Alavi, Javad; Aminikhah, Hossein Some properties of orthogonal linear splines and their applications to inverse problems. (English) Zbl 07681637 Appl. Anal. 102, No. 3, 739-769 (2023). MSC: 65D07 65N21 65F22 47A52 47J06 PDF BibTeX XML Cite \textit{J. Alavi} and \textit{H. Aminikhah}, Appl. Anal. 102, No. 3, 739--769 (2023; Zbl 07681637) Full Text: DOI OpenURL
Wen, Tianshu; Zahr, Matthew J. A globally convergent method to accelerate large-scale optimization using on-the-fly model hyperreduction: application to shape optimization. (English) Zbl 07679186 J. Comput. Phys. 484, Article ID 112082, 33 p. (2023). MSC: 90Cxx 65Nxx 49Mxx PDF BibTeX XML Cite \textit{T. Wen} and \textit{M. J. Zahr}, J. Comput. Phys. 484, Article ID 112082, 33 p. (2023; Zbl 07679186) Full Text: DOI arXiv OpenURL
Hoseini Monjezi, Najmeh A bundle trust region algorithm for minimizing locally Lipschitz functions. (English) Zbl 07669693 SIAM J. Optim. 33, No. 1, 319-337 (2023). MSC: 90C26 49J52 65K05 PDF BibTeX XML Cite \textit{N. Hoseini Monjezi}, SIAM J. Optim. 33, No. 1, 319--337 (2023; Zbl 07669693) Full Text: DOI OpenURL
Antil, Harbir; Kouri, Drew P.; Ridzal, Denis ALESQP: an augmented Lagrangian equality-constrained SQP method for optimization with general constraints. (English) Zbl 07669690 SIAM J. Optim. 33, No. 1, 237-266 (2023). MSC: 90C30 90C39 93C20 49K20 49J20 PDF BibTeX XML Cite \textit{H. Antil} et al., SIAM J. Optim. 33, No. 1, 237--266 (2023; Zbl 07669690) Full Text: DOI OpenURL
Ma, Jirui; Fan, Jinyan On convergence properties of the modified trust region method under Hölderian error bound condition. (English) Zbl 07668816 J. Ind. Manag. Optim. 19, No. 2, 1139-1151 (2023). MSC: 65K05 65K10 90C26 90C30 PDF BibTeX XML Cite \textit{J. Ma} and \textit{J. Fan}, J. Ind. Manag. Optim. 19, No. 2, 1139--1151 (2023; Zbl 07668816) Full Text: DOI OpenURL
Chen, Ziang; Milzarek, Andre; Wen, Zaiwen A trust-region method for nonsmooth nonconvex optimization. (English) Zbl 07661757 J. Comput. Math. 41, No. 4, 659-692 (2023). MSC: 90C30 65K05 90C06 PDF BibTeX XML Cite \textit{Z. Chen} et al., J. Comput. Math. 41, No. 4, 659--692 (2023; Zbl 07661757) Full Text: DOI arXiv OpenURL
Doikov, Nikita; Nesterov, Yurii Affine-invariant contracting-point methods for convex optimization. (English) Zbl 07658247 Math. Program. 198, No. 1 (A), 115-137 (2023). MSC: 90C25 90C06 65K05 PDF BibTeX XML Cite \textit{N. Doikov} and \textit{Y. Nesterov}, Math. Program. 198, No. 1 (A), 115--137 (2023; Zbl 07658247) Full Text: DOI arXiv OpenURL
Eslami, N.; Najafi, B.; Vaezpour, S. M. A trust region method for solving multicriteria optimization problems on Riemannian manifolds. (English) Zbl 07644271 J. Optim. Theory Appl. 196, No. 1, 212-239 (2023). MSC: 90C29 65K05 58E17 90C55 PDF BibTeX XML Cite \textit{N. Eslami} et al., J. Optim. Theory Appl. 196, No. 1, 212--239 (2023; Zbl 07644271) Full Text: DOI OpenURL
Tang, Yaozong; Luo, Gang; Yang, Qingzhi An efficient PGM-based algorithm with backtracking strategy for solving quadratic optimization problems with spherical constraint. (English) Zbl 1499.65232 J. Comput. Appl. Math. 422, Article ID 114915, 13 p. (2023). MSC: 65K05 90C20 90C30 PDF BibTeX XML Cite \textit{Y. Tang} et al., J. Comput. Appl. Math. 422, Article ID 114915, 13 p. (2023; Zbl 1499.65232) Full Text: DOI OpenURL
Banholzer, Stefan; Keil, Tim; Ohlberger, Mario; Mechelli, Luca; Schindler, Felix; Volkwein, Stefan An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization. (English) Zbl 07640639 Pure Appl. Funct. Anal. 7, No. 5, 1561-1596 (2022). MSC: 90C31 35J20 65N30 90C06 PDF BibTeX XML Cite \textit{S. Banholzer} et al., Pure Appl. Funct. Anal. 7, No. 5, 1561--1596 (2022; Zbl 07640639) Full Text: arXiv Link OpenURL
Yamashita, Hiroshi Convergence to a second-order critical point by a primal-dual interior point trust-region method for nonlinear semidefinite programming. (English) Zbl 07634914 Optim. Methods Softw. 37, No. 6, 2190-2224 (2022). MSC: 90C22 90C26 90C51 PDF BibTeX XML Cite \textit{H. Yamashita}, Optim. Methods Softw. 37, No. 6, 2190--2224 (2022; Zbl 07634914) Full Text: DOI OpenURL
Jauny; Ghosh, Debdas; Upadhayay, Ashutosh; Ansari, Qamrul Hasan A trust-region interior-point technique to solve multi-objective optimization problems and its application to a tuberculosis optimal control problem. (English) Zbl 07623317 J. Nonlinear Var. Anal. 6, No. 6, 675-691 (2022). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{Jauny} et al., J. Nonlinear Var. Anal. 6, No. 6, 675--691 (2022; Zbl 07623317) Full Text: DOI OpenURL
