Colucci, Renato Periodic travelling waves for a fourth order nonlinear evolution equation. (English) Zbl 1522.35135 J. Math. Anal. Appl. 529, No. 1, Article ID 127586, 19 p. (2024). MSC: 35C07 35B10 35B25 35K30 35K58 PDF BibTeX XML Cite \textit{R. Colucci}, J. Math. Anal. Appl. 529, No. 1, Article ID 127586, 19 p. (2024; Zbl 1522.35135) Full Text: DOI
Groothuizen Dijkema, David C.; Postlethwaite, Claire M. Travelling waves and heteroclinic networks in models of spatially-extended cyclic competition. (English) Zbl 07758703 Nonlinearity 36, No. 12, 6546-6588 (2023). MSC: 34C37 34C23 92B20 35C07 PDF BibTeX XML Cite \textit{D. C. Groothuizen Dijkema} and \textit{C. M. Postlethwaite}, Nonlinearity 36, No. 12, 6546--6588 (2023; Zbl 07758703) Full Text: DOI arXiv OA License
Ding, Danping; Li, Yun Stability of traveling wave solutions for the second-order Camassa-Holm equation. (English) Zbl 07753441 Monatsh. Math. 202, No. 4, 713-740 (2023). MSC: 35C07 35B30 35B35 35G20 PDF BibTeX XML Cite \textit{D. Ding} and \textit{Y. Li}, Monatsh. Math. 202, No. 4, 713--740 (2023; Zbl 07753441) Full Text: DOI
Chiron, David Smooth branch of rarefaction pulses for the nonlinear Schrödinger equation and the Euler-Korteweg system in 2d. (Branche régulière d’ondes de raréfaction pour l’équation de Schrödinger non linéaire et le système d’Euler-Korteweg en 2d.) (English. French summary) Zbl 07747042 Ann. Henri Lebesgue 6, 767-845 (2023). MSC: 35Q35 35Q31 35Q40 35Q55 35Q41 35Q53 35J60 35D30 35C07 35C08 35A02 PDF BibTeX XML Cite \textit{D. Chiron}, Ann. Henri Lebesgue 6, 767--845 (2023; Zbl 07747042) Full Text: DOI
Koshkarbayev, Nurbol Makhsetbaevich Travelling breaking waves. (English) Zbl 07745302 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 16, No. 2, 49-58 (2023). MSC: 35C07 35Q35 PDF BibTeX XML Cite \textit{N. M. Koshkarbayev}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 16, No. 2, 49--58 (2023; Zbl 07745302) Full Text: DOI MNR
Bovier, Anton; Hartung, Lisa The speed of invasion in an advancing population. (English) Zbl 1522.92046 J. Math. Biol. 87, No. 4, Paper No. 56, 32 p. (2023). MSC: 92D25 35C07 PDF BibTeX XML Cite \textit{A. Bovier} and \textit{L. Hartung}, J. Math. Biol. 87, No. 4, Paper No. 56, 32 p. (2023; Zbl 1522.92046) Full Text: DOI arXiv OA License
Kádár, Fanni; Stépán, Gábor An implicit system of delay differential algebraic equations from hydrodynamics. (English) Zbl 07742362 Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 28, 8 p. (2023). MSC: 34H20 37L10 PDF BibTeX XML Cite \textit{F. Kádár} and \textit{G. Stépán}, Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 28, 8 p. (2023; Zbl 07742362) Full Text: DOI
Dari, Sonia; Fadai, Nabil T.; O’Dea, Reuben D. Modelling the effect of matrix metalloproteinases in dermal wound healing. (English) Zbl 1522.92013 Bull. Math. Biol. 85, No. 10, Paper No. 96, 25 p. (2023). MSC: 92C32 35Q92 35C07 PDF BibTeX XML Cite \textit{S. Dari} et al., Bull. Math. Biol. 85, No. 10, Paper No. 96, 25 p. (2023; Zbl 1522.92013) Full Text: DOI
Díaz Palencia, José Luis; Rahman, Saeed ur Analysis of travelling waves and propagating supports for a nonlinear model of flame propagation with a \(p\)-Laplacian operator and advection. (English) Zbl 1522.35401 Nonlinearity 36, No. 9, 4954-4980 (2023). MSC: 35Q35 35B65 35K92 35C08 35C06 35A02 35B20 76S05 74L10 80A25 PDF BibTeX XML Cite \textit{J. L. Díaz Palencia} and \textit{S. u. Rahman}, Nonlinearity 36, No. 9, 4954--4980 (2023; Zbl 1522.35401) Full Text: DOI
Griffin, Christopher On a finite population variation of the Fisher-KPP equation. (English) Zbl 1522.35517 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107369, 10 p. (2023). MSC: 35Q92 92D25 35C07 PDF BibTeX XML Cite \textit{C. Griffin}, Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107369, 10 p. (2023; Zbl 1522.35517) Full Text: DOI arXiv
Hamelin, Frédéric M.; Hilker, Frank M.; Dumont, Yves Spatial spread of infectious diseases with conditional vector preferences. (English) Zbl 07732051 J. Math. Biol. 87, No. 2, Paper No. 38, 32 p. (2023). MSC: 34C60 92D30 35Q92 35K57 34C05 34D20 34C23 35C07 34C37 PDF BibTeX XML Cite \textit{F. M. Hamelin} et al., J. Math. Biol. 87, No. 2, Paper No. 38, 32 p. (2023; Zbl 07732051) Full Text: DOI
Boto, Miguel; Sarrico, C. O. R. Distributional profiles for traveling waves in the Camassa-Holm equation. (English) Zbl 1521.35069 J. Dyn. Differ. Equations 35, No. 3, 2099-2114 (2023). MSC: 35C07 35L67 46F10 PDF BibTeX XML Cite \textit{M. Boto} and \textit{C. O. R. Sarrico}, J. Dyn. Differ. Equations 35, No. 3, 2099--2114 (2023; Zbl 1521.35069) Full Text: DOI
Gárriz, Alejandro Singular integral equations with applications to travelling waves for doubly nonlinear diffusion. (English) Zbl 07729125 J. Evol. Equ. 23, No. 3, Paper No. 54, 41 p. (2023). MSC: 45G05 45D05 35C07 35K57 35K59 PDF BibTeX XML Cite \textit{A. Gárriz}, J. Evol. Equ. 23, No. 3, Paper No. 54, 41 p. (2023; Zbl 07729125) Full Text: DOI arXiv
