Shioji, Naoki; Tanaka, Satoshi; Watanabe, Kohtaro Uniqueness of positive radial solutions of superlinear elliptic equations in annuli. (English) Zbl 07330808 J. Differ. Equations 284, 522-545 (2021). MSC: 35A02 34B18 35B07 35B09 35J25 35J61 PDF BibTeX XML Cite \textit{N. Shioji} et al., J. Differ. Equations 284, 522--545 (2021; Zbl 07330808) Full Text: DOI
Vavilov, S. A. Adaptive approach to solving a two-point boundary value problem under partial uncertainty in the disturbance field. (English. Russian original) Zbl 07329682 Autom. Remote Control 82, No. 1, 93-101 (2021); translation from Avtom. Telemekh. 2021, No. 1, 119-130 (2021). MSC: 93C40 93C15 93C41 PDF BibTeX XML Cite \textit{S. A. Vavilov}, Autom. Remote Control 82, No. 1, 93--101 (2021; Zbl 07329682); translation from Avtom. Telemekh. 2021, No. 1, 119--130 (2021) Full Text: DOI
Cai, Haotao; An, Qiguang A fractional spectral collocation method for general Caputo two-point boundary value problems. (English) Zbl 07316835 Appl. Numer. Math. 163, 43-56 (2021). MSC: 65L60 34A08 45D05 45B05 PDF BibTeX XML Cite \textit{H. Cai} and \textit{Q. An}, Appl. Numer. Math. 163, 43--56 (2021; Zbl 07316835) Full Text: DOI
Lan, Kunquan; Lin, Wei Steady-state solutions of one-dimensional competition models in an unstirred chemostat via the fixed point index theory. (English) Zbl 07316399 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 240-264 (2021). MSC: 45G15 34B18 47H10 47H30 92B05 PDF BibTeX XML Cite \textit{K. Lan} and \textit{W. Lin}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 240--264 (2021; Zbl 07316399) Full Text: DOI
Galeani, Sergio; Possieri, Corrado; Sassano, Mario Output tracking for a class of non-minimum phase nonlinear systems: a two-point boundary value problem formulation with a hybrid regulator. (English) Zbl 07315776 Eur. J. Control 58, 43-52 (2021). MSC: 93B52 93C10 93B55 PDF BibTeX XML Cite \textit{S. Galeani} et al., Eur. J. Control 58, 43--52 (2021; Zbl 07315776) Full Text: DOI
Long, Haie; Han, Bo; Li, Li A fast two-point gradient method for solving non-smooth nonlinear ill-posed problems. (English) Zbl 07305051 J. Comput. Appl. Math. 384, Article ID 113114, 25 p. (2021). MSC: 65N21 65N20 65K10 65N12 65B99 65J20 35J61 PDF BibTeX XML Cite \textit{H. Long} et al., J. Comput. Appl. Math. 384, Article ID 113114, 25 p. (2021; Zbl 07305051) Full Text: DOI
Almuthaybiri, Saleh S.; Tisdell, Christopher C. Existence and uniqueness of solutions to third-order boundary value problems: analysis in closed and bounded sets. (English) Zbl 07332053 Differ. Equ. Appl. 12, No. 3, 291-312 (2020). MSC: 34B15 PDF BibTeX XML Cite \textit{S. S. Almuthaybiri} and \textit{C. C. Tisdell}, Differ. Equ. Appl. 12, No. 3, 291--312 (2020; Zbl 07332053) Full Text: DOI
Mohanty, R. K.; Manchanda, Geetan; Khurana, Gunjan; Khan, Arshad A new third order exponentially fitted discretization for the solution of non-linear two point boundary value problems on a graded mesh. (English) Zbl 07331977 J. Appl. Anal. Comput. 10, No. 5, 1741-1770 (2020). MSC: 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{R. K. Mohanty} et al., J. Appl. Anal. Comput. 10, No. 5, 1741--1770 (2020; Zbl 07331977) Full Text: DOI
