Cai, Hongyan; Chen, Danhong; Peng, Yunfei; Wei, Wei On the time-inconsistent deterministic linear-quadratic control. (English) Zbl 07514949 SIAM J. Control Optim. 60, No. 2, 968-991 (2022). MSC: 91G80 60G40 91B52 PDF BibTeX XML Cite \textit{H. Cai} et al., SIAM J. Control Optim. 60, No. 2, 968--991 (2022; Zbl 07514949) Full Text: DOI OpenURL
Behn, Carsten; Will, Christoph; Merker, Lukas; Steigenberger, Joachim Bending vibration systems which are complementary with respect to eigenvalues. (English) Zbl 07471052 Awrejcewicz, Jan (ed.), Perspectives in dynamical systems I: mechatronics and life sciences. Selected papers based on the presentations at the 15th international conference on dynamical systems – theory and applications, DSTA, Łódź, Poland, December 2–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 362, 277-286 (2022). MSC: 74H45 74K10 74L15 92C10 PDF BibTeX XML Cite \textit{C. Behn} et al., Springer Proc. Math. Stat. 362, 277--286 (2022; Zbl 07471052) Full Text: DOI OpenURL
Symotyuk, M. M. Two-point problem for linear systems of partial differential equations. (Ukrainian. English summary) Zbl 07498748 Bukovyn. Mat. Zh. 9, No. 2, 99-110 (2021). MSC: 35G15 PDF BibTeX XML Cite \textit{M. M. Symotyuk}, Bukovyn. Mat. Zh. 9, No. 2, 99--110 (2021; Zbl 07498748) Full Text: DOI OpenURL
Kiguradze, Ivan On the unique solvability of two-point boundary value problems for third order linear differential equations with singularities. (English) Zbl 1482.34056 Trans. A. Razmadze Math. Inst. 175, No. 3, 375-390 (2021). MSC: 34B05 PDF BibTeX XML Cite \textit{I. Kiguradze}, Trans. A. Razmadze Math. Inst. 175, No. 3, 375--390 (2021; Zbl 1482.34056) Full Text: Link OpenURL
Nikooeinejad, Z.; Heydari, M.; Loghmani, G. B. Numerical solution of two-point BVPs in infinite-horizon optimal control theory: a combined quasilinearization method with exponential Bernstein functions. (English) Zbl 1483.49011 Int. J. Comput. Math. 98, No. 11, 2156-2174 (2021). MSC: 49J15 49M05 65L03 PDF BibTeX XML Cite \textit{Z. Nikooeinejad} et al., Int. J. Comput. Math. 98, No. 11, 2156--2174 (2021; Zbl 1483.49011) Full Text: DOI OpenURL
Siva Prasad, E.; Phaneendra, K. Solution of singularly perturbed boundary value problems with singularity using variable mesh finite difference method. (English) Zbl 07473499 J. Dyn. Syst. Geom. Theor. 19, No. 1, 113-124 (2021). MSC: 65L10 65L11 65L12 PDF BibTeX XML Cite \textit{E. Siva Prasad} and \textit{K. Phaneendra}, J. Dyn. Syst. Geom. Theor. 19, No. 1, 113--124 (2021; Zbl 07473499) Full Text: DOI OpenURL
Tursunov, D. A.; Sulaimanov, Z. M.; Khalmatov, A. A. Singularly perturbed ordinary differential equation with turning point and interior layer. (English) Zbl 07450565 Lobachevskii J. Math. 42, No. 12, 3016-3021 (2021). Reviewer: Robert Vrabel (Trnava) MSC: 34E15 34E20 34B05 34E05 PDF BibTeX XML Cite \textit{D. A. Tursunov} et al., Lobachevskii J. Math. 42, No. 12, 3016--3021 (2021; Zbl 07450565) Full Text: DOI OpenURL
Ibrango, I.; Kone, B.; Guiro, A.; Ouaro, S. Weak solutions for anisotropic nonlinear discrete Dirichlet boundary value problems in a two-dimensional Hilbert space. (English) Zbl 07446954 Nonlinear Dyn. Syst. Theory 21, No. 1, 90-99 (2021). MSC: 39-XX 35B38 35P30 34L05 PDF BibTeX XML Cite \textit{I. Ibrango} et al., Nonlinear Dyn. Syst. Theory 21, No. 1, 90--99 (2021; Zbl 07446954) Full Text: Link OpenURL
Wang, Tongke; Liu, Zhifang; Kong, Yiting The series expansion and Chebyshev collocation method for nonlinear singular two-point boundary value problems. (English) Zbl 1476.65147 J. Eng. Math. 126, Paper No. 5, 29 p. (2021). MSC: 65L10 65L60 34B16 34B05 65L20 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Eng. Math. 126, Paper No. 5, 29 p. (2021; Zbl 1476.65147) Full Text: DOI OpenURL
Nytrebych, Zinovii; Malanchuk, Oksana On the nonexistence conditions of solution of two-point in time problem for nonhomogeneous PDE. (English) Zbl 1479.35236 Math. Slovaca 71, No. 5, 1125-1132 (2021). MSC: 35G15 35A01 35R50 PDF BibTeX XML Cite \textit{Z. Nytrebych} and \textit{O. Malanchuk}, Math. Slovaca 71, No. 5, 1125--1132 (2021; Zbl 1479.35236) Full Text: DOI OpenURL
Yang, Yanjuan; Wei, Xingyu; Xie, Nana On a nonlinear model for the Antarctic Circumpolar Current. (English) Zbl 1481.76275 Appl. Anal. 100, No. 13, 2891-2899 (2021). MSC: 76U60 35Q35 86A05 PDF BibTeX XML Cite \textit{Y. Yang} et al., Appl. Anal. 100, No. 13, 2891--2899 (2021; Zbl 1481.76275) Full Text: DOI OpenURL
Galeani, Sergio; Possieri, Corrado; Sassano, Mario Asymptotic tracking for nonminimum phase linear systems via steady-state compensation. (English) Zbl 1471.93077 IEEE Trans. Autom. Control 66, No. 9, 4176-4183 (2021). MSC: 93B35 93C30 93C05 49N90 PDF BibTeX XML Cite \textit{S. Galeani} et al., IEEE Trans. Autom. Control 66, No. 9, 4176--4183 (2021; Zbl 1471.93077) Full Text: DOI OpenURL