Bertsch, Michiel; Izuhara, Hirofumi; Mimura, Masayasu; Wakasa, Tohru Partially overlapping travelling waves in a parabolic-hyperbolic system. (English) Zbl 1521.35068 Discrete Contin. Dyn. Syst., Ser. B 28, No. 12, 5934-5966 (2023). MSC: 35C07 70K05 92C17 PDF BibTeX XML Cite \textit{M. Bertsch} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 12, 5934--5966 (2023; Zbl 1521.35068) Full Text: DOI
Camassa, R.; Falqui, G.; Ortenzi, G.; Pedroni, M.; Vu Ho, T. T. Simple two-layer dispersive models in the Hamiltonian reduction formalism. (English) Zbl 07726738 Nonlinearity 36, No. 9, 4523-4552 (2023). MSC: 35Q31 35Q35 76B70 76B55 35C07 35B40 35K05 PDF BibTeX XML Cite \textit{R. Camassa} et al., Nonlinearity 36, No. 9, 4523--4552 (2023; Zbl 07726738) Full Text: DOI arXiv
Holubová, Gabriela; Levá, Hana Travelling wave solutions of the beam equation with jumping nonlinearity. (English) Zbl 07723318 J. Math. Anal. Appl. 527, No. 2, Article ID 127466, 15 p. (2023). Reviewer: Takashi Okuda Sakamoto (Kawasaki) MSC: 34C37 74K10 34B40 35C07 58E50 PDF BibTeX XML Cite \textit{G. Holubová} and \textit{H. Levá}, J. Math. Anal. Appl. 527, No. 2, Article ID 127466, 15 p. (2023; Zbl 07723318) Full Text: DOI
Jia, Man; Lou, S. Y. A novel \((2 + 1)\)-dimensional nonlinear Schrödinger equation deformed from \((1 + 1)\)-dimensional nonlinear Schrödinger equation. (English) Zbl 07708842 Appl. Math. Lett. 143, Article ID 108684, 7 p. (2023). MSC: 35Q55 35C07 35C08 PDF BibTeX XML Cite \textit{M. Jia} and \textit{S. Y. Lou}, Appl. Math. Lett. 143, Article ID 108684, 7 p. (2023; Zbl 07708842) Full Text: DOI
Muhamad, Kalsum Abdulrahman; Tanriverdi, Tanfer; Mahmud, Adnan Ahmad; Baskonus, Haci Mehmet Interaction characteristics of the Riemann wave propagation in the \((2+1)\)-dimensional generalized breaking soliton system. (English) Zbl 07705624 Int. J. Comput. Math. 100, No. 6, 1340-1355 (2023). MSC: 34A05 35C08 34C37 34C05 PDF BibTeX XML Cite \textit{K. A. Muhamad} et al., Int. J. Comput. Math. 100, No. 6, 1340--1355 (2023; Zbl 07705624) Full Text: DOI
Hou, Lingling; Zhang, Conghui Travelling wave solutions and stationary solutions of a reaction-diffusion-ODE system. (English) Zbl 1512.35146 Acta Appl. Math. 184, Paper No. 13, 25 p. (2023). MSC: 35C07 35A01 35B25 35B40 35K40 35K57 92C37 PDF BibTeX XML Cite \textit{L. Hou} and \textit{C. Zhang}, Acta Appl. Math. 184, Paper No. 13, 25 p. (2023; Zbl 1512.35146) Full Text: DOI
Bakker, Bente Hilde; van den Berg, Jan Bouwe Large fronts in nonlocally coupled systems using Conley-Floer homology. (English) Zbl 1515.37016 Ann. Henri Poincaré 24, No. 2, 605-696 (2023). MSC: 37B30 37L05 37L60 35C07 PDF BibTeX XML Cite \textit{B. H. Bakker} and \textit{J. B. van den Berg}, Ann. Henri Poincaré 24, No. 2, 605--696 (2023; Zbl 1515.37016) Full Text: DOI arXiv
Derrida, Bernard Cross-overs of Bramson’s shift at the transition between pulled and pushed fronts. (English) Zbl 1511.35069 J. Stat. Phys. 190, No. 3, Paper No. 67, 14 p. (2023). MSC: 35C07 35K57 PDF BibTeX XML Cite \textit{B. Derrida}, J. Stat. Phys. 190, No. 3, Paper No. 67, 14 p. (2023; Zbl 1511.35069) Full Text: DOI arXiv
Agnus, Sherin; Halder, Amlan Kanti; Seshadri, Rajeswari; Leach, P. G. L. Analysis of the Calogero-Degasperis equation through point symmetries. (English) Zbl 1507.34001 J. Anal. 31, No. 1, 705-718 (2023). MSC: 34A05 34A34 34C14 22E60 35B06 35C05 35C07 PDF BibTeX XML Cite \textit{S. Agnus} et al., J. Anal. 31, No. 1, 705--718 (2023; Zbl 1507.34001) Full Text: DOI
Chiron, David; Pacherie, Eliot Coercivity for travelling waves in the Gross-Pitaevskii equation in \(\mathbb{R}^2\) for small speed. (English) Zbl 1509.35091 Publ. Mat., Barc. 67, No. 1, 277-410 (2023). MSC: 35C07 35A02 35B35 35Q55 PDF BibTeX XML Cite \textit{D. Chiron} and \textit{E. Pacherie}, Publ. Mat., Barc. 67, No. 1, 277--410 (2023; Zbl 1509.35091) Full Text: DOI arXiv
Tam, Alexander K. Y.; Simpson, Matthew J. Pattern formation and front stability for a moving-boundary model of biological invasion and recession. (English) Zbl 1505.35034 Physica D 444, Article ID 133593, 15 p. (2023). MSC: 35B36 35C07 35K57 35R37 PDF BibTeX XML Cite \textit{A. K. Y. Tam} and \textit{M. J. Simpson}, Physica D 444, Article ID 133593, 15 p. (2023; Zbl 1505.35034) Full Text: DOI arXiv
Eigentler, L.; Sherratt, J. A. Long-range seed dispersal enables almost stationary patterns in a model for dryland vegetation. (English) Zbl 1505.92254 J. Math. Biol. 86, No. 1, Paper No. 15, 28 p. (2023). MSC: 92D40 35C07 92C15 PDF BibTeX XML Cite \textit{L. Eigentler} and \textit{J. A. Sherratt}, J. Math. Biol. 86, No. 1, Paper No. 15, 28 p. (2023; Zbl 1505.92254) Full Text: DOI
