Karbasy, Saeid Ansary; Salahi, Maziar On the branch and bound algorithm for the extended trust-region subproblem. (English) Zbl 07531910 J. Glob. Optim. 83, No. 2, 221-233 (2022). MSC: 90Cxx PDF BibTeX XML Cite \textit{S. A. Karbasy} and \textit{M. Salahi}, J. Glob. Optim. 83, No. 2, 221--233 (2022; Zbl 07531910) Full Text: DOI OpenURL
Hu, Xueyan; Li, Zonghao; Bao, Ronghao; Chen, Weiqiu; Wang, Huiming An adaptive method of moving asymptotes for topology optimization based on the trust region. (English) Zbl 07526081 Comput. Methods Appl. Mech. Eng. 393, Article ID 114202, 22 p. (2022). MSC: 74-XX 90-XX PDF BibTeX XML Cite \textit{X. Hu} et al., Comput. Methods Appl. Mech. Eng. 393, Article ID 114202, 22 p. (2022; Zbl 07526081) Full Text: DOI OpenURL
Luo, Xin-long; Lv, Jia-hui; Sun, Geng Continuation methods with the trusty time-stepping scheme for linearly constrained optimization with noisy data. (English) Zbl 07525354 Optim. Eng. 23, No. 1, 329-360 (2022). MSC: 65K05 65L05 90C30 PDF BibTeX XML Cite \textit{X.-l. Luo} et al., Optim. Eng. 23, No. 1, 329--360 (2022; Zbl 07525354) Full Text: DOI OpenURL
Rontsis, Nikitas; Goulart, Paul J.; Nakatsukasa, Yuji An active-set algorithm for norm constrained quadratic problems. (English) Zbl 07516316 Math. Program. 193, No. 1 (A), 447-483 (2022). MSC: 90C26 65F15 90C90 PDF BibTeX XML Cite \textit{N. Rontsis} et al., Math. Program. 193, No. 1 (A), 447--483 (2022; Zbl 07516316) Full Text: DOI OpenURL
Silva, Thiago L.; Bellout, Mathias C.; Giuliani, Caio; Camponogara, Eduardo; Pavlov, Alexey Derivative-free trust region optimization for robust well control under geological uncertainty. (English) Zbl 07513783 Comput. Geosci. 26, No. 2, 329-349 (2022). MSC: 86-08 90C90 86A20 86A32 PDF BibTeX XML Cite \textit{T. L. Silva} et al., Comput. Geosci. 26, No. 2, 329--349 (2022; Zbl 07513783) Full Text: DOI OpenURL
Matonoha, Ctirad; Moskovka, Alexej; Valdman, Jan Minimization of p-Laplacian via the finite element method in MATLAB. (English) Zbl 07511675 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 533-540 (2022). MSC: 65N30 65K10 35J05 PDF BibTeX XML Cite \textit{C. Matonoha} et al., Lect. Notes Comput. Sci. 13127, 533--540 (2022; Zbl 07511675) Full Text: DOI OpenURL
Keil, Tim; Ohlberger, Mario Model reduction for large-scale systems. (English) Zbl 07511616 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 16-28 (2022). MSC: 65K10 PDF BibTeX XML Cite \textit{T. Keil} and \textit{M. Ohlberger}, Lect. Notes Comput. Sci. 13127, 16--28 (2022; Zbl 07511616) Full Text: DOI OpenURL
Kamandi, Ahmad; Amini, Keyvan A new nonmonotone adaptive trust region algorithm. (English) Zbl 07511503 Appl. Math., Praha 67, No. 2, 233-250 (2022). MSC: 90C30 PDF BibTeX XML Cite \textit{A. Kamandi} and \textit{K. Amini}, Appl. Math., Praha 67, No. 2, 233--250 (2022; Zbl 07511503) Full Text: DOI OpenURL
Grapiglia, Geovani N.; Stella, Gabriel F. D. An adaptive trust-region method without function evaluations. (English) Zbl 07506805 Comput. Optim. Appl. 82, No. 1, 31-60 (2022). MSC: 90Cxx PDF BibTeX XML Cite \textit{G. N. Grapiglia} and \textit{G. F. D. Stella}, Comput. Optim. Appl. 82, No. 1, 31--60 (2022; Zbl 07506805) Full Text: DOI OpenURL
Karbasy, Saeid Ansary; Salahi, Maziar An efficient algorithm for the extended trust-region subproblem with two linear constraints. (English) Zbl 1483.90103 Bull. Iran. Math. Soc. 48, No. 2, 715-737 (2022). MSC: 90C22 90C26 PDF BibTeX XML Cite \textit{S. A. Karbasy} and \textit{M. Salahi}, Bull. Iran. Math. Soc. 48, No. 2, 715--737 (2022; Zbl 1483.90103) Full Text: DOI OpenURL
Wang, Alex L.; Kılınç-Karzan, Fatma The generalized trust region subproblem: solution complexity and convex hull results. (English) Zbl 07495394 Math. Program. 191, No. 2 (A), 445-486 (2022). MSC: 90C20 90C22 90C25 90C26 65F15 PDF BibTeX XML Cite \textit{A. L. Wang} and \textit{F. Kılınç-Karzan}, Math. Program. 191, No. 2 (A), 445--486 (2022; Zbl 07495394) Full Text: DOI OpenURL
Giuliani, Caio Merlini; Camponogara, Eduardo; Conn, Andrew R. A derivative-free exact penalty algorithm: basic ideas, convergence theory and computational studies. (English) Zbl 07490224 Comput. Appl. Math. 41, No. 1, Paper No. 56, 36 p. (2022). MSC: 90C56 PDF BibTeX XML Cite \textit{C. M. Giuliani} et al., Comput. Appl. Math. 41, No. 1, Paper No. 56, 36 p. (2022; Zbl 07490224) Full Text: DOI OpenURL
Ramirez, V. A.; Sottosanto, G. N. Nonmonotone trust region algorithm for solving the unconstrained multiobjective optimization problems. (English) Zbl 07490089 Comput. Optim. Appl. 81, No. 3, 769-788 (2022). MSC: 90C29 PDF BibTeX XML Cite \textit{V. A. Ramirez} and \textit{G. N. Sottosanto}, Comput. Optim. Appl. 81, No. 3, 769--788 (2022; Zbl 07490089) Full Text: DOI OpenURL