Minglibayeva, B. B.; Assanova, A. T. An existence of an isolated solution to nonlinear two-point boundary value problem with parameter. (English) Zbl 07350136 Lobachevskii J. Math. 42, No. 3, 587-597 (2021). Reviewer: Ruyun Ma (Lanzhou) MSC: 34B08 PDF BibTeX XML Cite \textit{B. B. Minglibayeva} and \textit{A. T. Assanova}, Lobachevskii J. Math. 42, No. 3, 587--597 (2021; Zbl 07350136) Full Text: DOI OpenURL
Assanova, A. T. A two-point boundary value problem for a fourth order partial integro-differential equation. (English) Zbl 1464.45017 Lobachevskii J. Math. 42, No. 3, 526-535 (2021). MSC: 45K05 35R09 65R20 PDF BibTeX XML Cite \textit{A. T. Assanova}, Lobachevskii J. Math. 42, No. 3, 526--535 (2021; Zbl 1464.45017) Full Text: DOI OpenURL
Nguyen, Thu Dang Thien Sticky Brownian motions and a probabilistic solution to a two-point boundary value problem. (English) Zbl 1462.35161 Math. Phys. Anal. Geom. 24, No. 2, Paper No. 10, 16 p. (2021). MSC: 35K20 60J55 60J60 60J65 60H10 PDF BibTeX XML Cite \textit{T. D. T. Nguyen}, Math. Phys. Anal. Geom. 24, No. 2, Paper No. 10, 16 p. (2021; Zbl 1462.35161) Full Text: DOI arXiv OpenURL
Zhao, Tengjin; Zhang, Zhiyue; Wang, Tongke A hybrid asymptotic and augmented compact finite volume method for nonlinear singular two point boundary value problems. (English) Zbl 07332925 Appl. Math. Comput. 392, Article ID 125745, 15 p. (2021). MSC: 65-XX 34B16 65N08 65N15 41A60 PDF BibTeX XML Cite \textit{T. Zhao} et al., Appl. Math. Comput. 392, Article ID 125745, 15 p. (2021; Zbl 07332925) Full Text: DOI OpenURL
Galeani, Sergio; Possieri, Corrado; Sassano, Mario Output tracking for a class of non-minimum phase nonlinear systems: a two-point boundary value problem formulation with a hybrid regulator. (English) Zbl 1458.93078 Eur. J. Control 58, 43-52 (2021). MSC: 93B52 93C10 93B55 PDF BibTeX XML Cite \textit{S. Galeani} et al., Eur. J. Control 58, 43--52 (2021; Zbl 1458.93078) Full Text: DOI OpenURL
Karamollahi, Nasibeh; Loghmani, Ghasem Barid; Heydari, Mohammad A computational method to find dual solutions of the one-dimensional bratu problem. (English) Zbl 1461.65214 J. Comput. Appl. Math. 388, Article ID 113309, 14 p. (2021). MSC: 65L10 65L20 34A34 PDF BibTeX XML Cite \textit{N. Karamollahi} et al., J. Comput. Appl. Math. 388, Article ID 113309, 14 p. (2021; Zbl 1461.65214) Full Text: DOI OpenURL
Jiang, Jingfei; Guirao, Juan L. G.; Saeed, Tareq The existence of the extremal solution for the boundary value problems of variable fractional order differential equation with causal operator. (English) Zbl 07468607 Fractals 28, No. 8, Article ID 2040025, 11 p. (2020). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34B10 34A45 PDF BibTeX XML Cite \textit{J. Jiang} et al., Fractals 28, No. 8, Article ID 2040025, 11 p. (2020; Zbl 07468607) Full Text: DOI OpenURL
Almuthaybiri, Saleh S.; Tisdell, Christopher C. Sharper existence and uniqueness results for solutions to third-order boundary value problems. (English) Zbl 1476.34071 Math. Model. Anal. 25, No. 3, 409-420 (2020). MSC: 34B15 PDF BibTeX XML Cite \textit{S. S. Almuthaybiri} and \textit{C. C. Tisdell}, Math. Model. Anal. 25, No. 3, 409--420 (2020; Zbl 1476.34071) Full Text: DOI OpenURL
Bingelė, Kristina; Bankauskienė, Agnė; Štikonas, Artūras Investigation of spectrum curves for a Sturm-Liouville problem with two-point nonlocal boundary conditions. (English) Zbl 1476.34079 Math. Model. Anal. 25, No. 1, 53-70 (2020). MSC: 34B24 34B10 PDF BibTeX XML Cite \textit{K. Bingelė} et al., Math. Model. Anal. 25, No. 1, 53--70 (2020; Zbl 1476.34079) Full Text: DOI OpenURL
Assanova, Anar T. New general solution of second order differential equation with piecewise-constant argument of generalized type and its application for solving boundary value problems. (English) Zbl 07406180 Mat. Zh. 20, No. 4, 87-97 (2020). MSC: 34K28 34K05 34K10 PDF BibTeX XML Cite \textit{A. T. Assanova}, Mat. Zh. 20, No. 4, 87--97 (2020; Zbl 07406180) OpenURL
Turaev, R. N. Mathematical filtration models for a quasilinear equation of a type of problems with a free boundary. (English) Zbl 07387687 Uzb. Math. J. 2020, No. 4, 161-172 (2020). MSC: 35K05 35K55 35K59 35K60 PDF BibTeX XML Cite \textit{R. N. Turaev}, Uzb. Math. J. 2020, No. 4, 161--172 (2020; Zbl 07387687) Full Text: DOI OpenURL
Athukorallage, Bhagya; Iyer, Ram On a two-point boundary value problem for the 2-d Navier-Stokes equations arising from capillary effect. (English) Zbl 1465.34059 Math. Model. Nat. Phenom. 15, Paper No. 17, 31 p. (2020). MSC: 34C55 49J40 74S99 PDF BibTeX XML Cite \textit{B. Athukorallage} and \textit{R. Iyer}, Math. Model. Nat. Phenom. 15, Paper No. 17, 31 p. (2020; Zbl 1465.34059) Full Text: DOI OpenURL
Deng, Ruijuan; Cui, Hongrui Existence of positive solutions for a class of complete fourth-order two-point boundary value problems. (Chinese. English summary) Zbl 1474.34163 J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 6, 497-501, 508 (2020). MSC: 34B18 47N20 PDF BibTeX XML Cite \textit{R. Deng} and \textit{H. Cui}, J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 6, 497--501, 508 (2020; Zbl 1474.34163) Full Text: DOI OpenURL