Gao, Guohua; Wang, Yixuan; Vink, Jeroen C.; Wells, Terence J.; Saaf, Fredrik J. F. E. Distributed quasi-Newton derivative-free optimization method for optimization problems with multiple local optima. (English) Zbl 1496.65069 Comput. Geosci. 26, No. 4, 847-863 (2022). MSC: 65K05 86A05 90C39 86A32 65K10 PDF BibTeX XML Cite \textit{G. Gao} et al., Comput. Geosci. 26, No. 4, 847--863 (2022; Zbl 1496.65069) Full Text: DOI OpenURL
Bisui, Nantu Kumar; Panda, Geetanjali Adaptive trust region scheme for multi-objective optimization problem using Geršgorin circle theorem. (English) Zbl 1498.49050 J. Appl. Math. Comput. 68, No. 4, 2151-2172 (2022). MSC: 49M37 65K05 65K10 90C26 90C29 PDF BibTeX XML Cite \textit{N. K. Bisui} and \textit{G. Panda}, J. Appl. Math. Comput. 68, No. 4, 2151--2172 (2022; Zbl 1498.49050) Full Text: DOI OpenURL
Akrotirianakis, I. G.; Gratton, M.; Griffin, J. D.; Yektamaram, S.; Zhou, W. Simultaneous iterative solutions for the trust-region and minimum eigenvalue subproblem. (English) Zbl 1501.90070 Optim. Methods Softw. 37, No. 2, 692-711 (2022). MSC: 90C26 90C56 65K05 49M37 PDF BibTeX XML Cite \textit{I. G. Akrotirianakis} et al., Optim. Methods Softw. 37, No. 2, 692--711 (2022; Zbl 1501.90070) Full Text: DOI OpenURL
Kimiaei, Morteza An active set trust-region method for bound-constrained optimization. (English) Zbl 1493.90188 Bull. Iran. Math. Soc. 48, No. 4, 1721-1745 (2022). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{M. Kimiaei}, Bull. Iran. Math. Soc. 48, No. 4, 1721--1745 (2022; Zbl 1493.90188) Full Text: DOI OpenURL
Feng, Bo; Wu, Gang Refined bounds on the convergence of block Lanczos method for extended trust-region subproblem. (English) Zbl 1498.90147 Appl. Numer. Math. 181, 388-402 (2022). MSC: 90C20 PDF BibTeX XML Cite \textit{B. Feng} and \textit{G. Wu}, Appl. Numer. Math. 181, 388--402 (2022; Zbl 1498.90147) Full Text: DOI OpenURL
Luo, Xin-long; Xiao, Hang The regularization continuation method with an adaptive time step control for linearly constrained optimization problems. (English) Zbl 1498.90226 Appl. Numer. Math. 181, 255-276 (2022). MSC: 90C30 PDF BibTeX XML Cite \textit{X.-l. Luo} and \textit{H. Xiao}, Appl. Numer. Math. 181, 255--276 (2022; Zbl 1498.90226) Full Text: DOI arXiv OpenURL
Zhao, Mingming; Li, Yongfeng; Wen, Zaiwen A stochastic trust-region framework for policy optimization. (English) Zbl 07571710 J. Comput. Math. 40, No. 6, 1006-1032 (2022). MSC: 93E20 90C15 90C26 90C40 PDF BibTeX XML Cite \textit{M. Zhao} et al., J. Comput. Math. 40, No. 6, 1006--1032 (2022; Zbl 07571710) Full Text: DOI arXiv OpenURL
Luo, Xinlong; Yao, Yiyan Primal-dual path-following methods and the trust-region updating strategy for linear programming with noisy data. (English) Zbl 07560295 J. Comput. Math. 40, No. 5, 760-780 (2022). MSC: 65L20 65K05 65L05 PDF BibTeX XML Cite \textit{X. Luo} and \textit{Y. Yao}, J. Comput. Math. 40, No. 5, 760--780 (2022; Zbl 07560295) Full Text: DOI arXiv OpenURL
Liu, Junyi; Li, Guangyu; Sen, Suvrajeet Coupled learning enabled stochastic programming with endogenous uncertainty. (English) Zbl 1489.90084 Math. Oper. Res. 47, No. 2, 1681-1705 (2022). MSC: 90C15 90C26 90C30 PDF BibTeX XML Cite \textit{J. Liu} et al., Math. Oper. Res. 47, No. 2, 1681--1705 (2022; Zbl 1489.90084) Full Text: DOI OpenURL
Aravkin, Aleksandr Y.; Baraldi, Robert; Orban, Dominique A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. (English) Zbl 1493.90139 SIAM J. Optim. 32, No. 2, 900-929 (2022). MSC: 90C26 90C53 90C56 65K10 PDF BibTeX XML Cite \textit{A. Y. Aravkin} et al., SIAM J. Optim. 32, No. 2, 900--929 (2022; Zbl 1493.90139) Full Text: DOI arXiv OpenURL
Luo, Xin-long; Lv, Jia-hui; Sun, Geng Continuation methods with the trusty time-stepping scheme for linearly constrained optimization with noisy data. (English) Zbl 1485.65061 Optim. Eng. 23, No. 1, 329-360 (2022). MSC: 65K05 65L05 90C30 PDF BibTeX XML Cite \textit{X.-l. Luo} et al., Optim. Eng. 23, No. 1, 329--360 (2022; Zbl 1485.65061) Full Text: DOI arXiv OpenURL
Keil, Tim; Ohlberger, Mario Model reduction for large-scale systems. (English) Zbl 1493.65209 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 16-28 (2022). MSC: 65N30 65K10 49M41 PDF BibTeX XML Cite \textit{T. Keil} and \textit{M. Ohlberger}, Lect. Notes Comput. Sci. 13127, 16--28 (2022; Zbl 1493.65209) Full Text: DOI arXiv OpenURL
Grapiglia, Geovani N.; Stella, Gabriel F. D. An adaptive trust-region method without function evaluations. (English) Zbl 1490.90281 Comput. Optim. Appl. 82, No. 1, 31-60 (2022). MSC: 90C30 PDF BibTeX XML Cite \textit{G. N. Grapiglia} and \textit{G. F. D. Stella}, Comput. Optim. Appl. 82, No. 1, 31--60 (2022; Zbl 1490.90281) Full Text: DOI OpenURL