Andrade, Renato; Cobbold, Christina A. Heterogeneity in behaviour and movement can influence the stability of predator-prey periodic travelling waves. (English) Zbl 1506.92068 Bull. Math. Biol. 85, No. 1, Paper No. 1, 30 p. (2023). Reviewer: Wan-Tong Li (Lanzhou) MSC: 92D25 35C07 35K57 PDF BibTeX XML Cite \textit{R. Andrade} and \textit{C. A. Cobbold}, Bull. Math. Biol. 85, No. 1, Paper No. 1, 30 p. (2023; Zbl 1506.92068) Full Text: DOI
Bronski, Jared C.; Hur, Vera Mikyoung; Wester, Samuel Lee Superharmonic instability for regularized long-wave models. (English) Zbl 1504.35050 Nonlinearity 36, No. 1, 133-170 (2023). MSC: 35B35 35C07 35P20 37K45 PDF BibTeX XML Cite \textit{J. C. Bronski} et al., Nonlinearity 36, No. 1, 133--170 (2023; Zbl 1504.35050) Full Text: DOI arXiv
Hildrum, Fredrik; Xue, Jun Periodic Hölder waves in a class of negative-order dispersive equations. (English) Zbl 1502.35037 J. Differ. Equations 343, 752-789 (2023). MSC: 35C07 35B10 35B32 35B65 35R11 35S30 45M15 49J52 PDF BibTeX XML Cite \textit{F. Hildrum} and \textit{J. Xue}, J. Differ. Equations 343, 752--789 (2023; Zbl 1502.35037) Full Text: DOI arXiv
Wen, Hao; Huang, Jianhua; Zhang, Liang Travelling wave of stochastic Lotka-Volterra competitive system. (English) Zbl 1502.35040 Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 1750-1770 (2023). MSC: 35C07 35R60 37A25 60H15 PDF BibTeX XML Cite \textit{H. Wen} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 1750--1770 (2023; Zbl 1502.35040) Full Text: DOI
Gürbüz, Nevin Ertug; Yüzbası, Zühal Küçükarslan; Yoon, Dae Won Hasimoto maps for nonlinear Schrödinger equations in Minkowski space. (English) Zbl 1502.35152 J. Nonlinear Math. Phys. 29, No. 4, 761-775 (2022). MSC: 35Q55 35C07 35A30 53Z05 76B47 PDF BibTeX XML Cite \textit{N. E. Gürbüz} et al., J. Nonlinear Math. Phys. 29, No. 4, 761--775 (2022; Zbl 1502.35152) Full Text: DOI
Ji, Hangjie; Taranets, Roman; Chugunova, Marina On travelling wave solutions of a model of a liquid film flowing down a fibre. (English) Zbl 1504.35114 Eur. J. Appl. Math. 33, No. 5, 864-893 (2022). MSC: 35C07 35K35 35K55 35K65 76A20 76D08 PDF BibTeX XML Cite \textit{H. Ji} et al., Eur. J. Appl. Math. 33, No. 5, 864--893 (2022; Zbl 1504.35114) Full Text: DOI arXiv
Zhou, Jiangbo; Li, Jinghuan; Wei, Jingdong; Tian, Lixin Wave propagation in a diffusive SAIV epidemic model with time delays. (English) Zbl 1504.35119 Eur. J. Appl. Math. 33, No. 4, 674-700 (2022). MSC: 35C07 35K40 35K57 92D30 PDF BibTeX XML Cite \textit{J. Zhou} et al., Eur. J. Appl. Math. 33, No. 4, 674--700 (2022; Zbl 1504.35119) Full Text: DOI
Billingham, J.; Needham, D. J. Travelling wave solutions of the cubic nonlocal Fisher-KPP equation. I: General theory and the near local limit. (English) Zbl 1504.35111 Nonlinearity 35, No. 12, 6098-6123 (2022). MSC: 35C07 35B40 35K57 35R09 65M06 PDF BibTeX XML Cite \textit{J. Billingham} and \textit{D. J. Needham}, Nonlinearity 35, No. 12, 6098--6123 (2022; Zbl 1504.35111) Full Text: DOI
Kalyakin, L. A. Perturbation of a simple wave in a system with dissipation. (English. Russian original) Zbl 1501.35116 Math. Notes 112, No. 4, 549-560 (2022); translation from Mat. Zametki 112, No. 4, 553-566 (2022). MSC: 35C07 35K58 PDF BibTeX XML Cite \textit{L. A. Kalyakin}, Math. Notes 112, No. 4, 549--560 (2022; Zbl 1501.35116); translation from Mat. Zametki 112, No. 4, 553--566 (2022) Full Text: DOI
Bakker, Bente Hilde; Faver, Timothy E.; Hupkes, Hermen Jan; Merks, Roeland M. H.; van der Voort, Jelle Scaling relations for auxin waves. (English) Zbl 1505.34069 J. Math. Biol. 85, No. 4, Paper No. 41, 72 p. (2022). MSC: 34C60 34A33 92C37 34B40 35C07 PDF BibTeX XML Cite \textit{B. H. Bakker} et al., J. Math. Biol. 85, No. 4, Paper No. 41, 72 p. (2022; Zbl 1505.34069) Full Text: DOI arXiv
Wang, Ke; Chen, Shuting; Du, Zengji Dynamics of travelling waves to KdV-Burgers-Kuramoto equation with Marangoni effect perturbation. (English) Zbl 1498.35484 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 132, 30 p. (2022). MSC: 35Q53 34D15 35C07 35B25 35B40 35A01 35R01 35R07 PDF BibTeX XML Cite \textit{K. Wang} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 132, 30 p. (2022; Zbl 1498.35484) Full Text: DOI
Hupkes, H. J.; Van Vleck, E. S. Travelling waves for adaptive grid discretizations of reaction diffusion systems. II: Linear theory. (English) Zbl 1498.35147 J. Dyn. Differ. Equations 34, No. 3, 1679-1728 (2022). MSC: 35C07 34K31 34C37 34E15 35B25 35K57 39A12 PDF BibTeX XML Cite \textit{H. J. Hupkes} and \textit{E. S. Van Vleck}, J. Dyn. Differ. Equations 34, No. 3, 1679--1728 (2022; Zbl 1498.35147) Full Text: DOI
Samanta, Pintu; Rao, Ch. Srinivasa Asymptotic solutions of Burgers equation and modified Burgers equation satisfying flux type conditions. (English) Zbl 1496.35141 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 205, 28 p. (2022). MSC: 35C05 35C20 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{P. Samanta} and \textit{Ch. S. Rao}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 205, 28 p. (2022; Zbl 1496.35141) Full Text: DOI