Wang, Wen-Li; Tian, Jing-Feng; Cheung, Wing-Sum Two-point boundary value problems for first order causal difference equations. (English) Zbl 1464.39012 Indian J. Pure Appl. Math. 51, No. 4, 1399-1416 (2020). MSC: 39A27 34B15 34B10 PDF BibTeX XML Cite \textit{W.-L. Wang} et al., Indian J. Pure Appl. Math. 51, No. 4, 1399--1416 (2020; Zbl 1464.39012) Full Text: DOI OpenURL
Almuthaybiri, Saleh S.; Tisdell, Christopher C. Existence and uniqueness of solutions to third-order boundary value problems: analysis in closed and bounded sets. (English) Zbl 1474.34134 Differ. Equ. Appl. 12, No. 3, 291-312 (2020). MSC: 34B15 34B10 47N20 PDF BibTeX XML Cite \textit{S. S. Almuthaybiri} and \textit{C. C. Tisdell}, Differ. Equ. Appl. 12, No. 3, 291--312 (2020; Zbl 1474.34134) Full Text: DOI OpenURL
Asaduzzaman, M.; Ali, M. Z. Existence of triple positive solutions for nonlinear second order arbitrary two-point boundary value problems. (English) Zbl 07314108 Malays. J. Math. Sci. 14, No. 3, 335-349 (2020). MSC: 34B15 34B18 47N20 PDF BibTeX XML Cite \textit{M. Asaduzzaman} and \textit{M. Z. Ali}, Malays. J. Math. Sci. 14, No. 3, 335--349 (2020; Zbl 07314108) Full Text: Link OpenURL
Zheng, Quan; Liu, Ying; Liu, Zhongli The hybrid finite difference schemes on the modified Bakhvalov-Shishkin mesh for the singularly perturbed problem. (Chinese. English summary) Zbl 1463.65201 J. Zhejiang Univ., Sci. Ed. 47, No. 4, 460-468 (2020). MSC: 65L10 65L12 65L70 PDF BibTeX XML Cite \textit{Q. Zheng} et al., J. Zhejiang Univ., Sci. Ed. 47, No. 4, 460--468 (2020; Zbl 1463.65201) Full Text: DOI OpenURL
Zerizer, Tahia An iterative method to solve a nonlinear three-time-scale discrete system. (English) Zbl 1454.93170 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 421-430 (2020). MSC: 93C70 93C55 93C10 PDF BibTeX XML Cite \textit{T. Zerizer}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 421--430 (2020; Zbl 1454.93170) Full Text: Link OpenURL
Cabada, Alberto; Dimitrov, Nikolay Nontrivial solutions of non-autonomous Dirichlet fractional discrete problems. (English) Zbl 07268215 Fract. Calc. Appl. Anal. 23, No. 4, 980-995 (2020). MSC: 39A27 39A13 PDF BibTeX XML Cite \textit{A. Cabada} and \textit{N. Dimitrov}, Fract. Calc. Appl. Anal. 23, No. 4, 980--995 (2020; Zbl 07268215) Full Text: DOI OpenURL
Zhang, Jianmei; Li, Jiemei Multiplicity of solutions for a class of fourth-order two-point boundary value problems with parameters. (Chinese. English summary) Zbl 1463.34110 J. Northwest Norm. Univ., Nat. Sci. 56, No. 2, 5-9 (2020). MSC: 34B18 34B27 47N20 34B08 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{J. Li}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 2, 5--9 (2020; Zbl 1463.34110) Full Text: DOI OpenURL
Ferreira, Chelo; López, José; Pérez Sinusia, Ester Analysis of singular one-dimensional linear boundary value problems using two-point Taylor expansions. (English) Zbl 1463.34093 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 22, 21 p. (2020). MSC: 34B16 34A25 34B05 41A58 PDF BibTeX XML Cite \textit{C. Ferreira} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 22, 21 p. (2020; Zbl 1463.34093) Full Text: DOI OpenURL
Saiedinezhad, Somayeh On the existence of three solutions for some classes of two-point semi-linear and quasi-linear differential equations. (English) Zbl 1456.34023 Bull. Iran. Math. Soc. 46, No. 5, 1243-1255 (2020). Reviewer: Erdogan Sen (Tekirdağ) MSC: 34B09 58E05 PDF BibTeX XML Cite \textit{S. Saiedinezhad}, Bull. Iran. Math. Soc. 46, No. 5, 1243--1255 (2020; Zbl 1456.34023) Full Text: DOI OpenURL
Chowdhury, Atiqur; Tanveer, Saleh; Wang, Xueying Nonlinear two-point boundary value problems: applications to a cholera epidemic model. (English) Zbl 1439.34028 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2234, Article ID 20190673, 23 p. (2020). MSC: 34B15 92D30 PDF BibTeX XML Cite \textit{A. Chowdhury} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2234, Article ID 20190673, 23 p. (2020; Zbl 1439.34028) Full Text: DOI Link OpenURL
Okeke, Godwin Amechi; Abbas, Mujahid; de la Sen, Manuel Approximation of the fixed point of multivalued quasi-nonexpansive mappings via a faster iterative process with applications. (English) Zbl 1459.65074 Discrete Dyn. Nat. Soc. 2020, Article ID 8634050, 11 p. (2020). MSC: 65J15 65L10 47J26 47H09 47H04 34B10 PDF BibTeX XML Cite \textit{G. A. Okeke} et al., Discrete Dyn. Nat. Soc. 2020, Article ID 8634050, 11 p. (2020; Zbl 1459.65074) Full Text: DOI OpenURL
Soradi-Zeid, Samaneh Efficient radial basis functions approaches for solving a class of fractional optimal control problems. (English) Zbl 1449.49029 Comput. Appl. Math. 39, No. 1, Paper No. 20, 22 p. (2020). MSC: 49M37 49M05 49L99 65K05 PDF BibTeX XML Cite \textit{S. Soradi-Zeid}, Comput. Appl. Math. 39, No. 1, Paper No. 20, 22 p. (2020; Zbl 1449.49029) Full Text: DOI OpenURL