Zeng, Liaoyuan; Pong, Ting Kei \(\rho\)-regularization subproblems: strong duality and an eigensolver-based algorithm. (English) Zbl 1487.90609 Comput. Optim. Appl. 81, No. 2, 337-368 (2022). MSC: 90C30 90C46 PDF BibTeX XML Cite \textit{L. Zeng} and \textit{T. K. Pong}, Comput. Optim. Appl. 81, No. 2, 337--368 (2022; Zbl 1487.90609) Full Text: DOI arXiv OpenURL
Zhou, Xin; Lu, Dechun; Zhang, Yaning; Du, Xiuli; Rabczuk, Timon An open-source unconstrained stress updating algorithm for the modified Cam-clay model. (English) Zbl 1507.74225 Comput. Methods Appl. Mech. Eng. 390, Article ID 114356, 38 p. (2022). MSC: 74L10 PDF BibTeX XML Cite \textit{X. Zhou} et al., Comput. Methods Appl. Mech. Eng. 390, Article ID 114356, 38 p. (2022; Zbl 1507.74225) Full Text: DOI OpenURL
Khouja, Rima; Khalil, Houssam; Mourrain, Bernard Riemannian Newton optimization methods for the symmetric tensor approximation problem. (English) Zbl 1481.15028 Linear Algebra Appl. 637, 175-211 (2022). MSC: 15A69 15A18 53B20 53B21 14P10 65K10 65Y20 PDF BibTeX XML Cite \textit{R. Khouja} et al., Linear Algebra Appl. 637, 175--211 (2022; Zbl 1481.15028) Full Text: DOI arXiv OpenURL
Brust, Johannes J.; Marcia, Roummel F.; Petra, Cosmin G.; Saunders, Michael A. Large-scale optimization with linear equality constraints using reduced compact representation. (English) Zbl 07459362 SIAM J. Sci. Comput. 44, No. 1, A103-A127 (2022). MSC: 68Q25 68R10 68U05 PDF BibTeX XML Cite \textit{J. J. Brust} et al., SIAM J. Sci. Comput. 44, No. 1, A103--A127 (2022; Zbl 07459362) Full Text: DOI arXiv OpenURL
Luo, Xin-long; Xiao, Hang; Lv, Jia-hui Continuation Newton methods with the residual trust-region time-stepping scheme for nonlinear equations. (English) Zbl 1480.65125 Numer. Algorithms 89, No. 1, 223-247 (2022). MSC: 65H20 65H10 65K05 65L05 65L20 PDF BibTeX XML Cite \textit{X.-l. Luo} et al., Numer. Algorithms 89, No. 1, 223--247 (2022; Zbl 1480.65125) Full Text: DOI arXiv OpenURL
Yan, Xiaokuai; He, Qinglong; Wang, Yanfei Truncated trust region method for nonlinear inverse problems and application in full-waveform inversion. (English) Zbl 1482.90219 J. Comput. Appl. Math. 404, Article ID 113896, 17 p. (2022). MSC: 90C30 90C06 PDF BibTeX XML Cite \textit{X. Yan} et al., J. Comput. Appl. Math. 404, Article ID 113896, 17 p. (2022; Zbl 1482.90219) Full Text: DOI OpenURL
Ma, Jirui; Fan, Jinyan On the convergence of the trust region method under the Hölderian error bound condition. (Chinese. English summary) Zbl 07592821 Math. Numer. Sin. 43, No. 4, 484-492 (2021). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{J. Ma} and \textit{J. Fan}, Math. Numer. Sin. 43, No. 4, 484--492 (2021; Zbl 07592821) Full Text: DOI OpenURL
Prinz, Sebastian; Thomann, Jana; Eichfelder, Gabriele; Boeck, Thomas; Schumacher, Jörg Expensive multi-objective optimization of electromagnetic mixing in a liquid metal. (English) Zbl 1486.90179 Optim. Eng. 22, No. 2, 1065-1089 (2021). MSC: 90C29 90C30 76W05 90C56 76M20 PDF BibTeX XML Cite \textit{S. Prinz} et al., Optim. Eng. 22, No. 2, 1065--1089 (2021; Zbl 1486.90179) Full Text: DOI OpenURL
Yu, Zhensheng; Li, Peixin A trust region method with project step for bound constrained optimization without compact condition. (English) Zbl 1480.65150 Int. J. Comput. Math. 98, No. 3, 449-460 (2021). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{Z. Yu} and \textit{P. Li}, Int. J. Comput. Math. 98, No. 3, 449--460 (2021; Zbl 1480.65150) Full Text: DOI OpenURL
Keil, Tim; Mechelli, Luca; Ohlberger, Mario; Schindler, Felix; Volkwein, Stefan A non-conforming dual approach for adaptive trust-region reduced basis approximation of PDE-constrained parameter optimization. (English) Zbl 07405597 ESAIM, Math. Model. Numer. Anal. 55, No. 3, 1239-1269 (2021). MSC: 90C30 35J20 65N30 90C06 PDF BibTeX XML Cite \textit{T. Keil} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 3, 1239--1269 (2021; Zbl 07405597) Full Text: DOI arXiv OpenURL
Li, Jiao-fen; Wang, Kai; Liu, Yue-yuan; Duan, Xue-feng; Zhou, Xue-lin A trust-region method for the parameterized generalized eigenvalue problem with nonsquare matrix pencils. (English) Zbl 07396246 Numer. Linear Algebra Appl. 28, No. 4, e2363, 33 p. (2021). MSC: 15A24 15B57 65F10 65F30 PDF BibTeX XML Cite \textit{J.-f. Li} et al., Numer. Linear Algebra Appl. 28, No. 4, e2363, 33 p. (2021; Zbl 07396246) Full Text: DOI OpenURL
Luo, Xin-long; Xiao, Hang Generalized continuation Newton methods and the trust-region updating strategy for the underdetermined system. (English) Zbl 07389353 J. Sci. Comput. 88, No. 3, Paper No. 56, 22 p. (2021). MSC: 65K05 65L05 65L20 PDF BibTeX XML Cite \textit{X.-l. Luo} and \textit{H. Xiao}, J. Sci. Comput. 88, No. 3, Paper No. 56, 22 p. (2021; Zbl 07389353) Full Text: DOI arXiv OpenURL