Wen, Hao; Huang, Jianhua; Li, Yuhong Propagation of stochastic travelling waves of cooperative systems with noise. (English) Zbl 1496.35469 Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5779-5803 (2022). MSC: 35R60 35C07 35K45 35K57 37A25 60H15 PDF BibTeX XML Cite \textit{H. Wen} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5779--5803 (2022; Zbl 1496.35469) Full Text: DOI
Nunes, Andressa; Lyra, Marcelo L. Stationary scattering solution and logic operations in \(X\)-coupled tight-binding chains. (English) Zbl 1502.35042 Phys. Lett., A 446, Article ID 128286, 6 p. (2022). MSC: 35C08 35C07 35A18 PDF BibTeX XML Cite \textit{A. Nunes} and \textit{M. L. Lyra}, Phys. Lett., A 446, Article ID 128286, 6 p. (2022; Zbl 1502.35042) Full Text: DOI
Paliathanasis, Andronikos Lie symmetries and similarity solutions for a family of 1+1 fifth-order partial differential equations. (English) Zbl 1515.35233 Quaest. Math. 45, No. 7, 1099-1114 (2022). MSC: 35Q51 35A22 35A09 35C07 35C08 35B06 PDF BibTeX XML Cite \textit{A. Paliathanasis}, Quaest. Math. 45, No. 7, 1099--1114 (2022; Zbl 1515.35233) Full Text: DOI arXiv
Pacherie, Eliot A uniqueness result for travelling waves in the Gross-Pitaevskii equation. (English) Zbl 1495.35072 Sémin. Laurent Schwartz, EDP Appl. 2021-2022, Exp. No. 17, 16 p. (2022). MSC: 35C07 35A02 35Q55 PDF BibTeX XML Cite \textit{E. Pacherie}, Sémin. Laurent Schwartz, EDP Appl. 2021--2022, Exp. No. 17, 16 p. (2022; Zbl 1495.35072) Full Text: DOI
Wang, Yang; Li, Hongliang; Li, Xiong Travelling wave fronts of Lotka-Volterra reaction-diffusion system in the weak competition case. (English) Zbl 1495.35075 Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 4, 912-938 (2022). MSC: 35C07 35K45 35K57 92D25 92D40 PDF BibTeX XML Cite \textit{Y. Wang} et al., Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 4, 912--938 (2022; Zbl 1495.35075) Full Text: DOI
Ducrot, Arnaud; Jin, Zhucheng Generalized travelling fronts for non-autonomous Fisher-KPP equations with nonlocal diffusion. (English) Zbl 1495.35067 Ann. Mat. Pura Appl. (4) 201, No. 4, 1607-1638 (2022). MSC: 35C07 35K55 35R09 45G10 92D25 PDF BibTeX XML Cite \textit{A. Ducrot} and \textit{Z. Jin}, Ann. Mat. Pura Appl. (4) 201, No. 4, 1607--1638 (2022; Zbl 1495.35067) Full Text: DOI
Cantarini, Marco; Marcelli, Cristina; Papalini, Francesca Wavefront solutions for a class of nonlinear highly degenerate parabolic equations. (English) Zbl 1491.35110 J. Differ. Equations 332, 278-305 (2022). MSC: 35C07 35K57 35K65 34B40 34B16 92D25 PDF BibTeX XML Cite \textit{M. Cantarini} et al., J. Differ. Equations 332, 278--305 (2022; Zbl 1491.35110) Full Text: DOI
Colucci, Renato Special solutions for an equation arising in sand ripple dynamics. (English) Zbl 1504.35556 Nonlinear Anal., Real World Appl. 67, Article ID 103629, 24 p. (2022). MSC: 35Q82 82D25 82C22 35C07 35B36 35A01 PDF BibTeX XML Cite \textit{R. Colucci}, Nonlinear Anal., Real World Appl. 67, Article ID 103629, 24 p. (2022; Zbl 1504.35556) Full Text: DOI
Aderyani, Safoura Rezaei; Saadati, Reza; Vahidi, Javad; Allahviranloo, Tofigh The exact solutions of the conformable time-fractional modified nonlinear Schrödinger equation by the trial equation method and modified trial equation method. (English) Zbl 1490.35075 Adv. Math. Phys. 2022, Article ID 4318192, 11 p. (2022). MSC: 35C05 35A22 35Q55 35R11 PDF BibTeX XML Cite \textit{S. R. Aderyani} et al., Adv. Math. Phys. 2022, Article ID 4318192, 11 p. (2022; Zbl 1490.35075) Full Text: DOI
Bekir, Ahmet; Shehata, Maha S. M.; Zahran, Emad H. M. New optical soliton solutions for the thin-film ferroelectric materials equation instead of the numerical solution. (English) Zbl 1499.35158 Comput. Methods Differ. Equ. 10, No. 1, 158-167 (2022). MSC: 35C08 35Q60 PDF BibTeX XML Cite \textit{A. Bekir} et al., Comput. Methods Differ. Equ. 10, No. 1, 158--167 (2022; Zbl 1499.35158) Full Text: DOI
Hupkes, H. J.; Van Vleck, E. S. Travelling waves for adaptive grid discretizations of reaction diffusion systems. I: Well-posedness. (English) Zbl 1497.34108 J. Dyn. Differ. Equations 34, No. 2, 1505-1599 (2022). MSC: 34K31 34C37 34E15 35C07 35K57 65M06 PDF BibTeX XML Cite \textit{H. J. Hupkes} and \textit{E. S. Van Vleck}, J. Dyn. Differ. Equations 34, No. 2, 1505--1599 (2022; Zbl 1497.34108) Full Text: DOI
Daíz Palencia, José Luis Analysis and instabilities of travelling waves solutions for a free boundary problem with non-homogeneous KPP reaction, with degenerate diffusion and with non-linear advection. (English) Zbl 1487.35167 Dyn. Syst. 37, No. 1, 83-104 (2022). MSC: 35C07 35B35 35K30 35K58 35K91 PDF BibTeX XML Cite \textit{J. L. Daíz Palencia}, Dyn. Syst. 37, No. 1, 83--104 (2022; Zbl 1487.35167) Full Text: DOI
