phi^\prime/\phi, 1/\phi)\)-expansion method for solving the time-fractional partial differential equations. (English) Zbl 07512932 AIMS Math. 5, No. 5, 4121-4135 (2020). MSC: 35R11 35C08 PDF BibTeX XML Cite \textit{Y. Zhao} et al., AIMS Math. 5, No. 5, 4121--4135 (2020; Zbl 07512932) Full Text: DOI OpenURL
Kudryashov, Nikolay A. Optical solitons of model with integrable equation for wave packet envelope. (English) Zbl 07511224 Chaos Solitons Fractals 141, Article ID 110325, 6 p. (2020). MSC: 35-XX 78-XX PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Chaos Solitons Fractals 141, Article ID 110325, 6 p. (2020; Zbl 07511224) Full Text: DOI OpenURL
El-Ganaini, Shoukry; Kumar, Hitender A variety of new traveling and localized solitary wave solutions of a nonlinear model describing the nonlinear low-pass electrical transmission lines. (English) Zbl 07508286 Chaos Solitons Fractals 140, Article ID 110218, 12 p. (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. El-Ganaini} and \textit{H. Kumar}, Chaos Solitons Fractals 140, Article ID 110218, 12 p. (2020; Zbl 07508286) Full Text: DOI OpenURL
Kudryashov, Nikolay A. Highly dispersive optical solitons of equation with various polynomial nonlinearity law. (English) Zbl 07508270 Chaos Solitons Fractals 140, Article ID 110202, 5 p. (2020). MSC: 35-XX 78-XX PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Chaos Solitons Fractals 140, Article ID 110202, 5 p. (2020; Zbl 07508270) Full Text: DOI OpenURL
Halder, Amlan K.; Paliathanasis, Andronikos; Seshadri, Rajeswari; Leach, Peter G. L. Lie symmetry analysis and similarity solutions for the Jimbo-Miwa equation and generalisations. (English) Zbl 07446870 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 7-8, 767-779 (2020). MSC: 34A05 34A34 34C14 22E60 35B06 35C05 35C07 PDF BibTeX XML Cite \textit{A. K. Halder} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 7--8, 767--779 (2020; Zbl 07446870) Full Text: DOI arXiv OpenURL
Li, Cheng; Cao, Damin; Du, Qing Exact solutions to the nonlinear equation in traffic congestion. (English) Zbl 1482.76011 Adv. Difference Equ. 2020, Paper No. 68, 16 p. (2020). MSC: 76A30 35C07 35Q53 PDF BibTeX XML Cite \textit{C. Li} et al., Adv. Difference Equ. 2020, Paper No. 68, 16 p. (2020; Zbl 1482.76011) Full Text: DOI OpenURL
Chang, Lina; Liu, Hanze; Xin, Xiangpeng Lie symmetry analysis, bifurcations and exact solutions for the (2+1)-dimensional dissipative long wave system. (English) Zbl 07435160 J. Appl. Math. Comput. 64, No. 1-2, 807-823 (2020). MSC: 37L10 37L20 PDF BibTeX XML Cite \textit{L. Chang} et al., J. Appl. Math. Comput. 64, No. 1--2, 807--823 (2020; Zbl 07435160) Full Text: DOI OpenURL
Sun, Cong Nonlinear stability of the periodic traveling wave solution for a class of coupled KdV equations. (English) Zbl 1477.35027 Adv. Math. Phys. 2020, Article ID 3875038, 6 p. (2020). MSC: 35B35 35C07 35Q53 PDF BibTeX XML Cite \textit{C. Sun}, Adv. Math. Phys. 2020, Article ID 3875038, 6 p. (2020; Zbl 1477.35027) Full Text: DOI OpenURL
He, Yanli; Li, Kun Traveling wave solutions in a higher dimensional lattice competition-cooperation system with stage structure. (English) Zbl 07419744 Hacet. J. Math. Stat. 49, No. 3, 1084-1092 (2020). MSC: 37L60 47N20 PDF BibTeX XML Cite \textit{Y. He} and \textit{K. Li}, Hacet. J. Math. Stat. 49, No. 3, 1084--1092 (2020; Zbl 07419744) Full Text: DOI OpenURL