Zhu, Honglan; Ni, Qin; Jiang, Jianlin; Dang, Chuangyin A new alternating direction trust region method based on conic model for solving unconstrained optimization. (English) Zbl 07383636 Optimization 70, No. 7, 1555-1579 (2021). MSC: 65Kxx 90Cxx PDF BibTeX XML Cite \textit{H. Zhu} et al., Optimization 70, No. 7, 1555--1579 (2021; Zbl 07383636) Full Text: DOI arXiv OpenURL
Liang, Ling; Sun, Defeng; Toh, Kim-Chuan An inexact augmented Lagrangian method for second-order cone programming with applications. (English) Zbl 1472.90084 SIAM J. Optim. 31, No. 3, 1748-1773 (2021). MSC: 90C22 90C25 90C06 PDF BibTeX XML Cite \textit{L. Liang} et al., SIAM J. Optim. 31, No. 3, 1748--1773 (2021; Zbl 1472.90084) Full Text: DOI arXiv OpenURL
Yamashita, Hiroshi; Yabe, Hiroshi; Harada, Kouhei A primal-dual interior point trust-region method for nonlinear semidefinite programming. (English) Zbl 1470.90067 Optim. Methods Softw. 36, No. 2-3, 569-601 (2021); correction ibid. 36, No. 2-3, 669 (2021). MSC: 90C22 90C26 90C51 PDF BibTeX XML Cite \textit{H. Yamashita} et al., Optim. Methods Softw. 36, No. 2--3, 569--601 (2021; Zbl 1470.90067) Full Text: DOI OpenURL
Li, Xiaobo; Wang, Xianfu; Krishan Lal, Manish A nonmonotone trust region method for unconstrained optimization problems on Riemannian manifolds. (English) Zbl 1471.65053 J. Optim. Theory Appl. 188, No. 2, 547-570 (2021). MSC: 65K05 65K10 90C48 49J40 PDF BibTeX XML Cite \textit{X. Li} et al., J. Optim. Theory Appl. 188, No. 2, 547--570 (2021; Zbl 1471.65053) Full Text: DOI OpenURL
Luo, Xin-long; Xiao, Hang; Lv, Jia-hui; Zhang, Sen Explicit pseudo-transient continuation and the trust-region updating strategy for unconstrained optimization. (English) Zbl 1468.65073 Appl. Numer. Math. 165, 290-302 (2021). MSC: 65K05 90C30 90C53 PDF BibTeX XML Cite \textit{X.-l. Luo} et al., Appl. Numer. Math. 165, 290--302 (2021; Zbl 1468.65073) Full Text: DOI arXiv OpenURL
Muthukumar, Ramchandran; Kouri, Drew P.; Udell, Madeleine Randomized sketching algorithms for low-memory dynamic optimization. (English) Zbl 1469.90153 SIAM J. Optim. 31, No. 2, 1242-1275 (2021). MSC: 90C39 68W20 90C30 93C20 PDF BibTeX XML Cite \textit{R. Muthukumar} et al., SIAM J. Optim. 31, No. 2, 1242--1275 (2021; Zbl 1469.90153) Full Text: DOI OpenURL
Hoffmann, Alexandre; Monteiller, Vadim; Bellis, Cédric A penalty-free approach to PDE constrained optimization: application to an inverse wave problem. (English) Zbl 1468.90129 Inverse Probl. 37, No. 5, Article ID 055002, 30 p. (2021). MSC: 90C30 90C55 PDF BibTeX XML Cite \textit{A. Hoffmann} et al., Inverse Probl. 37, No. 5, Article ID 055002, 30 p. (2021; Zbl 1468.90129) Full Text: DOI HAL OpenURL
Li, Xing; Dong, Wen-li; Peng, Zheng A new nonmonotone trust region Barzilai-Borwein method for unconstrained optimization problems. (English) Zbl 1468.90095 Acta Math. Appl. Sin., Engl. Ser. 37, No. 1, 166-175 (2021). MSC: 90C26 65K10 65K05 PDF BibTeX XML Cite \textit{X. Li} et al., Acta Math. Appl. Sin., Engl. Ser. 37, No. 1, 166--175 (2021; Zbl 1468.90095) Full Text: DOI OpenURL
Yano, Masayuki; Huang, Tianci; Zahr, Matthew J. A globally convergent method to accelerate topology optimization using on-the-fly model reduction. (English) Zbl 1506.74309 Comput. Methods Appl. Mech. Eng. 375, Article ID 113635, 38 p. (2021). MSC: 74P15 65K99 PDF BibTeX XML Cite \textit{M. Yano} et al., Comput. Methods Appl. Mech. Eng. 375, Article ID 113635, 38 p. (2021; Zbl 1506.74309) Full Text: DOI arXiv OpenURL
Jia, Zhongxiao; Wang, Fa The convergence of the generalized Lanczos trust-region method for the trust-region subproblem. (English) Zbl 1462.90083 SIAM J. Optim. 31, No. 1, 887-914 (2021). MSC: 90C20 90C30 65K05 65F10 PDF BibTeX XML Cite \textit{Z. Jia} and \textit{F. Wang}, SIAM J. Optim. 31, No. 1, 887--914 (2021; Zbl 1462.90083) Full Text: DOI arXiv OpenURL
Curtis, Frank E.; Robinson, Daniel P.; Royer, Clément W.; Wright, Stephen J. Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization. (English) Zbl 1461.90107 SIAM J. Optim. 31, No. 1, 518-544 (2021). MSC: 90C26 49M05 49M15 65K05 90C60 PDF BibTeX XML Cite \textit{F. E. Curtis} et al., SIAM J. Optim. 31, No. 1, 518--544 (2021; Zbl 1461.90107) Full Text: DOI arXiv OpenURL
Niri, T. Dehghan; Heydari, M.; Hosseini, M. M. Correction of trust region method with a new modified Newton method. (English) Zbl 1483.65099 Int. J. Comput. Math. 97, No. 5, 1118-1132 (2020). MSC: 65K05 90C26 90C30 PDF BibTeX XML Cite \textit{T. D. Niri} et al., Int. J. Comput. Math. 97, No. 5, 1118--1132 (2020; Zbl 1483.65099) Full Text: DOI OpenURL