El-Hachem, Maud; McCue, Scott W.; Simpson, Matthew J. A continuum mathematical model of substrate-mediated tissue growth. (English) Zbl 1486.92081 Bull. Math. Biol. 84, No. 4, Paper No. 49, 27 p. (2022). MSC: 92C50 92C15 35C07 PDF BibTeX XML Cite \textit{M. El-Hachem} et al., Bull. Math. Biol. 84, No. 4, Paper No. 49, 27 p. (2022; Zbl 1486.92081) Full Text: DOI arXiv
Du, Yihong; Ni, Wenjie Spreading speed for some cooperative systems with nonlocal diffusion and free boundaries. I: Semi-wave and a threshold condition. (English) Zbl 1479.35191 J. Differ. Equations 308, 369-420 (2022). MSC: 35C07 35K51 35K57 35R35 35R09 PDF BibTeX XML Cite \textit{Y. Du} and \textit{W. Ni}, J. Differ. Equations 308, 369--420 (2022; Zbl 1479.35191) Full Text: DOI
Zhang, Hai-Qiang; Chen, Fa; Pei, Zhi-Jie Rogue waves of the fifth-order Ito equation on the general periodic travelling wave solutions background. (English) Zbl 1516.35173 Nonlinear Dyn. 103, No. 1, 1023-1033 (2021). MSC: 35C07 PDF BibTeX XML Cite \textit{H.-Q. Zhang} et al., Nonlinear Dyn. 103, No. 1, 1023--1033 (2021; Zbl 1516.35173) Full Text: DOI
Rezazadeh, Hadi; Korkmaz, Alper; EL Achab, Abdelfattah; Adel, Waleed; Bekir, Ahmet New travelling wave solution-based new Riccati equation for solving KdV and modified KdV equations. (English) Zbl 1514.35087 Appl. Math. Nonlinear Sci. 6, No. 1, 447-458 (2021). MSC: 35C07 35C08 PDF BibTeX XML Cite \textit{H. Rezazadeh} et al., Appl. Math. Nonlinear Sci. 6, No. 1, 447--458 (2021; Zbl 1514.35087) Full Text: DOI
Yu, XiuQing; Kong, Shuxia Travelling wave solutions to the proximate equations for LWSW. (English) Zbl 1514.35088 Appl. Math. Nonlinear Sci. 6, No. 1, 335-346 (2021). MSC: 35C07 35Q53 PDF BibTeX XML Cite \textit{X. Yu} and \textit{S. Kong}, Appl. Math. Nonlinear Sci. 6, No. 1, 335--346 (2021; Zbl 1514.35088) Full Text: DOI
De Angelis, Monica A note on explicit solutions of FitzHugh-Rinzel system. (English) Zbl 07695239 Nonlinear Dyn. Syst. Theory 21, No. 4, 360-366 (2021). MSC: 34A05 92C20 PDF BibTeX XML Cite \textit{M. De Angelis}, Nonlinear Dyn. Syst. Theory 21, No. 4, 360--366 (2021; Zbl 07695239) Full Text: arXiv Link
Masood Khalique, Chaudry; Davies Adeyemo, Oke Soliton solutions, travelling wave solutions and conserved quantities for a three-dimensional soliton equation in plasma physics. (English) Zbl 1512.35508 Commun. Theor. Phys. 73, No. 12, Article ID 125003, 33 p. (2021). MSC: 35Q51 37K40 35C08 82D10 74J35 PDF BibTeX XML Cite \textit{C. Masood Khalique} and \textit{O. Davies Adeyemo}, Commun. Theor. Phys. 73, No. 12, Article ID 125003, 33 p. (2021; Zbl 1512.35508) Full Text: DOI
Meena, Meetha Lal; Rankaj, Ram Dayal; Kumar, Arun New soliton and periodic wave solutions of nonlinear evolution equations arising in wave interactions. (English) Zbl 07683908 Gaṇita 71, No. 1, 257-267 (2021). MSC: 35M10 49J45 PDF BibTeX XML Cite \textit{M. L. Meena} et al., Gaṇita 71, No. 1, 257--267 (2021; Zbl 07683908) Full Text: Link
Sobolev, Vladimir Andreevich; Tropkina, Elena Andreevna; Shchepakina, Elena Anatol’evna; Zhang, Lijun Decomposition of traveling waves problems. (Russian. English summary) Zbl 1510.35028 Vestn. Samar. Univ., Estestvennonauchn. Ser. 27, No. 3, 22-30 (2021). MSC: 35B25 35C07 35K40 35K58 PDF BibTeX XML Cite \textit{V. A. Sobolev} et al., Vestn. Samar. Univ., Estestvennonauchn. Ser. 27, No. 3, 22--30 (2021; Zbl 1510.35028) Full Text: DOI MNR
Li, Kun; Li, Xiong Existence and stability of bistable wavefronts in a nonlocal delayed reaction-diffusion epidemic system. (English) Zbl 1504.35115 Eur. J. Appl. Math. 32, No. 1, 146-176 (2021). MSC: 35C07 35B51 35K57 35R09 PDF BibTeX XML Cite \textit{K. Li} and \textit{X. Li}, Eur. J. Appl. Math. 32, No. 1, 146--176 (2021; Zbl 1504.35115) Full Text: DOI
Mendoza, J.; Muriel, C. New exact solutions for a generalised Burgers-Fisher equation. (English) Zbl 1496.35147 Chaos Solitons Fractals 152, Article ID 111360, 9 p. (2021). MSC: 35C07 35A22 35C05 35K58 PDF BibTeX XML Cite \textit{J. Mendoza} and \textit{C. Muriel}, Chaos Solitons Fractals 152, Article ID 111360, 9 p. (2021; Zbl 1496.35147) Full Text: DOI
Caffarelli, Luis A.; Roquejoffre, Jean-Michel The shape of a free boundary driven by a line of fast diffusion. (English) Zbl 1496.35458 Math. Eng. (Springfield) 3, No. 1, Paper No. 10, 25 p. (2021). MSC: 35R35 35C07 PDF BibTeX XML Cite \textit{L. A. Caffarelli} and \textit{J.-M. Roquejoffre}, Math. Eng. (Springfield) 3, No. 1, Paper No. 10, 25 p. (2021; Zbl 1496.35458) Full Text: DOI arXiv