Kumar Pandey, Pramod The numerical solution of third-order non-local boundary value problems in ODEs by the finite difference method. (English) Zbl 07496219 ROMAI J. 15, No. 1, 73-82 (2019). MSC: 65L10 65L12 PDF BibTeX XML Cite \textit{P. Kumar Pandey}, ROMAI J. 15, No. 1, 73--82 (2019; Zbl 07496219) OpenURL
Zheng, Xiaoming; Sweidan, Mohye Analysis of Ghost-Fluid method with cubic extrapolation for two-point boundary value problem. (English) Zbl 07479632 Int. J. Numer. Methods Appl. 18, No. 1, 19-58 (2019). MSC: 65N06 PDF BibTeX XML Cite \textit{X. Zheng} and \textit{M. Sweidan}, Int. J. Numer. Methods Appl. 18, No. 1, 19--58 (2019; Zbl 07479632) Full Text: DOI OpenURL
Roul, Pradip A fast and accurate computational technique for efficient numerical solution of nonlinear singular boundary value problems. (English) Zbl 07474815 Int. J. Comput. Math. 96, No. 1, 51-72 (2019). MSC: 34B05 34B15 34B16 34B60 PDF BibTeX XML Cite \textit{P. Roul}, Int. J. Comput. Math. 96, No. 1, 51--72 (2019; Zbl 07474815) Full Text: DOI OpenURL
Assanova, A. T.; Tokmurzin, Zh. S. On two-point initial boundary value problem for fourth order partial differential equations. (English) Zbl 07401966 Mat. Zh. 19, No. 3, 66-78 (2019). MSC: 35G35 35G40 35G46 35L53 35L55 35L57 PDF BibTeX XML Cite \textit{A. T. Assanova} and \textit{Zh. S. Tokmurzin}, Mat. Zh. 19, No. 3, 66--78 (2019; Zbl 07401966) OpenURL
Gracia, José Luis; O’Riordan, Eugene; Stynes, Martin A collocation method for a two-point boundary value problem with a Riemann-Liouville-Caputo fractional derivative. (English) Zbl 1469.65126 Ahusborde, É. (ed.) et al., Fifteenth international conference Zaragoza-Pau on mathematics and its applications. Proceedings of the conference, Jaca, Spain, September 10–12, 2018. Zaragoza: Prensas de la Universidad de Zaragoza. Monogr. Mat. García Galdeano 42, 111-125 (2019). MSC: 65L10 65L60 34A08 45D05 PDF BibTeX XML Cite \textit{J. L. Gracia} et al., Monogr. Mat. García Galdeano 42, 111--125 (2019; Zbl 1469.65126) OpenURL
Phaneendra, K.; Mahesh, G. Fourth order computational method for two parameters singularly perturbed boundary value problem using non-polynomial cubic spline. (English) Zbl 1453.65179 Int. J. Comput. Sci. Math. 10, No. 3, 261-275 (2019). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{K. Phaneendra} and \textit{G. Mahesh}, Int. J. Comput. Sci. Math. 10, No. 3, 261--275 (2019; Zbl 1453.65179) OpenURL
Gupta, Sumit; Kumar, Devendra; Singh, Jagdev ADMP: a Maple package for symbolic computation and error estimating to singular two-point boundary value problems with initial conditions. (English) Zbl 1451.65130 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 89, No. 2, 405-414 (2019). MSC: 65M15 PDF BibTeX XML Cite \textit{S. Gupta} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 89, No. 2, 405--414 (2019; Zbl 1451.65130) Full Text: DOI OpenURL
Russell, Ryan P. On the solution to every Lambert problem. (English) Zbl 1451.70014 Celest. Mech. Dyn. Astron. 131, No. 11, Paper No. 50, 33 p. (2019). MSC: 70F05 65L10 PDF BibTeX XML Cite \textit{R. P. Russell}, Celest. Mech. Dyn. Astron. 131, No. 11, Paper No. 50, 33 p. (2019; Zbl 1451.70014) Full Text: DOI OpenURL
Mawhin, Jean; Szymańska-Dębowska, Katarzyna Bound sets and two-point boundary value problems for second order differential systems. (English) Zbl 07217261 Math. Bohem. 144, No. 4, 373-392 (2019). MSC: 34B15 47H11 PDF BibTeX XML Cite \textit{J. Mawhin} and \textit{K. Szymańska-Dębowska}, Math. Bohem. 144, No. 4, 373--392 (2019; Zbl 07217261) Full Text: DOI OpenURL
Cao, X.; Nemadjieu, S. F.; Pop, I. S. Convergence of an MPFA finite volume scheme for a two-phase porous media flow model with dynamic capillarity. (English) Zbl 1483.76041 IMA J. Numer. Anal. 39, No. 1, 512-544 (2019). MSC: 76M12 65M08 76S05 PDF BibTeX XML Cite \textit{X. Cao} et al., IMA J. Numer. Anal. 39, No. 1, 512--544 (2019; Zbl 1483.76041) Full Text: DOI OpenURL
Zhang, Jingjing; Shen, Yue; He, Jihuan Some analytical methods for singular boundary value problem in a fractal space: a review. (English) Zbl 1440.34025 Appl. Comput. Math. 18, No. 3, 225-235 (2019). MSC: 34B16 34B15 34L30 34-02 34E15 34A25 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Comput. Math. 18, No. 3, 225--235 (2019; Zbl 1440.34025) Full Text: Link OpenURL
Yong, Longquan An improved harmony search for linear two-point boundary value problem. (Chinese. English summary) Zbl 1463.65200 Math. Pract. Theory 49, No. 10, 226-233 (2019). MSC: 65L10 34B05 34B10 90C59 PDF BibTeX XML Cite \textit{L. Yong}, Math. Pract. Theory 49, No. 10, 226--233 (2019; Zbl 1463.65200) OpenURL
Xie, Yaning; Ying, Wenjun; Wang, Wei-Cheng A high-order kernel-free boundary integral method for the biharmonic equation on irregular domains. (English) Zbl 1428.65103 J. Sci. Comput. 80, No. 3, 1681-1699 (2019). MSC: 65N38 31A30 65N06 65T50 PDF BibTeX XML Cite \textit{Y. Xie} et al., J. Sci. Comput. 80, No. 3, 1681--1699 (2019; Zbl 1428.65103) Full Text: DOI OpenURL