Zhu, Honglan; Ni, Qin; Zhang, Xuebing A simple approximated solution method for solving fractional trust region subproblems of nonlinearly equality constrained optimization. (English) Zbl 1503.90142 J. Inequal. Appl. 2020, Paper No. 25, 19 p. (2020). MSC: 90C32 65K05 90C53 90C55 PDF BibTeX XML Cite \textit{H. Zhu} et al., J. Inequal. Appl. 2020, Paper No. 25, 19 p. (2020; Zbl 1503.90142) Full Text: DOI OpenURL
Niri, T. Dehghan; Heydari, M.; Hosseini, M. M. Two nonmonotone trust region algorithms based on an improved Newton method. (English) Zbl 1475.65041 J. Appl. Math. Comput. 64, No. 1-2, 179-194 (2020). MSC: 65K05 90C26 90C30 PDF BibTeX XML Cite \textit{T. D. Niri} et al., J. Appl. Math. Comput. 64, No. 1--2, 179--194 (2020; Zbl 1475.65041) Full Text: DOI OpenURL
Wang, Xinyi; Ding, Xianfeng; Qu, Quan A new nonmonotone adaptive trust region line search method for unconstrained optimization. (English) Zbl 1469.90116 J. Math. Ind. 10, Paper No. 13, 12 p. (2020). MSC: 90C26 90C53 90C55 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Math. Ind. 10, Paper No. 13, 12 p. (2020; Zbl 1469.90116) Full Text: DOI OpenURL
Rahpeymaii, Farzad An efficient line search trust-region for systems of nonlinear equations. (English) Zbl 07372039 Math. Sci., Springer 14, No. 3, 257-268 (2020). MSC: 65H10 PDF BibTeX XML Cite \textit{F. Rahpeymaii}, Math. Sci., Springer 14, No. 3, 257--268 (2020; Zbl 07372039) Full Text: DOI OpenURL
Costa, Carina Moreira; Grapiglia, Geovani Nunes A subspace version of the Wang-Yuan augmented Lagrangian-trust region method for equality constrained optimization. (English) Zbl 1472.90127 Appl. Math. Comput. 387, Article ID 124861, 13 p. (2020). MSC: 90C30 90C55 PDF BibTeX XML Cite \textit{C. M. Costa} and \textit{G. N. Grapiglia}, Appl. Math. Comput. 387, Article ID 124861, 13 p. (2020; Zbl 1472.90127) Full Text: DOI OpenURL
Noll, Dominikus Cutting plane oracles for non-smooth trust-regions. (English) Zbl 1457.65026 Pure Appl. Funct. Anal. 5, No. 3, 671-704 (2020). MSC: 65K05 49J53 90C26 90C56 PDF BibTeX XML Cite \textit{D. Noll}, Pure Appl. Funct. Anal. 5, No. 3, 671--704 (2020; Zbl 1457.65026) Full Text: arXiv Link OpenURL
Zhang, Lei-Hong; Li, Ren-Gang Krylov subspace methods for trust-region subproblem and beyond. (English) Zbl 1461.90089 Ji, Lizhen (ed.) et al., Proceedings of the international consortium of Chinese mathematicians, 2018. Second meeting, Taipei, Taiwan, December 2018. Somerville, MA: International Press. 721-740 (2020). MSC: 90C20 90C06 65F10 65F15 65F35 PDF BibTeX XML Cite \textit{L.-H. Zhang} and \textit{R.-G. Li}, in: Proceedings of the international consortium of Chinese mathematicians, 2018. Second meeting, Taipei, Taiwan, December 2018. Somerville, MA: International Press. 721--740 (2020; Zbl 1461.90089) OpenURL
Kabir, Muhammad Nomani A robust algorithm for solving nonlinear system of equations using trust-region and line-search techniques. (English) Zbl 1453.65108 Int. J. Comput. Sci. Math. 11, No. 2, 192-207 (2020). MSC: 65H10 65K05 PDF BibTeX XML Cite \textit{M. N. Kabir}, Int. J. Comput. Sci. Math. 11, No. 2, 192--207 (2020; Zbl 1453.65108) Full Text: DOI OpenURL
Pang, Bo; Zhang, Xue; Cao, Mingyuan An adaptive trust region method for solving \(\mathcal{D}\)-eigenvalues problem of diffusion kurtosis tensors. (English) Zbl 1463.49016 J. Beihua Univ., Nat. Sci. 21, No. 3, 290-294 (2020). MSC: 49J30 65K10 PDF BibTeX XML Cite \textit{B. Pang} et al., J. Beihua Univ., Nat. Sci. 21, No. 3, 290--294 (2020; Zbl 1463.49016) OpenURL
Su, Ke; Wang, Chen; Li, Xiaochuan A modified nonmonotone filter method for minimax problems. (English) Zbl 1463.90238 Math. Appl. 33, No. 2, 358-372 (2020). MSC: 90C47 PDF BibTeX XML Cite \textit{K. Su} et al., Math. Appl. 33, No. 2, 358--372 (2020; Zbl 1463.90238) OpenURL
Liu, Yan; He, Suxiang A trust region method for constrained optimization problems based on augmented Lagrange functions. (Chinese. English summary) Zbl 1449.65119 Math. Appl. 33, No. 1, 138-145 (2020). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{S. He}, Math. Appl. 33, No. 1, 138--145 (2020; Zbl 1449.65119) OpenURL
Chen, Zhongwen; Dai, Yu-Hong; Liu, Jiangyan A penalty-free method with superlinear convergence for equality constrained optimization. (English) Zbl 1446.90146 Comput. Optim. Appl. 76, No. 3, 801-833 (2020). MSC: 90C30 90C55 65K05 PDF BibTeX XML Cite \textit{Z. Chen} et al., Comput. Optim. Appl. 76, No. 3, 801--833 (2020; Zbl 1446.90146) Full Text: DOI OpenURL