Zeng, Liaoyuan; Pong, Ting Kei \(\rho\)-regularization subproblems: strong duality and an eigensolver-based algorithm. (English) Zbl 07490076 Comput. Optim. Appl. 81, No. 2, 337-368 (2022). MSC: 90C30 90C46 PDF BibTeX XML Cite \textit{L. Zeng} and \textit{T. K. Pong}, Comput. Optim. Appl. 81, No. 2, 337--368 (2022; Zbl 07490076) Full Text: DOI arXiv OpenURL
Su, Ke; Lin, Yumeng; Xu, Chun A new adaptive method to nonlinear semi-infinite programming. (English) Zbl 07475161 J. Ind. Manag. Optim. 18, No. 2, 1133-1144 (2022). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{K. Su} et al., J. Ind. Manag. Optim. 18, No. 2, 1133--1144 (2022; Zbl 07475161) Full Text: DOI OpenURL
Tyagi, Hemant Error analysis for denoising smooth modulo signals on a graph. (English) Zbl 07472534 Appl. Comput. Harmon. Anal. 57, 151-184 (2022). MSC: 68-XX 94-XX PDF BibTeX XML Cite \textit{H. Tyagi}, Appl. Comput. Harmon. Anal. 57, 151--184 (2022; Zbl 07472534) Full Text: DOI arXiv OpenURL
Zhou, Xin; Lu, Dechun; Zhang, Yaning; Du, Xiuli; Rabczuk, Timon An open-source unconstrained stress updating algorithm for the modified Cam-clay model. (English) Zbl 07464730 Comput. Methods Appl. Mech. Eng. 390, Article ID 114356, 38 p. (2022). MSC: 74-XX 65-XX PDF BibTeX XML Cite \textit{X. Zhou} et al., Comput. Methods Appl. Mech. Eng. 390, Article ID 114356, 38 p. (2022; Zbl 07464730) Full Text: DOI OpenURL
Khouja, Rima; Khalil, Houssam; Mourrain, Bernard Riemannian Newton optimization methods for the symmetric tensor approximation problem. (English) Zbl 1481.15028 Linear Algebra Appl. 637, 175-211 (2022). MSC: 15A69 15A18 53B20 53B21 14P10 65K10 65Y20 PDF BibTeX XML Cite \textit{R. Khouja} et al., Linear Algebra Appl. 637, 175--211 (2022; Zbl 1481.15028) Full Text: DOI arXiv OpenURL
Brust, Johannes J.; Marcia, Roummel F.; Petra, Cosmin G.; Saunders, Michael A. Large-scale optimization with linear equality constraints using reduced compact representation. (English) Zbl 07459362 SIAM J. Sci. Comput. 44, No. 1, A103-A127 (2022). MSC: 68Q25 68R10 68U05 PDF BibTeX XML Cite \textit{J. J. Brust} et al., SIAM J. Sci. Comput. 44, No. 1, A103--A127 (2022; Zbl 07459362) Full Text: DOI arXiv OpenURL
Sembach, Lena; Burgard, Jan Pablo; Schulz, Volker A Riemannian Newton trust-region method for fitting Gaussian mixture models. (English) Zbl 1477.62015 Stat. Comput. 32, No. 1, Paper No. 8, 20 p. (2022). MSC: 62-08 62H30 62R30 65K05 PDF BibTeX XML Cite \textit{L. Sembach} et al., Stat. Comput. 32, No. 1, Paper No. 8, 20 p. (2022; Zbl 1477.62015) Full Text: DOI arXiv OpenURL
Luo, Xin-long; Xiao, Hang; Lv, Jia-hui Continuation Newton methods with the residual trust-region time-stepping scheme for nonlinear equations. (English) Zbl 1480.65125 Numer. Algorithms 89, No. 1, 223-247 (2022). MSC: 65H20 65H10 65K05 65L05 65L20 PDF BibTeX XML Cite \textit{X.-l. Luo} et al., Numer. Algorithms 89, No. 1, 223--247 (2022; Zbl 1480.65125) Full Text: DOI arXiv OpenURL
Yan, Xiaokuai; He, Qinglong; Wang, Yanfei Truncated trust region method for nonlinear inverse problems and application in full-waveform inversion. (English) Zbl 1482.90219 J. Comput. Appl. Math. 404, Article ID 113896, 17 p. (2022). MSC: 90C30 90C06 PDF BibTeX XML Cite \textit{X. Yan} et al., J. Comput. Appl. Math. 404, Article ID 113896, 17 p. (2022; Zbl 1482.90219) Full Text: DOI OpenURL
Prinz, Sebastian; Thomann, Jana; Eichfelder, Gabriele; Boeck, Thomas; Schumacher, Jörg Expensive multi-objective optimization of electromagnetic mixing In a liquid metal. (English) Zbl 07527861 Optim. Eng. 22, No. 2, 1065-1089 (2021). MSC: 90C29 90C30 76W05 90C56 76M20 PDF BibTeX XML Cite \textit{S. Prinz} et al., Optim. Eng. 22, No. 2, 1065--1089 (2021; Zbl 07527861) Full Text: DOI OpenURL
Yu, Zhensheng; Li, Peixin A trust region method with project step for bound constrained optimization without compact condition. (English) Zbl 1480.65150 Int. J. Comput. Math. 98, No. 3, 449-460 (2021). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{Z. Yu} and \textit{P. Li}, Int. J. Comput. Math. 98, No. 3, 449--460 (2021; Zbl 1480.65150) Full Text: DOI OpenURL
Li, Dandan; Wang, Songhua; Li, Yuanfei A trust region type algorithm without a penalty and a filter for nonlinear semidefinite programming. (Chinese. English summary) Zbl 07448821 Math. Pract. Theory 51, No. 15, 163-174 (2021). MSC: 65K05 90C30 90C22 PDF BibTeX XML Cite \textit{D. Li} et al., Math. Pract. Theory 51, No. 15, 163--174 (2021; Zbl 07448821) OpenURL
Crisci, S.; Piana, M.; Ruggiero, V.; Scussolini, M. A regularized affine-scaling trust-region method for parametric imaging of dynamic PET data. (English) Zbl 1474.92043 SIAM J. Imaging Sci. 14, No. 1, 418-439 (2021). MSC: 92C55 65R32 65K10 PDF BibTeX XML Cite \textit{S. Crisci} et al., SIAM J. Imaging Sci. 14, No. 1, 418--439 (2021; Zbl 1474.92043) Full Text: DOI OpenURL