Zheng, Chunhua; Ma, Rui The existence of the solution for a class of the fractional differential equation with a \(p\)-Laplace operator and delay at resonance. (Chinese. English summary) Zbl 1438.34277 J. Yunnan Minzu Univ., Nat. Sci. 28, No. 2, 144-150 (2019). MSC: 34K37 34K10 47N20 PDF BibTeX XML Cite \textit{C. Zheng} and \textit{R. Ma}, J. Yunnan Minzu Univ., Nat. Sci. 28, No. 2, 144--150 (2019; Zbl 1438.34277) Full Text: DOI OpenURL
Asaduzzaman, Md.; Ali, Md. Zulfikar Existence of three positive solutions for nonlinear third order arbitrary two-point boundary value problems. (English) Zbl 1425.34046 Differ. Uravn. Protsessy Upr. 2019, No. 2, 83-100 (2019). MSC: 34B18 34B15 47N20 PDF BibTeX XML Cite \textit{Md. Asaduzzaman} and \textit{Md. Z. Ali}, Differ. Uravn. Protsessy Upr. 2019, No. 2, 83--100 (2019; Zbl 1425.34046) Full Text: Link OpenURL
Liang, Hui; Stynes, Martin Collocation methods for general Riemann-Liouville two-point boundary value problems. (English) Zbl 1415.65168 Adv. Comput. Math. 45, No. 2, 897-928 (2019). MSC: 65L10 65R10 65R20 PDF BibTeX XML Cite \textit{H. Liang} and \textit{M. Stynes}, Adv. Comput. Math. 45, No. 2, 897--928 (2019; Zbl 1415.65168) Full Text: DOI OpenURL
Korman, Philip; Li, Yi; Schmidt, Dieter S. A computer assisted study of uniqueness of nodal ground state solutions. (English) Zbl 1422.65445 J. Comput. Appl. Math. 356, 402-406 (2019). Reviewer: Olaf Hansen (San Marcos) MSC: 65N99 35B05 35J61 35Q41 PDF BibTeX XML Cite \textit{P. Korman} et al., J. Comput. Appl. Math. 356, 402--406 (2019; Zbl 1422.65445) Full Text: DOI OpenURL
Cimatti, Giovanni Functional solutions for problems of heat and mass transfer. (English) Zbl 1412.34238 Meccanica 54, No. 1-2, 7-18 (2019). MSC: 34L99 35J66 80A20 PDF BibTeX XML Cite \textit{G. Cimatti}, Meccanica 54, No. 1--2, 7--18 (2019; Zbl 1412.34238) Full Text: DOI arXiv OpenURL
Wang, Jing; Tong, Lining Vanishing viscosity limit of 1D quasilinear parabolic equation with multiple boundary layers. (English) Zbl 1404.35018 Commun. Pure Appl. Anal. 18, No. 2, 887-910 (2019). MSC: 35B25 35L50 35K51 PDF BibTeX XML Cite \textit{J. Wang} and \textit{L. Tong}, Commun. Pure Appl. Anal. 18, No. 2, 887--910 (2019; Zbl 1404.35018) Full Text: DOI OpenURL
Nytrebych, Z.; Il’kiv, V.; Pukach, P.; Malanchuk, O. On nontrivial solutions of homogeneous Dirichlet problem for partial differential equations in a layer. (English) Zbl 07390770 Kragujevac J. Math. 42, No. 2, 193-207 (2018). MSC: 35G15 35K05 PDF BibTeX XML Cite \textit{Z. Nytrebych} et al., Kragujevac J. Math. 42, No. 2, 193--207 (2018; Zbl 07390770) Full Text: Link OpenURL
Belikova, K. On positive solutions of a two-point boundary value problem for a class of higher-order nonlinear ordinary differential equations. (English) Zbl 1467.34028 Funct. Differ. Equ. 25, No. 3-4, 113-120 (2018). MSC: 34B18 PDF BibTeX XML Cite \textit{K. Belikova}, Funct. Differ. Equ. 25, No. 3--4, 113--120 (2018; Zbl 1467.34028) Full Text: Link OpenURL
Buyal’skaya, Yuliya Viktorovna; Volkov, Vasiliĭ Mikhaĭlovich Chebyshev spectral method for numerical simulations of counter-propagating optical waves interaction in nonlinear media. (Russian. English summary) Zbl 1464.65137 Zh. Beloruss. Gos. Univ., Mat., Inform. 2018, No. 3, 75-81 (2018). MSC: 65M70 65H10 41A50 78A40 78A60 78M22 PDF BibTeX XML Cite \textit{Y. V. Buyal'skaya} and \textit{V. M. Volkov}, Zh. Beloruss. Gos. Univ., Mat., Inform. 2018, No. 3, 75--81 (2018; Zbl 1464.65137) Full Text: Link OpenURL
Khaleghi, M.; Talebi Moghaddam, M.; Babolian, E.; Abbasbandy, S. Solving a class of singular two-point boundary value problems using new effective reproducing kernel technique. (English) Zbl 1427.65121 Appl. Math. Comput. 331, 264-273 (2018). MSC: 65L10 34A45 46E22 65L11 PDF BibTeX XML Cite \textit{M. Khaleghi} et al., Appl. Math. Comput. 331, 264--273 (2018; Zbl 1427.65121) Full Text: DOI OpenURL
Kurdyumov, Vitaliĭ Pavlovich; Khromov, Avgust Petrovich; Khalova, Viktoriya Anatol’evna A mixed problem for a wave equation with a nonzero initial velocity. (Russian. English summary) Zbl 1423.35243 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 18, No. 2, 157-171 (2018). MSC: 35L20 35L05 35C10 PDF BibTeX XML Cite \textit{V. P. Kurdyumov} et al., Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 18, No. 2, 157--171 (2018; Zbl 1423.35243) Full Text: DOI MNR OpenURL
Pandey, Pramod Kumar; Batarseh, Mufeed High order variable mesh exponential finite difference method for the numerical solutions of two point boundary value problems. (English) Zbl 1438.65158 J. Int. Math. Virtual Inst. 8, 19-33 (2018). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{P. K. Pandey} and \textit{M. Batarseh}, J. Int. Math. Virtual Inst. 8, 19--33 (2018; Zbl 1438.65158) OpenURL