Liu, Ji-Chuan; Li, Xiao-Chen Reconstruction algorithms of an inverse source problem for the Helmholtz equation. (English) Zbl 1442.65334 Numer. Algorithms 84, No. 3, 909-933 (2020). MSC: 65N21 65N20 65J20 65K10 35R30 35J05 35R25 PDF BibTeX XML Cite \textit{J.-C. Liu} and \textit{X.-C. Li}, Numer. Algorithms 84, No. 3, 909--933 (2020; Zbl 1442.65334) Full Text: DOI OpenURL
Gao, Guohua; Jiang, Hao; Vink, Jeroen C.; van Hagen, Paul P. H.; Wells, Terence J. Performance enhancement of Gauss-Newton trust-region solver for distributed Gauss-Newton optimization method. (English) Zbl 1434.90211 Comput. Geosci. 24, No. 2, 837-852 (2020). MSC: 90C39 90C20 86A22 90C55 PDF BibTeX XML Cite \textit{G. Gao} et al., Comput. Geosci. 24, No. 2, 837--852 (2020; Zbl 1434.90211) Full Text: DOI OpenURL
Carmon, Yair; Duchi, John C. First-order methods for nonconvex quadratic minimization. (English) Zbl 1459.65082 SIAM Rev. 62, No. 2, 395-436 (2020). Reviewer: Nada Djuranović-Miličić (Beograd) MSC: 65K05 90C06 90C20 90C26 90C30 PDF BibTeX XML Cite \textit{Y. Carmon} and \textit{J. C. Duchi}, SIAM Rev. 62, No. 2, 395--436 (2020; Zbl 1459.65082) Full Text: DOI arXiv OpenURL
Xi, Min; Sun, Wenyu; Chen, Yannan; Sun, Hailin A derivative-free algorithm for spherically constrained optimization. (English) Zbl 1441.90182 J. Glob. Optim. 76, No. 4, 841-861 (2020). MSC: 90C56 90C30 PDF BibTeX XML Cite \textit{M. Xi} et al., J. Glob. Optim. 76, No. 4, 841--861 (2020; Zbl 1441.90182) Full Text: DOI OpenURL
Brás, C. P.; Martínez, J. M.; Raydan, M. Large-scale unconstrained optimization using separable cubic modeling and matrix-free subspace minimization. (English) Zbl 1432.90119 Comput. Optim. Appl. 75, No. 1, 169-205 (2020). MSC: 90C26 65K10 90C06 PDF BibTeX XML Cite \textit{C. P. Brás} et al., Comput. Optim. Appl. 75, No. 1, 169--205 (2020; Zbl 1432.90119) Full Text: DOI Link OpenURL
Park, Seonho; Jung, Seung Hyun; Pardalos, Panos M. Combining stochastic adaptive cubic regularization with negative curvature for nonconvex optimization. (English) Zbl 1432.90096 J. Optim. Theory Appl. 184, No. 3, 953-971 (2020). MSC: 90C15 90C26 49M15 65K10 90C06 90C60 49M05 PDF BibTeX XML Cite \textit{S. Park} et al., J. Optim. Theory Appl. 184, No. 3, 953--971 (2020; Zbl 1432.90096) Full Text: DOI arXiv OpenURL
Abareshi, Maryam; Zaferanieh, Mehdi; Safi, Mohammad Reza Origin-destination matrix estimation problem in a Markov chain approach. (English) Zbl 07258032 Netw. Spat. Econ. 19, No. 4, 1069-1096 (2019). MSC: 90-XX 93-XX PDF BibTeX XML Cite \textit{M. Abareshi} et al., Netw. Spat. Econ. 19, No. 4, 1069--1096 (2019; Zbl 07258032) Full Text: DOI OpenURL
Yang, Yueting; Wang, Li; Xing, Fu’na; Chen, Yuting; Cao, Mingyuan A non-monotone adaptive trust region method for generalized eigenvalues of symmetric tensors. (Chinese. English summary) Zbl 1449.65084 J. Beihua Univ., Nat. Sci. 20, No. 5, 580-587 (2019). MSC: 65F15 15A69 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Beihua Univ., Nat. Sci. 20, No. 5, 580--587 (2019; Zbl 1449.65084) OpenURL
Boumal, Nicolas; Absil, P.-A.; Cartis, Coralia Global rates of convergence for nonconvex optimization on manifolds. (English) Zbl 1483.65092 IMA J. Numer. Anal. 39, No. 1, 1-33 (2019); erratum ibid. 40, No. 4, 2940 (2020). MSC: 65K05 90C26 90C46 PDF BibTeX XML Cite \textit{N. Boumal} et al., IMA J. Numer. Anal. 39, No. 1, 1--33 (2019; Zbl 1483.65092) Full Text: DOI arXiv OpenURL
Cartis, Coralia; Roberts, Lindon A derivative-free Gauss-Newton method. (English) Zbl 1461.65136 Math. Program. Comput. 11, No. 4, 631-674 (2019). MSC: 65K05 90C30 90C56 90-04 PDF BibTeX XML Cite \textit{C. Cartis} and \textit{L. Roberts}, Math. Program. Comput. 11, No. 4, 631--674 (2019; Zbl 1461.65136) Full Text: DOI arXiv OpenURL
Xi, Min; Sun, Wenyu A derivative-free algorithm based on simple model for unconstrained optimization. (Chinese. English summary) Zbl 1449.90330 Numer. Math., Nanjing 41, No. 2, 176-192 (2019). MSC: 90C30 90C56 65K05 PDF BibTeX XML Cite \textit{M. Xi} and \textit{W. Sun}, Numer. Math., Nanjing 41, No. 2, 176--192 (2019; Zbl 1449.90330) OpenURL
Li, Yong; Li, Zhiqun A conjugate gradient method for solving large-scale nonsmooth minimizations. (Chinese. English summary) Zbl 1449.65121 J. Cent. China Norm. Univ., Nat. Sci. 53, No. 3, 329-334 (2019). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Z. Li}, J. Cent. China Norm. Univ., Nat. Sci. 53, No. 3, 329--334 (2019; Zbl 1449.65121) Full Text: DOI OpenURL
Amiri, Erfan A.; Craig, James R.; Hirmand, M. Reza A trust region approach for numerical modeling of non-isothermal phase change. (English) Zbl 1425.86019 Comput. Geosci. 23, No. 5, 911-923 (2019). MSC: 86A40 49M25 49M37 65Z05 PDF BibTeX XML Cite \textit{E. A. Amiri} et al., Comput. Geosci. 23, No. 5, 911--923 (2019; Zbl 1425.86019) Full Text: DOI OpenURL