Kimiaei, Morteza; Esmaeili, Hamid; Rahpeymaii, Farzad A trust-region method using extended nonmonotone technique for unconstrained optimization. (English) Zbl 1480.90202 Iran. J. Math. Sci. Inform. 16, No. 1, 15-33 (2021). MSC: 90C26 90C06 90-08 PDF BibTeX XML Cite \textit{M. Kimiaei} et al., Iran. J. Math. Sci. Inform. 16, No. 1, 15--33 (2021; Zbl 1480.90202) Full Text: Link OpenURL
Keil, Tim; Mechelli, Luca; Ohlberger, Mario; Schindler, Felix; Volkwein, Stefan A non-conforming dual approach for adaptive trust-region reduced basis approximation of PDE-constrained parameter optimization. (English) Zbl 07405597 ESAIM, Math. Model. Numer. Anal. 55, No. 3, 1239-1269 (2021). MSC: 90C30 35J20 65N30 90C06 PDF BibTeX XML Cite \textit{T. Keil} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 3, 1239--1269 (2021; Zbl 07405597) Full Text: DOI arXiv OpenURL
Chen, Yuting; Cao, Mingyuan; Yang, Yueting; Huang, Qingdao An adaptive trust-region method for generalized eigenvalues of symmetric tensors. (English) Zbl 07403857 J. Comput. Math. 39, No. 3, 358-374 (2021). MSC: 65F15 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Comput. Math. 39, No. 3, 358--374 (2021; Zbl 07403857) Full Text: DOI OpenURL
Yang, Dahao; Lu, Zhong-Rong; Wang, Li Parameter identification of bolted joint models by trust-region constrained sensitivity approach. (English) Zbl 1481.74523 Appl. Math. Modelling 99, 204-227 (2021). MSC: 74K30 90C31 90C90 PDF BibTeX XML Cite \textit{D. Yang} et al., Appl. Math. Modelling 99, 204--227 (2021; Zbl 1481.74523) Full Text: DOI OpenURL
Li, Jiao-fen; Wang, Kai; Liu, Yue-yuan; Duan, Xue-feng; Zhou, Xue-lin A trust-region method for the parameterized generalized eigenvalue problem with nonsquare matrix pencils. (English) Zbl 07396246 Numer. Linear Algebra Appl. 28, No. 4, e2363, 33 p. (2021). MSC: 15A24 15B57 65F10 65F30 PDF BibTeX XML Cite \textit{J.-f. Li} et al., Numer. Linear Algebra Appl. 28, No. 4, e2363, 33 p. (2021; Zbl 07396246) Full Text: DOI OpenURL
Luo, Xin-long; Xiao, Hang Generalized continuation Newton methods and the trust-region updating strategy for the underdetermined system. (English) Zbl 07389353 J. Sci. Comput. 88, No. 3, Paper No. 56, 22 p. (2021). MSC: 65K05 65L05 65L20 PDF BibTeX XML Cite \textit{X.-l. Luo} and \textit{H. Xiao}, J. Sci. Comput. 88, No. 3, Paper No. 56, 22 p. (2021; Zbl 07389353) Full Text: DOI arXiv OpenURL
Zhu, Honglan; Ni, Qin; Jiang, Jianlin; Dang, Chuangyin A new alternating direction trust region method based on conic model for solving unconstrained optimization. (English) Zbl 07383636 Optimization 70, No. 7, 1555-1579 (2021). MSC: 65Kxx 90Cxx PDF BibTeX XML Cite \textit{H. Zhu} et al., Optimization 70, No. 7, 1555--1579 (2021; Zbl 07383636) Full Text: DOI arXiv OpenURL
Liang, Ling; Sun, Defeng; Toh, Kim-Chuan An inexact augmented Lagrangian method for second-order cone programming with applications. (English) Zbl 1472.90084 SIAM J. Optim. 31, No. 3, 1748-1773 (2021). MSC: 90C22 90C25 90C06 PDF BibTeX XML Cite \textit{L. Liang} et al., SIAM J. Optim. 31, No. 3, 1748--1773 (2021; Zbl 1472.90084) Full Text: DOI arXiv OpenURL
Yamashita, Hiroshi; Yabe, Hiroshi; Harada, Kouhei A primal-dual interior point trust-region method for nonlinear semidefinite programming. (English) Zbl 1470.90067 Optim. Methods Softw. 36, No. 2-3, 569-601 (2021); correction ibid. 36, No. 2-3, 669 (2021). MSC: 90C22 90C26 90C51 PDF BibTeX XML Cite \textit{H. Yamashita} et al., Optim. Methods Softw. 36, No. 2--3, 569--601 (2021; Zbl 1470.90067) Full Text: DOI OpenURL
Eason, John P.; Biegler, Lorenz T. Model reduction in chemical process optimization. (English) Zbl 1471.35281 Benner, Peter (ed.) et al., Model order reduction. Volume 3: Applications. Berlin: De Gruyter. 1-31 (2021). MSC: 35Q93 35-02 93A15 93C05 49M41 49M37 80A25 76V05 35B30 37M99 41A05 65K10 65M99 65F20 PDF BibTeX XML Cite \textit{J. P. Eason} and \textit{L. T. Biegler}, in: Model order reduction. Volume 3: Applications. Berlin: De Gruyter. 1--31 (2021; Zbl 1471.35281) Full Text: DOI OpenURL
Li, Xiaobo; Wang, Xianfu; Krishan Lal, Manish A nonmonotone trust region method for unconstrained optimization problems on Riemannian manifolds. (English) Zbl 1471.65053 J. Optim. Theory Appl. 188, No. 2, 547-570 (2021). MSC: 65K05 65K10 90C48 49J40 PDF BibTeX XML Cite \textit{X. Li} et al., J. Optim. Theory Appl. 188, No. 2, 547--570 (2021; Zbl 1471.65053) Full Text: DOI OpenURL
Buchheim, Christoph; Fampa, Marcia; Sarmiento, Orlando Lower bounds for cubic optimization over the sphere. (English) Zbl 1469.90110 J. Optim. Theory Appl. 188, No. 3, 823-846 (2021). MSC: 90C26 PDF BibTeX XML Cite \textit{C. Buchheim} et al., J. Optim. Theory Appl. 188, No. 3, 823--846 (2021; Zbl 1469.90110) Full Text: DOI OpenURL