Zeid, Samaneh Soradi; Effati, Sohrab; Kamyad, Ali Vahidian Approximation methods for solving fractional optimal control problems. (English) Zbl 1438.49045 Comput. Appl. Math. 37, No. 1, Suppl., 158-182 (2018). MSC: 49M05 49M25 65K99 PDF BibTeX XML Cite \textit{S. S. Zeid} et al., Comput. Appl. Math. 37, No. 1, 158--182 (2018; Zbl 1438.49045) Full Text: DOI OpenURL
Sobolev, A. A.; Timerbaev, M. R. High-order accuracy approximation for a two-point boundary value problem of fourth order with degenerate coefficients. (English. Russian original) Zbl 1435.65112 Lobachevskii J. Math. 39, No. 9, 1466-1477 (2018); translation from Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 159, No. 4, 493-508 (2017). Reviewer: Lijun Yi (Shanghai) MSC: 65L10 65L60 PDF BibTeX XML Cite \textit{A. A. Sobolev} and \textit{M. R. Timerbaev}, Lobachevskii J. Math. 39, No. 9, 1466--1477 (2018; Zbl 1435.65112); translation from Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 159, No. 4, 493--508 (2017) Full Text: DOI OpenURL
Guo, Caixia; Guo, Jianmin; Gao, Ying; Kang, Shugui Existence of positive solutions for two-point boundary value problems of nonlinear fractional \(q\)-difference equation. (English) Zbl 1446.39017 Adv. Difference Equ. 2018, Paper No. 180, 12 p. (2018). MSC: 39A27 39A13 26A33 34B18 34A08 PDF BibTeX XML Cite \textit{C. Guo} et al., Adv. Difference Equ. 2018, Paper No. 180, 12 p. (2018; Zbl 1446.39017) Full Text: DOI OpenURL
Cimatti, Giovanni An application of a theorem of G. Zwirner to a class of non-linear elliptic systems in divergence form. (English) Zbl 1404.35164 Boll. Unione Mat. Ital. 11, No. 4, 533-539 (2018). MSC: 35J57 34B09 PDF BibTeX XML Cite \textit{G. Cimatti}, Boll. Unione Mat. Ital. 11, No. 4, 533--539 (2018; Zbl 1404.35164) Full Text: DOI arXiv OpenURL
Ge, Xinsheng; Yao, Qijia; Chen, Liqun Control strategy of optimal deployment for spacecraft solar array system with initial state uncertainty. (English) Zbl 1402.70026 AMM, Appl. Math. Mech., Engl. Ed. 39, No. 10, 1437-1452 (2018). MSC: 70Q05 37N35 PDF BibTeX XML Cite \textit{X. Ge} et al., AMM, Appl. Math. Mech., Engl. Ed. 39, No. 10, 1437--1452 (2018; Zbl 1402.70026) Full Text: DOI OpenURL
Li, Gang On uniqueness of conformally compact Einstein metrics with homogeneous conformal infinity. (English) Zbl 1404.53061 Adv. Math. 340, 983-1011 (2018). Reviewer: Mohammad Hasan Shahid (New Delhi) MSC: 53C25 58J05 53C30 34B15 PDF BibTeX XML Cite \textit{G. Li}, Adv. Math. 340, 983--1011 (2018; Zbl 1404.53061) Full Text: DOI arXiv OpenURL
Anello, Giovanni Structure of the solution set for two-point boundary-value problems. (English) Zbl 1401.34029 Electron. J. Differ. Equ. 2018, Conf. 25, 15-25 (2018). Reviewer: Fatma Hıra (Çorum) MSC: 34B18 34B15 34B16 34B09 PDF BibTeX XML Cite \textit{G. Anello}, Electron. J. Differ. Equ. 2018, 15--25 (2018; Zbl 1401.34029) Full Text: Link OpenURL
Liang, Hui; Stynes, Martin Collocation methods for general Caputo two-point boundary value problems. (English) Zbl 1398.65180 J. Sci. Comput. 76, No. 1, 390-425 (2018). MSC: 65L10 65R10 65R20 PDF BibTeX XML Cite \textit{H. Liang} and \textit{M. Stynes}, J. Sci. Comput. 76, No. 1, 390--425 (2018; Zbl 1398.65180) Full Text: DOI OpenURL
Ferreira, Chelo; López, José L.; Sinusía, Ester Pérez The use of two-point Taylor expansions in singular one-dimensional boundary value problems I. (English) Zbl 1395.34030 J. Math. Anal. Appl. 463, No. 2, 708-725 (2018). MSC: 34B16 34B15 34A25 PDF BibTeX XML Cite \textit{C. Ferreira} et al., J. Math. Anal. Appl. 463, No. 2, 708--725 (2018; Zbl 1395.34030) Full Text: DOI Link OpenURL
Farjami, Saeed; Kirk, Vivien; Osinga, Hinke M. Computing the stable manifold of a saddle slow manifold. (English) Zbl 1403.37036 SIAM J. Appl. Dyn. Syst. 17, No. 1, 350-379 (2018). Reviewer: Josef Diblík (Brno) MSC: 37D10 37M20 34D15 34E15 37C10 65L10 34D35 34C45 65P40 70K70 PDF BibTeX XML Cite \textit{S. Farjami} et al., SIAM J. Appl. Dyn. Syst. 17, No. 1, 350--379 (2018; Zbl 1403.37036) Full Text: DOI OpenURL
Han, Seung Hak; McEneaney, William M. Fundamental solutions for two-point boundary value problems in orbital mechanics. (English) Zbl 1386.49054 Appl. Math. Optim. 77, No. 1, 129-172 (2018). Reviewer: Gerhard-Wilhelm Weber (Poznań) with Emel Savku MSC: 49N70 93C10 35G20 35D40 70M20 PDF BibTeX XML Cite \textit{S. H. Han} and \textit{W. M. McEneaney}, Appl. Math. Optim. 77, No. 1, 129--172 (2018; Zbl 1386.49054) Full Text: DOI OpenURL
McEneaney, William M.; Dower, Peter M. Static duality and a stationary-action application. (English) Zbl 1381.49036 J. Differ. Equations 264, No. 2, 525-549 (2018). MSC: 49N25 49L20 PDF BibTeX XML Cite \textit{W. M. McEneaney} and \textit{P. M. Dower}, J. Differ. Equations 264, No. 2, 525--549 (2018; Zbl 1381.49036) Full Text: DOI OpenURL
Nashine, Hemant Kumar; Kadelburg, Zoran Existence of solutions of cantilever beam problem via (\(\alpha\)-\(\beta\)-\(FG\))-contractions in \(b\)-metric-like spaces. (English) Zbl 1478.54086 Filomat 31, No. 11, 3057-3074 (2017). MSC: 54H25 54E40 34B60 PDF BibTeX XML Cite \textit{H. K. Nashine} and \textit{Z. Kadelburg}, Filomat 31, No. 11, 3057--3074 (2017; Zbl 1478.54086) Full Text: DOI OpenURL