Rezaee, Saeed; Babaie-Kafaki, Saman An adaptive nonmonotone trust region method based on a modified scalar approximation of the Hessian in the successive quadratic subproblems. (English) Zbl 1461.65182 RAIRO, Oper. Res. 53, No. 3, 829-839 (2019). MSC: 65K05 90C53 49M37 PDF BibTeX XML Cite \textit{S. Rezaee} and \textit{S. Babaie-Kafaki}, RAIRO, Oper. Res. 53, No. 3, 829--839 (2019; Zbl 1461.65182) Full Text: DOI OpenURL
Song, Liqiang; Yang, Weihong A block Lanczos method for the CDT subproblem. (English) Zbl 1438.65066 J. Comput. Math. 37, No. 2, 240-260 (2019). MSC: 65F15 65K05 PDF BibTeX XML Cite \textit{L. Song} and \textit{W. Yang}, J. Comput. Math. 37, No. 2, 240--260 (2019; Zbl 1438.65066) Full Text: DOI OpenURL
Shi, Yong; Li, Peijia; Wang, Huadong L2-loss large-scale linear nonparallel support vector ordinal regression. (Chinese. English summary) Zbl 1438.68118 Acta Autom. Sin. 45, No. 3, 505-517 (2019). MSC: 68T05 PDF BibTeX XML Cite \textit{Y. Shi} et al., Acta Autom. Sin. 45, No. 3, 505--517 (2019; Zbl 1438.68118) Full Text: DOI OpenURL
Carmon, Yair; Duchi, John Gradient descent finds the cubic-regularized nonconvex Newton step. (English) Zbl 1461.65135 SIAM J. Optim. 29, No. 3, 2146-2178 (2019). MSC: 65K05 90C06 90C20 90C26 90C30 PDF BibTeX XML Cite \textit{Y. Carmon} and \textit{J. Duchi}, SIAM J. Optim. 29, No. 3, 2146--2178 (2019; Zbl 1461.65135) Full Text: DOI arXiv OpenURL
Ansary Karbasy, Saeid; Salahi, Maziar A hybrid algorithm for the two-trust-region subproblem. (English) Zbl 1438.90251 Comput. Appl. Math. 38, No. 3, Paper No. 115, 19 p. (2019). MSC: 90C25 90C22 PDF BibTeX XML Cite \textit{S. Ansary Karbasy} and \textit{M. Salahi}, Comput. Appl. Math. 38, No. 3, Paper No. 115, 19 p. (2019; Zbl 1438.90251) Full Text: DOI arXiv OpenURL
Dahito, Marie-Ange; Orban, Dominique The conjugate residual method in linesearch and trust-region methods. (English) Zbl 1422.49031 SIAM J. Optim. 29, No. 3, 1988-2025 (2019). MSC: 49M15 49M37 65F10 65F20 65K05 90C30 PDF BibTeX XML Cite \textit{M.-A. Dahito} and \textit{D. Orban}, SIAM J. Optim. 29, No. 3, 1988--2025 (2019; Zbl 1422.49031) Full Text: DOI OpenURL
Xue, Yanqin; Liu, Hongwei; Liu, Zexian An improved nonmonotone adaptive trust region method. (English) Zbl 07088744 Appl. Math., Praha 64, No. 3, 335-350 (2019). MSC: 90C30 PDF BibTeX XML Cite \textit{Y. Xue} et al., Appl. Math., Praha 64, No. 3, 335--350 (2019; Zbl 07088744) Full Text: DOI OpenURL
Kimiaei, Morteza; Rahpeymaii, Farzad A new nonmonotone line-search trust-region approach for nonlinear systems. (English) Zbl 1416.65144 Top 27, No. 2, 199-232 (2019). MSC: 65H10 65K05 90C30 PDF BibTeX XML Cite \textit{M. Kimiaei} and \textit{F. Rahpeymaii}, Top 27, No. 2, 199--232 (2019; Zbl 1416.65144) Full Text: DOI OpenURL
Liu, Shuai A simple version of bundle method with linear programming. (English) Zbl 1414.90268 Comput. Optim. Appl. 72, No. 2, 391-412 (2019). MSC: 90C25 49J52 65K10 49M05 PDF BibTeX XML Cite \textit{S. Liu}, Comput. Optim. Appl. 72, No. 2, 391--412 (2019; Zbl 1414.90268) Full Text: DOI OpenURL
Cao, Mingyuan; Huang, Qingdao; Yang, Yueting A self-adaptive trust region method for extreme \(\mathcal {B}\)-eigenvalues of symmetric tensors. (English) Zbl 1411.15009 Numer. Algorithms 81, No. 2, 407-420 (2019). MSC: 15A18 15A69 90C55 PDF BibTeX XML Cite \textit{M. Cao} et al., Numer. Algorithms 81, No. 2, 407--420 (2019; Zbl 1411.15009) Full Text: DOI OpenURL
Thomann, Jana; Eichfelder, Gabriele A trust-region algorithm for heterogeneous multiobjective optimization. (English) Zbl 1411.90311 SIAM J. Optim. 29, No. 2, 1017-1047 (2019). MSC: 90C29 90C56 90C30 PDF BibTeX XML Cite \textit{J. Thomann} and \textit{G. Eichfelder}, SIAM J. Optim. 29, No. 2, 1017--1047 (2019; Zbl 1411.90311) Full Text: DOI OpenURL
Fan, Jinyan; Huang, Jianchao; Pan, Jianyu An adaptive multi-step Levenberg-Marquardt method. (English) Zbl 1461.65149 J. Sci. Comput. 78, No. 1, 531-548 (2019). MSC: 65K05 65K10 90C30 PDF BibTeX XML Cite \textit{J. Fan} et al., J. Sci. Comput. 78, No. 1, 531--548 (2019; Zbl 1461.65149) Full Text: DOI OpenURL
Song, Liqiang; Yang, Wei Hong A block Lanczos method for the extended trust-region subproblem. (English) Zbl 1412.90102 SIAM J. Optim. 29, No. 1, 571-594 (2019). MSC: 90C20 90C26 90C30 65K05 PDF BibTeX XML Cite \textit{L. Song} and \textit{W. H. Yang}, SIAM J. Optim. 29, No. 1, 571--594 (2019; Zbl 1412.90102) Full Text: DOI OpenURL
Yang, Ping; Jiang, Yao-Lin; Xu, Kang-Li A trust-region method for \(H_2\) model reduction of bilinear systems on the Stiefel manifold. (English) Zbl 1409.93017 J. Franklin Inst. 356, No. 4, 2258-2273 (2019). MSC: 93B11 93C15 93C10 93-04 PDF BibTeX XML Cite \textit{P. Yang} et al., J. Franklin Inst. 356, No. 4, 2258--2273 (2019; Zbl 1409.93017) Full Text: DOI OpenURL