Sobolev, Vladimir Andreevich; Tropkina, Elena Andreevna; Shchepakina, Elena Anatol’evna; Zhang, Lichun; Wang, Jondon Critical travelling waves in one model of the “reaction-diffusion” type. (Russian. English summary) Zbl 1504.34120 Vestn. Samar. Univ., Estestvennonauchn. Ser. 27, No. 2, 16-24 (2021). Reviewer: Klaus R. Schneider (Berlin) MSC: 34C60 92D25 34E15 34C45 34C37 34E17 35C07 PDF BibTeX XML Cite \textit{V. A. Sobolev} et al., Vestn. Samar. Univ., Estestvennonauchn. Ser. 27, No. 2, 16--24 (2021; Zbl 1504.34120) Full Text: DOI MNR
Munir, Mobeen; Athar, Muhammad; Sarwar, Sakhi; Shatanawi, Wasfi Lie symmetries of generalized equal width wave equations. (English) Zbl 1508.35130 AIMS Math. 6, No. 11, 12148-12165 (2021). MSC: 35Q53 22E70 35C07 35A24 34C14 PDF BibTeX XML Cite \textit{M. Munir} et al., AIMS Math. 6, No. 11, 12148--12165 (2021; Zbl 1508.35130) Full Text: DOI
Ionescu-Kruse, Delia Fronts, pulses, and periodic travelling waves in two-component shallow water models. (English) Zbl 07523917 Rev. Roum. Math. Pures Appl. 66, No. 3-4, 725-748 (2021). MSC: 35Q35 76F10 35C07 76B25 70K05 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, Rev. Roum. Math. Pures Appl. 66, No. 3--4, 725--748 (2021; Zbl 07523917) Full Text: Link
Li, Min; Wang, Boting; Xu, Tao; Wang, Lei Quantitative analysis on the bifurcations and exact travelling wave solutions of a generalized fourth-order dispersive nonlinear Schrödinger equation in Heisenberg spin chain. (English) Zbl 1498.35508 Chaos Solitons Fractals 145, Article ID 110767, 10 p. (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{M. Li} et al., Chaos Solitons Fractals 145, Article ID 110767, 10 p. (2021; Zbl 1498.35508) Full Text: DOI
Liu, Yuanyuan; Wang, Qinlong; Huang, Wentao Period travelling wave solutions of a density-dependent biological invasion model. (Chinese. English summary) Zbl 1488.35152 J. Anhui Norm. Univ., Nat. Sci. 44, No. 3, 227-232 (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Anhui Norm. Univ., Nat. Sci. 44, No. 3, 227--232 (2021; Zbl 1488.35152) Full Text: DOI
Drábek, Pavel; Takáč, Peter Travelling waves in the Fisher-KPP equation with nonlinear degenerate or singular diffusion. (English) Zbl 1479.35880 Appl. Math. Optim. 84, No. 2, 1185-1208 (2021). MSC: 35Q92 92D25 34B08 35K57 35K65 34B18 35C07 PDF BibTeX XML Cite \textit{P. Drábek} and \textit{P. Takáč}, Appl. Math. Optim. 84, No. 2, 1185--1208 (2021; Zbl 1479.35880) Full Text: DOI arXiv
Huang, Wenzhang; Wu, Chufen Non-monotone waves of a stage-structured SLIRM epidemic model with latent period. (English) Zbl 1479.35884 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 5, 1407-1442 (2021). MSC: 35Q92 35K57 35C07 35B40 44A10 30E20 92D30 PDF BibTeX XML Cite \textit{W. Huang} and \textit{C. Wu}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 5, 1407--1442 (2021; Zbl 1479.35884) Full Text: DOI
Preobrazhenskaya, M. M. Discrete traveling waves in a relay system of Mackey-Glass equations with two delays. (English. Russian original) Zbl 1496.34106 Theor. Math. Phys. 207, No. 3, 827-840 (2021); translation from Teor. Mat. Fiz. 207, No. 3, 489-504 (2021). Reviewer: Ábel Garab (Klagenfurt) MSC: 34K13 34K17 92D25 34K39 PDF BibTeX XML Cite \textit{M. M. Preobrazhenskaya}, Theor. Math. Phys. 207, No. 3, 827--840 (2021; Zbl 1496.34106); translation from Teor. Mat. Fiz. 207, No. 3, 489--504 (2021) Full Text: DOI
Gonzalez Herrero, Maria Elena; Kuehn, Christian; Tsaneva-Atanasova, Krasimira Reduced models of cardiomyocytes excitability: comparing Karma and FitzHugh-Nagumo. (English) Zbl 1468.92029 Bull. Math. Biol. 83, No. 8, Paper No. 88, 37 p. (2021). MSC: 92C37 35C07 35B25 PDF BibTeX XML Cite \textit{M. E. Gonzalez Herrero} et al., Bull. Math. Biol. 83, No. 8, Paper No. 88, 37 p. (2021; Zbl 1468.92029) Full Text: DOI arXiv
Demirbilek, Ulviye; Ala, Volkan; Mamedov, Khanlar R. On the new travelling wave solutions of a nonlinear conformable time fractional PDE via IBSEFM. (English) Zbl 1467.35086 J. Adv. Math. Stud. 14, No. 1, 102-108 (2021). MSC: 35C07 35C08 35R11 34K20 32W50 PDF BibTeX XML Cite \textit{U. Demirbilek} et al., J. Adv. Math. Stud. 14, No. 1, 102--108 (2021; Zbl 1467.35086) Full Text: Link
Deng, Liangliang; Wang, Zhi-Cheng Propagation phenomena for a criss-cross infection model with non-diffusive susceptible population in periodic media. (English) Zbl 1467.35087 Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4789-4814 (2021). MSC: 35C07 35K45 35K57 35B40 92D30 PDF BibTeX XML Cite \textit{L. Deng} and \textit{Z.-C. Wang}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4789--4814 (2021; Zbl 1467.35087) Full Text: DOI
Schouten-Straatman, W. M.; Hupkes, H. J. Travelling wave solutions for fully discrete FitzHugh-Nagumo type equations with infinite-range interactions. (English) Zbl 1482.65153 J. Math. Anal. Appl. 502, No. 2, Article ID 125272, 41 p. (2021). MSC: 65M06 65N06 35B25 35C07 92C20 35Q92 PDF BibTeX XML Cite \textit{W. M. Schouten-Straatman} and \textit{H. J. Hupkes}, J. Math. Anal. Appl. 502, No. 2, Article ID 125272, 41 p. (2021; Zbl 1482.65153) Full Text: DOI arXiv