Zhou, Jing; Lu, Cheng; Tian, Ye; Tang, Xiaoying An SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. (A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem.) (English) Zbl 1474.90350 J. Ind. Manag. Optim. 17, No. 1, 151-168 (2021). MSC: 90C25 90C26 90C57 90C22 PDF BibTeX XML Cite \textit{J. Zhou} et al., J. Ind. Manag. Optim. 17, No. 1, 151--168 (2021; Zbl 1474.90350) Full Text: DOI OpenURL
Luo, Xin-long; Xiao, Hang; Lv, Jia-hui; Zhang, Sen Explicit pseudo-transient continuation and the trust-region updating strategy for unconstrained optimization. (English) Zbl 1468.65073 Appl. Numer. Math. 165, 290-302 (2021). MSC: 65K05 90C30 90C53 PDF BibTeX XML Cite \textit{X.-l. Luo} et al., Appl. Numer. Math. 165, 290--302 (2021; Zbl 1468.65073) Full Text: DOI arXiv OpenURL
Muthukumar, Ramchandran; Kouri, Drew P.; Udell, Madeleine Randomized sketching algorithms for low-memory dynamic optimization. (English) Zbl 1469.90153 SIAM J. Optim. 31, No. 2, 1242-1275 (2021). MSC: 90C39 68W20 90C30 93C20 PDF BibTeX XML Cite \textit{R. Muthukumar} et al., SIAM J. Optim. 31, No. 2, 1242--1275 (2021; Zbl 1469.90153) Full Text: DOI OpenURL
Hoffmann, Alexandre; Monteiller, Vadim; Bellis, Cédric A penalty-free approach to PDE constrained optimization: application to an inverse wave problem. (English) Zbl 1468.90129 Inverse Probl. 37, No. 5, Article ID 055002, 30 p. (2021). MSC: 90C30 90C55 PDF BibTeX XML Cite \textit{A. Hoffmann} et al., Inverse Probl. 37, No. 5, Article ID 055002, 30 p. (2021; Zbl 1468.90129) Full Text: DOI OpenURL
Li, Xing; Dong, Wen-li; Peng, Zheng A new nonmonotone trust region Barzilai-Borwein method for unconstrained optimization problems. (English) Zbl 1468.90095 Acta Math. Appl. Sin., Engl. Ser. 37, No. 1, 166-175 (2021). MSC: 90C26 65K10 65K05 PDF BibTeX XML Cite \textit{X. Li} et al., Acta Math. Appl. Sin., Engl. Ser. 37, No. 1, 166--175 (2021; Zbl 1468.90095) Full Text: DOI OpenURL
Yano, Masayuki; Huang, Tianci; Zahr, Matthew J. A globally convergent method to accelerate topology optimization using on-the-fly model reduction. (English) Zbl 07340460 Comput. Methods Appl. Mech. Eng. 375, Article ID 113635, 38 p. (2021). MSC: 74-XX 65-XX PDF BibTeX XML Cite \textit{M. Yano} et al., Comput. Methods Appl. Mech. Eng. 375, Article ID 113635, 38 p. (2021; Zbl 07340460) Full Text: DOI arXiv OpenURL
Jia, Zhongxiao; Wang, Fa The convergence of the generalized Lanczos trust-region method for the trust-region subproblem. (English) Zbl 1462.90083 SIAM J. Optim. 31, No. 1, 887-914 (2021). MSC: 90C20 90C30 65K05 65F10 PDF BibTeX XML Cite \textit{Z. Jia} and \textit{F. Wang}, SIAM J. Optim. 31, No. 1, 887--914 (2021; Zbl 1462.90083) Full Text: DOI arXiv OpenURL
Curtis, Frank E.; Robinson, Daniel P.; Royer, Clément W.; Wright, Stephen J. Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization. (English) Zbl 1461.90107 SIAM J. Optim. 31, No. 1, 518-544 (2021). MSC: 90C26 49M05 49M15 65K05 90C60 PDF BibTeX XML Cite \textit{F. E. Curtis} et al., SIAM J. Optim. 31, No. 1, 518--544 (2021; Zbl 1461.90107) Full Text: DOI arXiv OpenURL
Yu, Tengteng; Liu, Xin-Wei; Dai, Yu-Hong; Sun, Jie Stochastic variance reduced gradient methods using a trust-region-like scheme. (English) Zbl 1461.90071 J. Sci. Comput. 87, No. 1, Paper No. 5, 24 p. (2021). MSC: 90C06 90C30 90C90 90C25 PDF BibTeX XML Cite \textit{T. Yu} et al., J. Sci. Comput. 87, No. 1, Paper No. 5, 24 p. (2021; Zbl 1461.90071) Full Text: DOI OpenURL
Ali, Mouhamad Al Sayed; Sadkane, Miloud Acceleration of implicit schemes for large systems of nonlinear differential-algebraic equations. (English) Zbl 07515616 AIMS Math. 5, No. 1, 603-618 (2020). MSC: 65L80 34A09 PDF BibTeX XML Cite \textit{M. A. S. Ali} and \textit{M. Sadkane}, AIMS Math. 5, No. 1, 603--618 (2020; Zbl 07515616) Full Text: DOI OpenURL
Niri, T. Dehghan; Heydari, M.; Hosseini, M. M. Correction of trust region method with a new modified Newton method. (English) Zbl 1483.65099 Int. J. Comput. Math. 97, No. 5, 1118-1132 (2020). MSC: 65K05 90C26 90C30 PDF BibTeX XML Cite \textit{T. D. Niri} et al., Int. J. Comput. Math. 97, No. 5, 1118--1132 (2020; Zbl 1483.65099) Full Text: DOI OpenURL
Zhu, Honglan; Ni, Qin; Zhang, Xuebing A simple approximated solution method for solving fractional trust region subproblems of nonlinearly equality constrained optimization. (English) Zbl 07460806 J. Inequal. Appl. 2020, Paper No. 25, 19 p. (2020). MSC: 90Cxx 65Kxx 49Mxx PDF BibTeX XML Cite \textit{H. Zhu} et al., J. Inequal. Appl. 2020, Paper No. 25, 19 p. (2020; Zbl 07460806) Full Text: DOI OpenURL