Savenko, P. O. The numerical solution of two-point boundary-value problem for a system of linear differential equations with non-linear two-dimensional spectral parameter. (Ukrainian, English) Zbl 1449.65160 Mat. Metody Fiz.-Mekh. Polya 60, No. 4, 63-74 (2017). Reviewer: L. N. Chernetskaja (Kyïv) MSC: 65L10 65L20 PDF BibTeX XML Cite \textit{P. O. Savenko}, Mat. Metody Fiz.-Mekh. Polya 60, No. 4, 63--74 (2017; Zbl 1449.65160) OpenURL
Khaleghi, M.; Babolian, E.; Abbasbandy, S. Chebyshev reproducing kernel method: application to two-point boundary value problems. (English) Zbl 1422.34104 Adv. Difference Equ. 2017, Paper No. 26, 19 p. (2017). MSC: 34B10 41A50 65L20 65L70 PDF BibTeX XML Cite \textit{M. Khaleghi} et al., Adv. Difference Equ. 2017, Paper No. 26, 19 p. (2017; Zbl 1422.34104) Full Text: DOI OpenURL
Baranets’kyĭ, Ya. O.; Kolyasa, L. I. Boundary-value problem for second-order differential-operator equation with involution. (English) Zbl 1413.34085 Visn. Derzh. Univ. L’viv. Politekh. 871, 20-26 (2017). MSC: 34B10 34L10 PDF BibTeX XML Cite \textit{Ya. O. Baranets'kyĭ} and \textit{L. I. Kolyasa}, Visn. Derzh. Univ. L'viv. Politekh. 871, 20--26 (2017; Zbl 1413.34085) OpenURL
Chen, Yuhua; Wang, Xinping; Wang, Xinfeng Solutions of two-point boundary value problems for second-order integro-differential equations in Banach spaces. (Chinese. English summary) Zbl 1399.34224 Math. Pract. Theory 47, No. 23, 316-320 (2017). MSC: 34K30 34K10 47N20 45J99 PDF BibTeX XML Cite \textit{Y. Chen} et al., Math. Pract. Theory 47, No. 23, 316--320 (2017; Zbl 1399.34224) OpenURL
Lyu, Pin; Vong, Seakweng; Wang, Zhibo A finite difference method for boundary value problems of a Caputo fractional differential equation. (English) Zbl 1383.65079 East Asian J. Appl. Math. 7, No. 4, 752-766 (2017). MSC: 65L10 65L12 34A08 65L20 34B15 PDF BibTeX XML Cite \textit{P. Lyu} et al., East Asian J. Appl. Math. 7, No. 4, 752--766 (2017; Zbl 1383.65079) Full Text: DOI OpenURL
Zraiqat, Amjed Boubaker pivotal iteration scheme (BPIS). (English) Zbl 1381.65059 Ital. J. Pure Appl. Math. 37, 127-138 (2017). MSC: 65L10 34B15 65Y20 PDF BibTeX XML Cite \textit{A. Zraiqat}, Ital. J. Pure Appl. Math. 37, 127--138 (2017; Zbl 1381.65059) Full Text: Link OpenURL
Liang, Changhong; Ma, Tingfu; Ge, Yongbin Mixed high-order compact difference scheme for solving the two-point boundary value problem. (Chinese. English summary) Zbl 1399.65299 J. Ningxia Univ., Nat. Sci. Ed. 38, No. 1, 1-4 (2017). MSC: 65N06 41A21 PDF BibTeX XML Cite \textit{C. Liang} et al., J. Ningxia Univ., Nat. Sci. Ed. 38, No. 1, 1--4 (2017; Zbl 1399.65299) OpenURL
McEneaney, William M.; Dower, Peter M. Staticization, its dynamic program and solution propagation. (English) Zbl 1373.90169 Automatica 81, 56-67 (2017). MSC: 90C39 93C15 49N10 PDF BibTeX XML Cite \textit{W. M. McEneaney} and \textit{P. M. Dower}, Automatica 81, 56--67 (2017; Zbl 1373.90169) Full Text: DOI OpenURL
Filipov, Stefan M.; Gospodinov, Ivan D.; Faragó, István Shooting-projection method for two-point boundary value problems. (English) Zbl 1373.34032 Appl. Math. Lett. 72, 10-15 (2017). MSC: 34A45 34B15 PDF BibTeX XML Cite \textit{S. M. Filipov} et al., Appl. Math. Lett. 72, 10--15 (2017; Zbl 1373.34032) Full Text: DOI arXiv OpenURL
Niu, Yanmin; Yan, Baoqiang The existence of positive solutions for the singular two-point boundary value problem. (English) Zbl 1372.34053 Topol. Methods Nonlinear Anal. 49, No. 2, 665-682 (2017). MSC: 34B18 34B15 34B16 34L30 47N20 PDF BibTeX XML Cite \textit{Y. Niu} and \textit{B. Yan}, Topol. Methods Nonlinear Anal. 49, No. 2, 665--682 (2017; Zbl 1372.34053) Full Text: DOI Euclid OpenURL
Nytrebych, Z. M.; Malanchuk, O. M.; Il’kiv, V. S.; Pukach, P. Ya. Homogeneous problem with two-point conditions in time for some equations of mathematical physics. (English) Zbl 1373.35092 Azerb. J. Math. 7, No. 2, 180-196 (2017). MSC: 35G15 35K05 35L05 PDF BibTeX XML Cite \textit{Z. M. Nytrebych} et al., Azerb. J. Math. 7, No. 2, 180--196 (2017; Zbl 1373.35092) OpenURL
Farrell, Patricio; Linke, Alexander Uniform second order convergence of a complete flux scheme on unstructured 1D grids for a singularly perturbed advection-diffusion equation and some multidimensional extensions. (English) Zbl 1378.65150 J. Sci. Comput. 72, No. 1, 373-395 (2017). Reviewer: Srinivasan Natesan (Assam) MSC: 65L11 65L20 65L50 34B05 34E15 65L12 65L10 PDF BibTeX XML Cite \textit{P. Farrell} and \textit{A. Linke}, J. Sci. Comput. 72, No. 1, 373--395 (2017; Zbl 1378.65150) Full Text: DOI OpenURL
Cabrera, I.; Lopez, Belen; Sadarangani, Kishin Lyapunov type inequalities for a fractional two-point boundary value problem. (English) Zbl 1375.34004 Math. Methods Appl. Sci. 40, No. 10, 3409-3414 (2017). Reviewer: Hristo S. Kiskinov (Plovdiv) MSC: 34A08 34B15 34L15 PDF BibTeX XML Cite \textit{I. Cabrera} et al., Math. Methods Appl. Sci. 40, No. 10, 3409--3414 (2017; Zbl 1375.34004) Full Text: DOI OpenURL