Jukić, Mia; Hupkes, Hermen Jan Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. (English) Zbl 1481.34018 Discrete Contin. Dyn. Syst. 41, No. 7, 3163-3209 (2021). Reviewer: Caidi Zhao (Wenzhou) MSC: 34A33 34D05 34D20 35C07 PDF BibTeX XML Cite \textit{M. Jukić} and \textit{H. J. Hupkes}, Discrete Contin. Dyn. Syst. 41, No. 7, 3163--3209 (2021; Zbl 1481.34018) Full Text: DOI arXiv
Yokus, Asıf; Tuz, Münevver; Güngöz, Ufuk On the exact and numerical complex travelling wave solution to the nonlinear Schrödinger equation. (English) Zbl 07355103 J. Difference Equ. Appl. 27, No. 2, 195-206 (2021). MSC: 65L12 74S20 PDF BibTeX XML Cite \textit{A. Yokus} et al., J. Difference Equ. Appl. 27, No. 2, 195--206 (2021; Zbl 07355103) Full Text: DOI
Zhu, Kun; Shen, Jianhe Smooth travelling wave solutions in a generalized Degasperis-Procesi equation. (English) Zbl 1467.37067 Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105763, 18 p. (2021). MSC: 37K40 37K10 35C07 35Q51 PDF BibTeX XML Cite \textit{K. Zhu} and \textit{J. Shen}, Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105763, 18 p. (2021; Zbl 1467.37067) Full Text: DOI
Ramaj, Tedi On the mathematical modelling of competitive invasive weed dynamics. (English) Zbl 1460.92176 Bull. Math. Biol. 83, No. 2, Paper No. 13, 25 p. (2021). MSC: 92D25 35C07 PDF BibTeX XML Cite \textit{T. Ramaj}, Bull. Math. Biol. 83, No. 2, Paper No. 13, 25 p. (2021; Zbl 1460.92176) Full Text: DOI
Xu, Zhaoquan Global stability of travelling waves for a class of monostable epidemic models. (English) Zbl 1458.35434 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105595, 16 p. (2021). MSC: 35Q92 92D30 35B35 35C07 PDF BibTeX XML Cite \textit{Z. Xu}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105595, 16 p. (2021; Zbl 1458.35434) Full Text: DOI
Kim, Sunghoon; Lee, Ki-Ahm System of porous medium equations. (English) Zbl 1455.35020 J. Differ. Equations 272, 433-472 (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B40 35K65 35K40 35C07 92D25 PDF BibTeX XML Cite \textit{S. Kim} and \textit{K.-A. Lee}, J. Differ. Equations 272, 433--472 (2021; Zbl 1455.35020) Full Text: DOI arXiv
Du, Zengji; Liu, Jiang; Ren, Yulin Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach. (English) Zbl 1452.35219 J. Differ. Equations 270, 1019-1042 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 92C17 35C07 34D15 35B25 PDF BibTeX XML Cite \textit{Z. Du} et al., J. Differ. Equations 270, 1019--1042 (2021; Zbl 1452.35219) Full Text: DOI
Ducrot, Arnaud Spreading speed for a KPP type reaction-diffusion system with heat losses and fast decaying initial data. (English) Zbl 1461.35050 J. Differ. Equations 270, 217-247 (2021). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35B40 35K57 35C07 PDF BibTeX XML Cite \textit{A. Ducrot}, J. Differ. Equations 270, 217--247 (2021; Zbl 1461.35050) Full Text: DOI
Abdelsalam, U. M. Exact solutions for coupled nonlinear partial differential equations using \(G'/G\) method. (English) Zbl 1463.35152 Electron. J. Math. Anal. Appl. 9, No. 1, 67-78 (2021). MSC: 35C07 35C08 35B10 35C09 PDF BibTeX XML Cite \textit{U. M. Abdelsalam}, Electron. J. Math. Anal. Appl. 9, No. 1, 67--78 (2021; Zbl 1463.35152) Full Text: Link
Sarrico, C. O. R. New singular travelling waves for convection-diffusion-reaction equations. (English) Zbl 1514.35267 J. Phys. A, Math. Theor. 53, No. 15, Article ID 155202, 17 p. (2020). MSC: 35K57 35C07 76L05 PDF BibTeX XML Cite \textit{C. O. R. Sarrico}, J. Phys. A, Math. Theor. 53, No. 15, Article ID 155202, 17 p. (2020; Zbl 1514.35267) Full Text: DOI
Tsai, Je-Chiang; Kabir, M. Humayun; Mimura, Masayasu Travelling waves in a reaction-diffusion system modelling farmer and hunter-gatherer interaction in the Neolithic transition in Europe. (English) Zbl 1504.35117 Eur. J. Appl. Math. 31, No. 3, 470-510 (2020). MSC: 35C07 35B40 35K57 35Q91 PDF BibTeX XML Cite \textit{J.-C. Tsai} et al., Eur. J. Appl. Math. 31, No. 3, 470--510 (2020; Zbl 1504.35117) Full Text: DOI
Cai, Jingjing; Xu, Li Asymptotic behaviour of solutions of Fisher-KPP equation with free boundaries in time-periodic environment. (English) Zbl 1504.35657 Eur. J. Appl. Math. 31, No. 3, 423-449 (2020). MSC: 35R35 35B40 35C07 35K20 35K58 PDF BibTeX XML Cite \textit{J. Cai} and \textit{L. Xu}, Eur. J. Appl. Math. 31, No. 3, 423--449 (2020; Zbl 1504.35657) Full Text: DOI
Yu, Zhi-Xian; Zhang, Lei Analysis of spreading speeds for monotone semiflows with an application to CNNs. (English) Zbl 1504.35118 Eur. J. Appl. Math. 31, No. 3, 369-384 (2020). MSC: 35C07 34A33 37C65 92B20 PDF BibTeX XML Cite \textit{Z.-X. Yu} and \textit{L. Zhang}, Eur. J. Appl. Math. 31, No. 3, 369--384 (2020; Zbl 1504.35118) Full Text: DOI