Li, Jibin; Zhou, Yan Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. (English) Zbl 1469.35195 Discrete Contin. Dyn. Syst., Ser. S 13, No. 11, 3083-3097 (2020). MSC: 35Q55 35B32 35C07 58J55 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Zhou}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 11, 3083--3097 (2020; Zbl 1469.35195) Full Text: DOI OpenURL
Doak, A.; Gao, T.; Vanden-Broeck, J.-M.; Kandola, J. J. S. Capillary-gravity waves on the interface of two dielectric fluid layers under normal electric fields. (English) Zbl 1472.76025 Q. J. Mech. Appl. Math. 73, No. 3, 231-250 (2020). MSC: 76B55 76B45 76B25 76W05 76M99 PDF BibTeX XML Cite \textit{A. Doak} et al., Q. J. Mech. Appl. Math. 73, No. 3, 231--250 (2020; Zbl 1472.76025) Full Text: DOI OpenURL
Kashkynbayev, Ardak; Amanbek, Yerlan; Shupeyeva, Bibinur; Kuang, Yang Existence of traveling wave solutions to data-driven glioblastoma multiforme growth models with density-dependent diffusion. (English) Zbl 1471.92096 Math. Biosci. Eng. 17, No. 6, 7234-7247 (2020). MSC: 92C32 35K57 35C07 PDF BibTeX XML Cite \textit{A. Kashkynbayev} et al., Math. Biosci. Eng. 17, No. 6, 7234--7247 (2020; Zbl 1471.92096) Full Text: DOI OpenURL
Feng, Qingjiang; Yang, Juan New traveling wave solutions of nonlinear coupled Higgs equation and the Maccari system. (Chinese. English summary) Zbl 1474.35175 Math. Pract. Theory 50, No. 23, 149-153 (2020). MSC: 35C07 37L05 PDF BibTeX XML Cite \textit{Q. Feng} and \textit{J. Yang}, Math. Pract. Theory 50, No. 23, 149--153 (2020; Zbl 1474.35175) OpenURL
Chauhan, Swati; Arora, Rajan; Chauhan, Antim Lie symmetry reductions and wave solutions of coupled equal width wave equation. (English) Zbl 1465.35096 Int. J. Appl. Comput. Math. 6, No. 6, Paper No. 159, 17 p. (2020). MSC: 35C07 35C10 35B06 PDF BibTeX XML Cite \textit{S. Chauhan} et al., Int. J. Appl. Comput. Math. 6, No. 6, Paper No. 159, 17 p. (2020; Zbl 1465.35096) Full Text: DOI OpenURL
Li, Haili; Wu, Juanjuan Bifurcation and dynamical analysis of \((2+1)\)-dimensional generalized Hirota-Satsuma-Itô equation. (Chinese. English summary) Zbl 1474.35076 Math. Pract. Theory 50, No. 15, 253-261 (2020). MSC: 35B32 35C07 35Q51 PDF BibTeX XML Cite \textit{H. Li} and \textit{J. Wu}, Math. Pract. Theory 50, No. 15, 253--261 (2020; Zbl 1474.35076) OpenURL
Ge, Zhihao; Chen, Yuxiang Traveling wavefront based on a kind of delayed partial differential equations for a nonlocal reaction-diffusion system. (English) Zbl 1474.35177 Math. Appl. 33, No. 4, 938-945 (2020). MSC: 35C07 35K57 PDF BibTeX XML Cite \textit{Z. Ge} and \textit{Y. Chen}, Math. Appl. 33, No. 4, 938--945 (2020; Zbl 1474.35177) OpenURL
Gao, Zhuanling; Zhao, Xiangkui; Zhao, Zhihong Traveling wave solutions for a predator-prey model with Beddington-DeAngelis functional response. (English) Zbl 1474.35176 Ann. Appl. Math. 36, No. 3, 221-234 (2020). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{Z. Gao} et al., Ann. Appl. Math. 36, No. 3, 221--234 (2020; Zbl 1474.35176) OpenURL
Wang, Shuangming Entire solutions of a time periodic and non-local delayed reaction-diffusion equation without quasi-monotonicity. (Chinese. English summary) Zbl 1474.35055 Acta Math. Appl. Sin. 43, No. 4, 668-683 (2020). MSC: 35B08 35K57 PDF BibTeX XML Cite \textit{S. Wang}, Acta Math. Appl. Sin. 43, No. 4, 668--683 (2020; Zbl 1474.35055) OpenURL