Niri, T. Dehghan; Heydari, M.; Hosseini, M. M. Two nonmonotone trust region algorithms based on an improved Newton method. (English) Zbl 1475.65041 J. Appl. Math. Comput. 64, No. 1-2, 179-194 (2020). MSC: 65K05 90C26 90C30 PDF BibTeX XML Cite \textit{T. D. Niri} et al., J. Appl. Math. Comput. 64, No. 1--2, 179--194 (2020; Zbl 1475.65041) Full Text: DOI OpenURL
Wang, Xinyi; Ding, Xianfeng; Qu, Quan A new nonmonotone adaptive trust region line search method for unconstrained optimization. (English) Zbl 1469.90116 J. Math. Ind. 10, Paper No. 13, 12 p. (2020). MSC: 90C26 90C53 90C55 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Math. Ind. 10, Paper No. 13, 12 p. (2020; Zbl 1469.90116) Full Text: DOI OpenURL
Rahpeymaii, Farzad An efficient line search trust-region for systems of nonlinear equations. (English) Zbl 07372039 Math. Sci., Springer 14, No. 3, 257-268 (2020). MSC: 65H10 PDF BibTeX XML Cite \textit{F. Rahpeymaii}, Math. Sci., Springer 14, No. 3, 257--268 (2020; Zbl 07372039) Full Text: DOI OpenURL
Wang, Kexin; Yang, Cheng; Shao, Zhijiang; Huang, Xiaojin; Biegler, Lorenz T. A trust-region framework for real-time optimization with structural process-model mismatch. (English) Zbl 1466.90101 Vietnam J. Math. 48, No. 4, 809-830 (2020). MSC: 90C30 49M37 90C59 PDF BibTeX XML Cite \textit{K. Wang} et al., Vietnam J. Math. 48, No. 4, 809--830 (2020; Zbl 1466.90101) Full Text: DOI OpenURL
Wang, Jueyu; Gu, Chao; Zhu, Detong A nonmonotone filter-trust-region algorithm for linear inequality constrained optimization. (Chinese. English summary) Zbl 1474.65177 Acta Math. Sin., Chin. Ser. 63, No. 6, 601-620 (2020). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{J. Wang} et al., Acta Math. Sin., Chin. Ser. 63, No. 6, 601--620 (2020; Zbl 1474.65177) OpenURL
Costa, Carina Moreira; Grapiglia, Geovani Nunes A subspace version of the Wang-Yuan augmented Lagrangian-trust region method for equality constrained optimization. (English) Zbl 1472.90127 Appl. Math. Comput. 387, Article ID 124861, 13 p. (2020). MSC: 90C30 90C55 PDF BibTeX XML Cite \textit{C. M. Costa} and \textit{G. N. Grapiglia}, Appl. Math. Comput. 387, Article ID 124861, 13 p. (2020; Zbl 1472.90127) Full Text: DOI OpenURL
Noll, Dominikus Cutting plane oracles for non-smooth trust-regions. (English) Zbl 1457.65026 Pure Appl. Funct. Anal. 5, No. 3, 671-704 (2020). MSC: 65K05 49J53 90C26 90C56 PDF BibTeX XML Cite \textit{D. Noll}, Pure Appl. Funct. Anal. 5, No. 3, 671--704 (2020; Zbl 1457.65026) Full Text: arXiv Link OpenURL
Zhang, Lei-Hong; Li, Ren-Gang Krylov subspace methods for trust-region subproblem and beyond. (English) Zbl 1461.90089 Ji, Lizhen (ed.) et al., Proceedings of the international consortium of Chinese mathematicians, 2018. Second meeting, Taipei, Taiwan, December 2018. Somerville, MA: International Press. 721-740 (2020). MSC: 90C20 90C06 65F10 65F15 65F35 PDF BibTeX XML Cite \textit{L.-H. Zhang} and \textit{R.-G. Li}, in: Proceedings of the international consortium of Chinese mathematicians, 2018. Second meeting, Taipei, Taiwan, December 2018. Somerville, MA: International Press. 721--740 (2020; Zbl 1461.90089) OpenURL
Jiang, Rujun; Li, Duan A linear-time algorithm for generalized trust region subproblems. (English) Zbl 1461.90086 SIAM J. Optim. 30, No. 1, 915-932 (2020). MSC: 90C20 90C22 90C26 68W25 PDF BibTeX XML Cite \textit{R. Jiang} and \textit{D. Li}, SIAM J. Optim. 30, No. 1, 915--932 (2020; Zbl 1461.90086) Full Text: DOI arXiv OpenURL
Ahmadvand, M.; Esmaeilbeigi, M.; Yaghoobi, F.; Kamandi, A. Performance evaluation of ORBIT algorithm to some effective parameters. (English) Zbl 1460.65063 J. Math. Ext. 14, No. 2, 91-112 (2020). MSC: 65K05 65D12 90C30 90C56 PDF BibTeX XML Cite \textit{M. Ahmadvand} et al., J. Math. Ext. 14, No. 2, 91--112 (2020; Zbl 1460.65063) Full Text: Link OpenURL
Deng, Zhibin; Lu, Cheng; Tian, Ye; Luo, Jian Globally solving extended trust region subproblems with two intersecting cuts. (English) Zbl 1459.90144 Optim. Lett. 14, No. 7, 1855-1867 (2020). MSC: 90C20 90C22 PDF BibTeX XML Cite \textit{Z. Deng} et al., Optim. Lett. 14, No. 7, 1855--1867 (2020; Zbl 1459.90144) Full Text: DOI OpenURL
Kabir, Muhammad Nomani A robust algorithm for solving nonlinear system of equations using trust-region and line-search techniques. (English) Zbl 1453.65108 Int. J. Comput. Sci. Math. 11, No. 2, 192-207 (2020). MSC: 65H10 65K05 PDF BibTeX XML Cite \textit{M. N. Kabir}, Int. J. Comput. Sci. Math. 11, No. 2, 192--207 (2020; Zbl 1453.65108) Full Text: DOI OpenURL
Wang, Xiaohui; Zhang, Hao; Xia, Yong GPS localization problem: a new model and its global optimization. (English) Zbl 1452.90253 Optim. Eng. 21, No. 3, 851-866 (2020). MSC: 90C26 90C32 90C90 PDF BibTeX XML Cite \textit{X. Wang} et al., Optim. Eng. 21, No. 3, 851--866 (2020; Zbl 1452.90253) Full Text: DOI OpenURL