Rezaee, Saeed; Babaie-Kafaki, Saman An adaptive nonmonotone trust region algorithm. (English) Zbl 1407.65068 Optim. Methods Softw. 34, No. 2, 264-277 (2019). MSC: 65K05 90C30 90C53 49M37 PDF BibTeX XML Cite \textit{S. Rezaee} and \textit{S. Babaie-Kafaki}, Optim. Methods Softw. 34, No. 2, 264--277 (2019; Zbl 1407.65068) Full Text: DOI OpenURL
Zhou, W.; Akrotirianakis, I. G.; Yektamaram, S.; Griffin, J. D. A matrix-free line-search algorithm for nonconvex optimization. (English) Zbl 1416.90023 Optim. Methods Softw. 34, No. 1, 1-24 (2019). MSC: 90C06 90C26 90C30 65K05 68T01 PDF BibTeX XML Cite \textit{W. Zhou} et al., Optim. Methods Softw. 34, No. 1, 1--24 (2019; Zbl 1416.90023) Full Text: DOI OpenURL
Zhu, Honglan; Ni, Qin; Dang, Changyin; Zhang, Hao A trust region method based on the fractional model for unconstrained optimization. (Chinese. English summary) Zbl 1499.90275 Sci. Sin., Math. 48, No. 4, 531-546 (2018). MSC: 90C53 90C30 PDF BibTeX XML Cite \textit{H. Zhu} et al., Sci. Sin., Math. 48, No. 4, 531--546 (2018; Zbl 1499.90275) Full Text: DOI OpenURL
Li, Dan; Zhu, Detong An affine scaling interior trust-region method combining with nonmonotone line search filter technique for linear inequality constrained minimization. (English) Zbl 1499.90220 Int. J. Comput. Math. 95, No. 8, 1494-1526 (2018). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{D. Li} and \textit{D. Zhu}, Int. J. Comput. Math. 95, No. 8, 1494--1526 (2018; Zbl 1499.90220) Full Text: DOI OpenURL
Gao, Jing; Cao, Jian A class of derivative-free trust-region methods with interior backtracking technique for nonlinear optimization problems subject to linear inequality constraints. (English) Zbl 1497.49043 J. Inequal. Appl. 2018, Paper No. 108, 22 p. (2018). MSC: 49M37 65K05 65K10 90C30 90C51 PDF BibTeX XML Cite \textit{J. Gao} and \textit{J. Cao}, J. Inequal. Appl. 2018, Paper No. 108, 22 p. (2018; Zbl 1497.49043) Full Text: DOI OpenURL
Rezaee, Saeed; Babaie-Kafaki, Saman An adaptive retrospective trust region method based on a hybridization of the monotone and nonmonotone aspects. (English) Zbl 1461.65183 Pac. J. Optim. 14, No. 4, 621-633 (2018). MSC: 65K05 90C53 90C55 PDF BibTeX XML Cite \textit{S. Rezaee} and \textit{S. Babaie-Kafaki}, Pac. J. Optim. 14, No. 4, 621--633 (2018; Zbl 1461.65183) Full Text: Link OpenURL
Akbari, Z.; Peyghami, M. Reza; Yousefpour, R. A new nonsmooth trust-region method equipped with a line search for minimizing locally Lipschitz functions. (English) Zbl 1465.49014 Pac. J. Optim. 14, No. 4, 551-565 (2018). MSC: 49J52 90C26 PDF BibTeX XML Cite \textit{Z. Akbari} et al., Pac. J. Optim. 14, No. 4, 551--565 (2018; Zbl 1465.49014) Full Text: Link OpenURL
Heydari, Mohammad Mehdi; Niri, Tayebeh Dehghan; Hosseini, Seyed Mohammad Mehdi A new modified trust region algorithm for solving unconstrained optimization problems. (English) Zbl 1455.65094 J. Math. Ext. 12, No. 4, 115-135 (2018). MSC: 65K05 90C26 90C30 PDF BibTeX XML Cite \textit{M. M. Heydari} et al., J. Math. Ext. 12, No. 4, 115--135 (2018; Zbl 1455.65094) Full Text: Link OpenURL
El-Sobky, Bothina An active-set interior-point trust-region algorithm. (English) Zbl 1474.49057 Pac. J. Optim. 14, No. 1, 125-159 (2018). MSC: 49M15 90C53 65K05 PDF BibTeX XML Cite \textit{B. El-Sobky}, Pac. J. Optim. 14, No. 1, 125--159 (2018; Zbl 1474.49057) Full Text: Link OpenURL
Abdelkader, S. Y.; EL-Sobky, B.; EL-Alem, M. A computationally practical interior-point trust-region algorithm for solving the general nonlinear programming problems. (English) Zbl 1423.90247 Southeast Asian J. Sci. 6, No. 1, 39-55 (2018). MSC: 90C30 PDF BibTeX XML Cite \textit{S. Y. Abdelkader} et al., Southeast Asian J. Sci. 6, No. 1, 39--55 (2018; Zbl 1423.90247) OpenURL
Wang, Zhenzhen; Liu, Yanhao; Gao, Miaomiao; Sun, Qingying A new non-monotone self adaptive trust region method based on modified quasi-Newton equation for nonlinear equations. (Chinese. English summary) Zbl 1424.65069 J. Qufu Norm. Univ., Nat. Sci. 44, No. 4, 28-36 (2018). MSC: 65H10 PDF BibTeX XML Cite \textit{Z. Wang} et al., J. Qufu Norm. Univ., Nat. Sci. 44, No. 4, 28--36 (2018; Zbl 1424.65069) OpenURL
El-Sobky, Bothina; Abotahoun, Abdallah A trust-region algorithm for solving mini-max problem. (English) Zbl 1424.65081 J. Comput. Math. 36, No. 6, 776-791 (2018). MSC: 65K05 90C47 PDF BibTeX XML Cite \textit{B. El-Sobky} and \textit{A. Abotahoun}, J. Comput. Math. 36, No. 6, 776--791 (2018; Zbl 1424.65081) Full Text: DOI OpenURL