Deng, Dong; Zhang, Dongpei Existence of travelling waves with the critical speed for an influenza model with treatment. (English) Zbl 1504.35112 Eur. J. Appl. Math. 31, No. 2, 232-245 (2020). MSC: 35C07 35K40 35K57 35Q92 PDF BibTeX XML Cite \textit{D. Deng} and \textit{D. Zhang}, Eur. J. Appl. Math. 31, No. 2, 232--245 (2020; Zbl 1504.35112) Full Text: DOI
Islam, Md. Nurul; Asaduzzaman, Md.; Ali, Md. Shajib Exact wave solutions to the simplified modified Camassa-Holm equation in mathematical physics. (English) Zbl 1484.35337 AIMS Math. 5, No. 1, 26-41 (2020). MSC: 35Q53 35C07 35C08 PDF BibTeX XML Cite \textit{Md. N. Islam} et al., AIMS Math. 5, No. 1, 26--41 (2020; Zbl 1484.35337) Full Text: DOI
El-Hachem, Maud; McCue, Scott W.; Simpson, Matthew J. A sharp-front moving boundary model for malignant invasion. (English) Zbl 1492.35361 Physica D 412, Article ID 132639, 11 p. (2020). MSC: 35Q92 92D25 92C37 35C07 PDF BibTeX XML Cite \textit{M. El-Hachem} et al., Physica D 412, Article ID 132639, 11 p. (2020; Zbl 1492.35361) Full Text: DOI arXiv
Kim, Hyunsoo; Sakthivel, Rathinasamy; Debbouche, Amar; Torres, Delfim F. M. Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations. (English) Zbl 1495.35193 Chaos Solitons Fractals 131, Article ID 109542, 12 p. (2020). MSC: 35R11 60H15 35R60 35C07 35Q55 PDF BibTeX XML Cite \textit{H. Kim} et al., Chaos Solitons Fractals 131, Article ID 109542, 12 p. (2020; Zbl 1495.35193) Full Text: DOI arXiv
Kim, Sangkwon; Park, Jintae; Lee, Chaeyoung; Jeong, Darae; Choi, Yongho; Kwak, Soobin; Kim, Junseok Periodic travelling wave solutions for a reaction-diffusion system on landscape fitted domains. (English) Zbl 1490.35203 Chaos Solitons Fractals 139, Article ID 110300, 9 p. (2020). MSC: 35K57 35C07 92D25 PDF BibTeX XML Cite \textit{S. Kim} et al., Chaos Solitons Fractals 139, Article ID 110300, 9 p. (2020; Zbl 1490.35203) Full Text: DOI
Sarrico, C. O. R. Distributions as travelling waves in a nonlinear model from elastodynamics. (English) Zbl 1501.35393 Physica D 403, Article ID 132328, 7 p. (2020). MSC: 35Q74 35C07 35L67 74H05 74B99 PDF BibTeX XML Cite \textit{C. O. R. Sarrico}, Physica D 403, Article ID 132328, 7 p. (2020; Zbl 1501.35393) Full Text: DOI
François, Laurent; Dupays, Joël; Davidenko, Dmitry; Massot, Marc Travelling wave mathematical analysis and efficient numerical resolution for a one-dimensional model of solid propellant combustion. (English) Zbl 1519.80060 Combust. Theory Model. 24, No. 5, 775-809 (2020). MSC: 80A25 76V05 35C07 PDF BibTeX XML Cite \textit{L. François} et al., Combust. Theory Model. 24, No. 5, 775--809 (2020; Zbl 1519.80060) Full Text: DOI arXiv
Billingham, John Slow travelling wave solutions of the nonlocal Fisher-KPP equation. (English) Zbl 1521.34046 Nonlinearity 33, No. 5, 2106-2142 (2020). Reviewer: Jianhe Shen (Fuzhou) MSC: 34C37 34E05 35C07 35K57 PDF BibTeX XML Cite \textit{J. Billingham}, Nonlinearity 33, No. 5, 2106--2142 (2020; Zbl 1521.34046) Full Text: DOI
Li, Jibin; Zhou, Yan Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. (English) Zbl 1469.35195 Discrete Contin. Dyn. Syst., Ser. S 13, No. 11, 3083-3097 (2020). MSC: 35Q55 35B32 35C07 58J55 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Zhou}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 11, 3083--3097 (2020; Zbl 1469.35195) Full Text: DOI
Clarke, W. A.; Marangell, R. A new Evans function for quasi-periodic solutions of the linearised sine-Gordon equation. (English) Zbl 1462.35025 J. Nonlinear Sci. 30, No. 6, 3421-3442 (2020). MSC: 35B15 35L71 35C07 35B32 35B35 35P05 47A75 PDF BibTeX XML Cite \textit{W. A. Clarke} and \textit{R. Marangell}, J. Nonlinear Sci. 30, No. 6, 3421--3442 (2020; Zbl 1462.35025) Full Text: DOI arXiv
Rezazadeh, Hadi; Vahidi, Javad; Zafar, Asim; Bekir, Ahmet The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity. (English) Zbl 07336594 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3-4, 249-257 (2020). MSC: 35-XX 39-XX PDF BibTeX XML Cite \textit{H. Rezazadeh} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3--4, 249--257 (2020; Zbl 07336594) Full Text: DOI
Crooks, Elaine C. M.; Grinfeld, Michael Minimal travelling wave speed and explicit solutions in monostable reaction-diffusion equations. (English) Zbl 1474.35174 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 79, 9 p. (2020). MSC: 35C07 35K55 35K91 PDF BibTeX XML Cite \textit{E. C. M. Crooks} and \textit{M. Grinfeld}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 79, 9 p. (2020; Zbl 1474.35174) Full Text: DOI arXiv
Wang, Yaji; Xu, Hang; Sun, Q. New groups of solutions to the Whitham-Broer-Kaup equation. (English) Zbl 1457.35087 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1735-1746 (2020). MSC: 35Q86 86A15 35C07 35B32 PDF BibTeX XML Cite \textit{Y. Wang} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1735--1746 (2020; Zbl 1457.35087) Full Text: DOI