Xue, Wenjuan; Liu, Wei’ai A multidimensional filter SQP algorithm for nonlinear programming. (English) Zbl 1463.65145 J. Comput. Math. 38, No. 5, 683-704 (2020). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{W. Xue} and \textit{W. Liu}, J. Comput. Math. 38, No. 5, 683--704 (2020; Zbl 1463.65145) Full Text: DOI OpenURL
Pang, Bo; Zhang, Xue; Cao, Mingyuan An adaptive trust region method for solving \(\mathcal{D}\)-eigenvalues problem of diffusion kurtosis tensors. (English) Zbl 1463.49016 J. Beihua Univ., Nat. Sci. 21, No. 3, 290-294 (2020). MSC: 49J30 65K10 PDF BibTeX XML Cite \textit{B. Pang} et al., J. Beihua Univ., Nat. Sci. 21, No. 3, 290--294 (2020; Zbl 1463.49016) Full Text: DOI OpenURL
Wu, Rong; Liu, Jike; Lv, Zhongrong; Wang, Li Parameter identification of delayed system based on response sensitivity approach. (Chinese. English summary) Zbl 1463.93050 Acta Sci. Nat. Univ. Sunyatseni 59, No. 4, 74-78 (2020). MSC: 93B30 93C23 93C43 34K29 PDF BibTeX XML Cite \textit{R. Wu} et al., Acta Sci. Nat. Univ. Sunyatseni 59, No. 4, 74--78 (2020; Zbl 1463.93050) Full Text: DOI OpenURL
Chen, Yannan; Chang, Jingya A trust region algorithm for computing extreme eigenvalues of tensors. (English) Zbl 1456.65030 Numer. Algebra Control Optim. 10, No. 4, 475-485 (2020). MSC: 65F99 15A18 15A69 90C30 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{J. Chang}, Numer. Algebra Control Optim. 10, No. 4, 475--485 (2020; Zbl 1456.65030) Full Text: DOI OpenURL
Su, Ke; Wang, Chen; Li, Xiaochuan A modified nonmonotone filter method for minimax problems. (English) Zbl 1463.90238 Math. Appl. 33, No. 2, 358-372 (2020). MSC: 90C47 PDF BibTeX XML Cite \textit{K. Su} et al., Math. Appl. 33, No. 2, 358--372 (2020; Zbl 1463.90238) OpenURL
Xu, Peng; Roosta, Fred; Mahoney, Michael W. Newton-type methods for non-convex optimization under inexact Hessian information. (English) Zbl 1451.90134 Math. Program. 184, No. 1-2 (A), 35-70 (2020). MSC: 90C26 90C53 65K05 90C06 PDF BibTeX XML Cite \textit{P. Xu} et al., Math. Program. 184, No. 1--2 (A), 35--70 (2020; Zbl 1451.90134) Full Text: DOI arXiv OpenURL
Wang, Jueyu; Gu, Chao; Zhu, Detong A new filter algorithm for a system of nonlinear equations. (English) Zbl 1463.90213 Comput. Appl. Math. 39, No. 3, Paper No. 245, 25 p. (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{J. Wang} et al., Comput. Appl. Math. 39, No. 3, Paper No. 245, 25 p. (2020; Zbl 1463.90213) Full Text: DOI OpenURL
Cucuringu, Mihai; Tyagi, Hemant Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping. (English) Zbl 07255063 J. Mach. Learn. Res. 21, Paper No. 32, 77 p. (2020). MSC: 68T05 PDF BibTeX XML Cite \textit{M. Cucuringu} and \textit{H. Tyagi}, J. Mach. Learn. Res. 21, Paper No. 32, 77 p. (2020; Zbl 07255063) Full Text: arXiv Link OpenURL
Bellavia, S.; Donatelli, M.; Riccietti, Elisa An inexact non stationary Tikhonov procedure for large-scale nonlinear ill-posed problems. (English) Zbl 1448.65056 Inverse Probl. 36, No. 9, Article ID 095007, 32 p. (2020). MSC: 65K10 65F22 PDF BibTeX XML Cite \textit{S. Bellavia} et al., Inverse Probl. 36, No. 9, Article ID 095007, 32 p. (2020; Zbl 1448.65056) Full Text: DOI arXiv OpenURL
Hu, Wujie; Wu, Jinzhao; Yuan, Gonglin Some modified Hestenes-Stiefel conjugate gradient algorithms with application in image restoration. (English) Zbl 1450.90028 Appl. Numer. Math. 158, 360-376 (2020). MSC: 90C25 90C06 90C52 PDF BibTeX XML Cite \textit{W. Hu} et al., Appl. Numer. Math. 158, 360--376 (2020; Zbl 1450.90028) Full Text: DOI OpenURL
Nouiehed, Maher; Razaviyayn, Meisam A trust region method for finding second-order stationarity in linearly constrained nonconvex optimization. (English) Zbl 1450.90035 SIAM J. Optim. 30, No. 3, 2501-2529 (2020). MSC: 90C26 90C30 PDF BibTeX XML Cite \textit{M. Nouiehed} and \textit{M. Razaviyayn}, SIAM J. Optim. 30, No. 3, 2501--2529 (2020; Zbl 1450.90035) Full Text: DOI arXiv OpenURL
Peña-Ordieres, Alejandra; Luedtke, James R.; Wächter, Andreas Solving chance-constrained problems via a smooth sample-based nonlinear approximation. (English) Zbl 1448.90065 SIAM J. Optim. 30, No. 3, 2221-2250 (2020). MSC: 90C15 90C30 90C55 PDF BibTeX XML Cite \textit{A. Peña-Ordieres} et al., SIAM J. Optim. 30, No. 3, 2221--2250 (2020; Zbl 1448.90065) Full Text: DOI arXiv OpenURL
Christof, Constantin; De los Reyes, Juan Carlos; Meyer, Christian A nonsmooth trust-region method for locally Lipschitz functions with application to optimization problems constrained by variational inequalities. (English) Zbl 1446.49006 SIAM J. Optim. 30, No. 3, 2163-2196 (2020). MSC: 49J40 49J52 65K05 90C26 90C56 PDF BibTeX XML Cite \textit{C. Christof} et al., SIAM J. Optim. 30, No. 3, 2163--2196 (2020; Zbl 1446.49006) Full Text: DOI arXiv OpenURL