Kaushik, Aditya; Kumar, Vijayant; Vashishth, Anil K. A higher order accurate numerical method for singularly perturbed two point boundary value problems. (English) Zbl 1371.65068 Differ. Equ. Dyn. Syst. 25, No. 2, 267-285 (2017). MSC: 65L10 34B05 65L11 34E15 65L03 34K28 65L70 65L06 34K26 PDF BibTeX XML Cite \textit{A. Kaushik} et al., Differ. Equ. Dyn. Syst. 25, No. 2, 267--285 (2017; Zbl 1371.65068) Full Text: DOI OpenURL
Haferssas, R.; Jolivet, P.; Nataf, F. An additive Schwarz method type theory for Lions’s algorithm and a symmetrized optimized restricted additive Schwarz method. (English) Zbl 1371.65129 SIAM J. Sci. Comput. 39, No. 4, A1345-A1365 (2017). MSC: 65N55 35J25 74B05 76D07 PDF BibTeX XML Cite \textit{R. Haferssas} et al., SIAM J. Sci. Comput. 39, No. 4, A1345--A1365 (2017; Zbl 1371.65129) Full Text: DOI OpenURL
Han, Shi-Yuan; Chen, Yue-Hui; Tang, Gong-You Fault diagnosis and fault-tolerant tracking control for discrete-time systems with faults and delays in actuator and measurement. (English) Zbl 1367.93164 J. Franklin Inst. 354, No. 12, 4719-4738 (2017). MSC: 93B35 93C55 93B17 93C15 PDF BibTeX XML Cite \textit{S.-Y. Han} et al., J. Franklin Inst. 354, No. 12, 4719--4738 (2017; Zbl 1367.93164) Full Text: DOI OpenURL
Filipchuk, M. P. Two-point boundary value problem for a system with many transformed arguments. (Ukrainian. English summary) Zbl 1374.34250 Bukovyn. Mat. Zh. 5, No. 1-2, 139-143 (2017). MSC: 34K10 34K07 PDF BibTeX XML Cite \textit{M. P. Filipchuk}, Bukovyn. Mat. Zh. 5, No. 1--2, 139--143 (2017; Zbl 1374.34250) Full Text: Link OpenURL
Dauylbaev, M. K.; Mirzakulova, A. E. Boundary-value problems with initial jumps for singularly perturbed integrodifferential equations. (English. Ukrainian original) Zbl 1366.45007 J. Math. Sci., New York 222, No. 3, 214-225 (2017); translation from Neliniĭni Kolyvannya 19, No. 1, 11-21 (2016). MSC: 45J05 45A05 45M05 PDF BibTeX XML Cite \textit{M. K. Dauylbaev} and \textit{A. E. Mirzakulova}, J. Math. Sci., New York 222, No. 3, 214--225 (2017; Zbl 1366.45007); translation from Neliniĭni Kolyvannya 19, No. 1, 11--21 (2016) Full Text: DOI OpenURL
Bialecki, Bernard; Fernandes, Ryan I. Alternating direction implicit orthogonal spline collocation on some non-rectangular regions with inconsistent partitions. (English) Zbl 1362.65111 Numer. Algorithms 74, No. 4, 1083-1100 (2017). MSC: 65M70 35K20 65L60 65L10 34B05 PDF BibTeX XML Cite \textit{B. Bialecki} and \textit{R. I. Fernandes}, Numer. Algorithms 74, No. 4, 1083--1100 (2017; Zbl 1362.65111) Full Text: DOI OpenURL
Malanchuk, Oksana; Nytrebych, Zinoviy Homogeneous two-point problem for PDE of the second order in time variable and infinite order in spatial variables. (English) Zbl 1371.35370 Open Math. 15, 101-110 (2017). MSC: 35R50 35A01 35G15 PDF BibTeX XML Cite \textit{O. Malanchuk} and \textit{Z. Nytrebych}, Open Math. 15, 101--110 (2017; Zbl 1371.35370) Full Text: DOI OpenURL
Quinn, Jason Parameter-uniform numerical methods for general nonlinear singularly perturbed reaction diffusion problems having a stable reduced solution. (English) Zbl 1366.65075 BIT 57, No. 1, 207-240 (2017). Reviewer: Srinivasan Natesan (Assam) MSC: 65L11 65L10 65L12 34B15 34E15 65L20 65L70 PDF BibTeX XML Cite \textit{J. Quinn}, BIT 57, No. 1, 207--240 (2017; Zbl 1366.65075) Full Text: DOI OpenURL
Wang, Jiangxing; Chen, Chuanmiao; Xie, Ziqing The highest superconvergence analysis of ADG method for two point boundary values problem. (English) Zbl 1359.65121 J. Sci. Comput. 70, No. 1, 175-191 (2017). Reviewer: Maria Gousidou-Koutita (Thessaloniki) MSC: 65L10 65L20 65L60 34B27 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Sci. Comput. 70, No. 1, 175--191 (2017; Zbl 1359.65121) Full Text: DOI OpenURL
Boyd, John P.; Gheorghiu, Călin-Ioan All roots spectral methods: constraints, floating point arithmetic and root exclusion. (English) Zbl 1358.65049 Appl. Math. Lett. 67, 28-32 (2017). MSC: 65L10 34B15 PDF BibTeX XML Cite \textit{J. P. Boyd} and \textit{C.-I. Gheorghiu}, Appl. Math. Lett. 67, 28--32 (2017; Zbl 1358.65049) Full Text: DOI OpenURL
Hashemi, M. S.; Abbasbandy, S. A geometric approach for solving Troesch’s problem. (English) Zbl 1357.65099 Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 97-116 (2017). MSC: 65L10 34B15 PDF BibTeX XML Cite \textit{M. S. Hashemi} and \textit{S. Abbasbandy}, Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 97--116 (2017; Zbl 1357.65099) Full Text: DOI OpenURL
Pandey, P. K.; Pandey, B. D. Variable mesh size exponential finite difference method for the numerical solutions of two point boundary value problems. (English) Zbl 1424.65112 Bol. Soc. Parana. Mat. (3) 34, No. 2, 9-27 (2016). MSC: 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{P. K. Pandey} and \textit{B. D. Pandey}, Bol. Soc. Parana. Mat. (3) 34, No. 2, 9--27 (2016; Zbl 1424.65112) Full Text: Link OpenURL