Milz, Johannes; Ulbrich, Michael An approximation scheme for distributionally robust nonlinear optimization. (English) Zbl 1448.90068 SIAM J. Optim. 30, No. 3, 1996-2025 (2020). MSC: 90C17 90C26 90C46 90C59 49M37 PDF BibTeX XML Cite \textit{J. Milz} and \textit{M. Ulbrich}, SIAM J. Optim. 30, No. 3, 1996--2025 (2020; Zbl 1448.90068) Full Text: DOI OpenURL
Wang, Jiulin; Xia, Yong Closing the gap between necessary and sufficient conditions for local nonglobal minimizer of trust region subproblem. (English) Zbl 07236496 SIAM J. Optim. 30, No. 3, 1980-1995 (2020). MSC: 90C20 90C26 90C30 90C46 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Y. Xia}, SIAM J. Optim. 30, No. 3, 1980--1995 (2020; Zbl 07236496) Full Text: DOI OpenURL
Bartholomew-Biggs, Michael; Beddiaf, Salah; Christianson, Bruce A comparison of methods for traversing regions of non-convexity in optimization problems. (English) Zbl 1471.65046 Numer. Algorithms 85, No. 1, 231-253 (2020). Reviewer: Nada Djuranović-Miličić (Beograd) MSC: 65K05 90C26 90C30 PDF BibTeX XML Cite \textit{M. Bartholomew-Biggs} et al., Numer. Algorithms 85, No. 1, 231--253 (2020; Zbl 1471.65046) Full Text: DOI Link OpenURL
Liu, Yan; He, Suxiang A trust region method for constrained optimization problems based on augmented Lagrange functions. (Chinese. English summary) Zbl 1449.65119 Math. Appl. 33, No. 1, 138-145 (2020). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{S. He}, Math. Appl. 33, No. 1, 138--145 (2020; Zbl 1449.65119) OpenURL
Estrin, Ron; Friedlander, Michael P.; Orban, Dominique; Saunders, Michael A. Implementing a smooth exact penalty function for general constrained nonlinear optimization. (English) Zbl 1447.90064 SIAM J. Sci. Comput. 42, No. 3, A1836-A1859 (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{R. Estrin} et al., SIAM J. Sci. Comput. 42, No. 3, A1836--A1859 (2020; Zbl 1447.90064) Full Text: DOI arXiv OpenURL
Estrin, Ron; Friedlander, Michael P.; Orban, Dominique; Saunders, Michael A. Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. (English) Zbl 1447.90063 SIAM J. Sci. Comput. 42, No. 3, A1809-A1835 (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{R. Estrin} et al., SIAM J. Sci. Comput. 42, No. 3, A1809--A1835 (2020; Zbl 1447.90063) Full Text: DOI arXiv OpenURL
Kylasa, Sudhir; Fang, Chih-Hao; Roosta, Fred; Grama, Ananth Parallel optimization techniques for machine learning. (English) Zbl 1448.68374 Grama, Ananth (ed.) et al., Parallel algorithms in computational science and engineering. Cham: Birkhäuser. Model. Simul. Sci. Eng. Technol., 381-417 (2020). MSC: 68T05 65K10 65Y05 PDF BibTeX XML Cite \textit{S. Kylasa} et al., in: Parallel algorithms in computational science and engineering. Cham: Birkhäuser. 381--417 (2020; Zbl 1448.68374) Full Text: DOI OpenURL
Karbasy, Saeid Ansary; Salahi, Maziar Quadratic optimization with two ball constraints. (English) Zbl 1447.90027 Numer. Algebra Control Optim. 10, No. 2, 165-175 (2020). MSC: 90C20 90C26 PDF BibTeX XML Cite \textit{S. A. Karbasy} and \textit{M. Salahi}, Numer. Algebra Control Optim. 10, No. 2, 165--175 (2020; Zbl 1447.90027) Full Text: DOI OpenURL
Chen, Zhongwen; Dai, Yu-Hong; Liu, Jiangyan A penalty-free method with superlinear convergence for equality constrained optimization. (English) Zbl 1446.90146 Comput. Optim. Appl. 76, No. 3, 801-833 (2020). MSC: 90C30 90C55 65K05 PDF BibTeX XML Cite \textit{Z. Chen} et al., Comput. Optim. Appl. 76, No. 3, 801--833 (2020; Zbl 1446.90146) Full Text: DOI OpenURL
Bellavia, Stefania; Krejić, Nataša; Morini, Benedetta Inexact restoration with subsampled trust-region methods for finite-sum minimization. (English) Zbl 1445.90102 Comput. Optim. Appl. 76, No. 3, 701-736 (2020). MSC: 90C30 90C60 PDF BibTeX XML Cite \textit{S. Bellavia} et al., Comput. Optim. Appl. 76, No. 3, 701--736 (2020; Zbl 1445.90102) Full Text: DOI arXiv OpenURL
Erway, Jennifer B.; Griffin, Joshua; Marcia, Roummel F.; Omheni, Riadh Trust-region algorithms for training responses: machine learning methods using indefinite Hessian approximations. (English) Zbl 1440.90092 Optim. Methods Softw. 35, No. 3, 460-487 (2020). MSC: 90C53 15A06 90C06 65K05 65K10 49M15 PDF BibTeX XML Cite \textit{J. B. Erway} et al., Optim. Methods Softw. 35, No. 3, 460--487 (2020; Zbl 1440.90092) Full Text: DOI arXiv OpenURL
Yuan, Gonglin; Wang, Xiaoliang; Sheng, Zhou Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions. (English) Zbl 1461.65190 Numer. Algorithms 84, No. 3, 935-956 (2020). Reviewer: Nada Djuranović-Miličić (Beograd) MSC: 65K05 90C53 90C26 PDF BibTeX XML Cite \textit{G. Yuan} et al., Numer. Algorithms 84, No. 3, 935--956 (2020; Zbl 1461.65190) Full Text: DOI OpenURL
Liu, Ji-Chuan; Li, Xiao-Chen Reconstruction algorithms of an inverse source problem for the Helmholtz equation. (English) Zbl 1442.65334 Numer. Algorithms 84, No. 3, 909-933 (2020). MSC: 65N21 65N20 65J20 65K10 35R30 35J05 35R25 PDF BibTeX XML Cite \textit{J.-C. Liu} and \textit{X.-C. Li}, Numer. Algorithms 84, No. 3, 909--933 (2020; Zbl 1442.65334) Full Text: DOI OpenURL
Gao, Guohua; Jiang, Hao; Vink, Jeroen C.; van Hagen, Paul P. H.; Wells, Terence J. Performance enhancement of Gauss-Newton trust-region solver for distributed Gauss-Newton optimization method. (English) Zbl 1434.90211 Comput. Geosci. 24, No. 2, 837-852 (2020). MSC: 90C39 90C20 86A22 90C55 PDF BibTeX XML Cite \textit{G. Gao} et al., Comput. Geosci. 24, No. 2, 837--852 (2020; Zbl 1434.90211) Full Text: DOI OpenURL
Carmon, Yair; Duchi, John C. First-order methods for nonconvex quadratic minimization. (English) Zbl 1459.65082 SIAM Rev. 62, No. 2, 395-436 (2020). Reviewer: Nada Djuranović-Miličić (Beograd) MSC: 65K05 90C06 90C20 90C26 90C30 PDF BibTeX XML Cite \textit{Y. Carmon} and \textit{J. C. Duchi}, SIAM Rev. 62, No. 2, 395--436 (2020; Zbl 1459.65082) Full Text: DOI arXiv OpenURL
Gay Neto, Alfredo; Wriggers, Peter Numerical method for solution of pointwise contact between surfaces. (English) Zbl 1442.74141 Comput. Methods Appl. Mech. Eng. 365, Article ID 112971, 29 p. (2020). MSC: 74M15 65N12 74S05 65N30 74P10 PDF BibTeX XML Cite \textit{A. Gay Neto} and \textit{P. Wriggers}, Comput. Methods Appl. Mech. Eng. 365, Article ID 112971, 29 p. (2020; Zbl 1442.74141) Full Text: DOI OpenURL
Liu, Guang; Yu, Min-li; Wang, Li; Yin, Zhi-yi; Liu, Ji-ke; Lu, Zhong-rong Rapid parameter identification of linear time-delay system from noisy frequency domain data. (English) Zbl 1481.93021 Appl. Math. Modelling 83, 736-753 (2020). MSC: 93B30 90C20 90C90 65L09 70J35 PDF BibTeX XML Cite \textit{G. Liu} et al., Appl. Math. Modelling 83, 736--753 (2020; Zbl 1481.93021) Full Text: DOI OpenURL
Lu, Zhong-Rong; Yang, Dahao; Liu, Jike; Wang, Li Nonlinear breathing crack identification from time-domain sensitivity analysis. (English) Zbl 1481.74666 Appl. Math. Modelling 83, 30-45 (2020). MSC: 74R10 49M37 49N45 PDF BibTeX XML Cite \textit{Z.-R. Lu} et al., Appl. Math. Modelling 83, 30--45 (2020; Zbl 1481.74666) Full Text: DOI OpenURL
Kopaničáková, Alena; Krause, Rolf A recursive multilevel trust region method with application to fully monolithic phase-field models of brittle fracture. (English) Zbl 1441.74208 Comput. Methods Appl. Mech. Eng. 360, Article ID 112720, 29 p. (2020). MSC: 74R10 74S99 65Z05 PDF BibTeX XML Cite \textit{A. Kopaničáková} and \textit{R. Krause}, Comput. Methods Appl. Mech. Eng. 360, Article ID 112720, 29 p. (2020; Zbl 1441.74208) Full Text: DOI arXiv OpenURL
Xi, Min; Sun, Wenyu; Chen, Yannan; Sun, Hailin A derivative-free algorithm for spherically constrained optimization. (English) Zbl 1441.90182 J. Glob. Optim. 76, No. 4, 841-861 (2020). MSC: 90C56 90C30 PDF BibTeX XML Cite \textit{M. Xi} et al., J. Glob. Optim. 76, No. 4, 841--861 (2020; Zbl 1441.90182) Full Text: DOI OpenURL
Brás, C. P.; Martínez, J. M.; Raydan, M. Large-scale unconstrained optimization using separable cubic modeling and matrix-free subspace minimization. (English) Zbl 1432.90119 Comput. Optim. Appl. 75, No. 1, 169-205 (2020). MSC: 90C26 65K10 90C06 PDF BibTeX XML Cite \textit{C. P. Brás} et al., Comput. Optim. Appl. 75, No. 1, 169--205 (2020; Zbl 1432.90119) Full Text: DOI Link OpenURL
Park, Seonho; Jung, Seung Hyun; Pardalos, Panos M. Combining stochastic adaptive cubic regularization with negative curvature for nonconvex optimization. (English) Zbl 1432.90096 J. Optim. Theory Appl. 184, No. 3, 953-971 (2020). MSC: 90C15 90C26 49M15 65K10 90C06 90C60 49M05 PDF BibTeX XML Cite \textit{S. Park} et al., J. Optim. Theory Appl. 184, No. 3, 953--971 (2020; Zbl 1432.90096) Full Text: DOI arXiv OpenURL
Girardi, Maria; Padovani, Cristina; Pellegrini, Daniele; Porcelli, Margherita; Robol, Leonardo Finite element model updating for structural applications. (English) Zbl 07169492 J. Comput. Appl. Math. 370, Article ID 112675, 19 p. (2020). MSC: 65F18 15A22 65L60 70J10 PDF BibTeX XML Cite \textit{M. Girardi} et al., J. Comput. Appl. Math. 370, Article ID 112675, 19 p. (2020; Zbl 07169492) Full Text: DOI arXiv OpenURL
Gould, Nicholas I. M.; Simoncini, Valeria Error estimates for iterative algorithms for minimizing regularized quadratic subproblems. (English) Zbl 1428.90160 Optim. Methods Softw. 35, No. 2, 304-328 (2020). MSC: 90C30 65K05 90C20 PDF BibTeX XML Cite \textit{N. I. M. Gould} and \textit{V. Simoncini}, Optim. Methods Softw. 35, No. 2, 304--328 (2020; Zbl 1428.90160) Full Text: DOI Link OpenURL