Wang, Wei; Ma, Wanbiao; Feng, Zhaosheng Global dynamics and travelling waves for a periodic and diffusive chemostat model with two nutrients and one microorganism. (English) Zbl 07327539 Nonlinearity 33, No. 9, 4338-4380 (2020). MSC: 35C07 35B10 35K51 35K57 92C17 PDF BibTeX XML Cite \textit{W. Wang} et al., Nonlinearity 33, No. 9, 4338--4380 (2020; Zbl 07327539) Full Text: DOI
Asaduzzaman, M.; Ali, M. Z. Existence of triple positive solutions for nonlinear second order arbitrary two-point boundary value problems. (English) Zbl 07314108 Malays. J. Math. Sci. 14, No. 3, 335-349 (2020). MSC: 34B15 34B18 47N20 PDF BibTeX XML Cite \textit{M. Asaduzzaman} and \textit{M. Z. Ali}, Malays. J. Math. Sci. 14, No. 3, 335--349 (2020; Zbl 07314108) Full Text: Link
Bhal, Santosh Kumar; Danumjaya, P.; Fairweather, G. High-order orthogonal spline collocation methods for two-point boundary value problems with interfaces. (English) Zbl 1453.65190 Math. Comput. Simul. 174, 102-122 (2020). MSC: 65L60 65L10 PDF BibTeX XML Cite \textit{S. K. Bhal} et al., Math. Comput. Simul. 174, 102--122 (2020; Zbl 1453.65190) Full Text: DOI
Zheng, Quan; Liu, Ying; Liu, Zhongli The hybrid finite difference schemes on the modified Bakhvalov-Shishkin mesh for the singularly perturbed problem. (Chinese. English summary) Zbl 07295948 J. Zhejiang Univ., Sci. Ed. 47, No. 4, 460-468 (2020). MSC: 65N06 65N15 PDF BibTeX XML Cite \textit{Q. Zheng} et al., J. Zhejiang Univ., Sci. Ed. 47, No. 4, 460--468 (2020; Zbl 07295948) Full Text: DOI
Erfani, S.; Javadi, S.; Babolian, E. An efficient collocation method with convergence rates based on Müntz spaces for solving nonlinear fractional two-point boundary value problems. (English) Zbl 07291005 Comput. Appl. Math. 39, No. 4, Paper No. 260, 23 p. (2020). MSC: 65L10 41A25 49M05 49M25 65K05 PDF BibTeX XML Cite \textit{S. Erfani} et al., Comput. Appl. Math. 39, No. 4, Paper No. 260, 23 p. (2020; Zbl 07291005) Full Text: DOI
Zhang, Jianmei; Li, Jiemei Multiplicity of solutions for a class of fourth-order two-point boundary value problems with parameters. (Chinese. English summary) Zbl 07266959 J. Northwest Norm. Univ., Nat. Sci. 56, No. 2, 5-9 (2020). MSC: 34B18 34B27 47N20 34B08 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{J. Li}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 2, 5--9 (2020; Zbl 07266959) Full Text: DOI
Ferreira, Chelo; López, José; Pérez Sinusia, Ester Analysis of singular one-dimensional linear boundary value problems using two-point Taylor expansions. (English) Zbl 07254932 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 22, 21 p. (2020). MSC: 34B16 34A25 34B05 41A58 PDF BibTeX XML Cite \textit{C. Ferreira} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 22, 21 p. (2020; Zbl 07254932) Full Text: DOI
Hao, Zhiwei; Fujimoto, Kenji; Zhang, Qiuhua Approximate solutions to the Hamilton-Jacobi equations for generating functions. (English) Zbl 1447.49050 J. Syst. Sci. Complex. 33, No. 2, 261-288 (2020). MSC: 49M41 35F21 PDF BibTeX XML Cite \textit{Z. Hao} et al., J. Syst. Sci. Complex. 33, No. 2, 261--288 (2020; Zbl 1447.49050) Full Text: DOI
Saiedinezhad, Somayeh On the existence of three solutions for some classes of two-point semi-linear and quasi-linear differential equations. (English) Zbl 07243027 Bull. Iran. Math. Soc. 46, No. 5, 1243-1255 (2020). Reviewer: Erdogan Sen (Tekirdağ) MSC: 34B09 58E05 PDF BibTeX XML Cite \textit{S. Saiedinezhad}, Bull. Iran. Math. Soc. 46, No. 5, 1243--1255 (2020; Zbl 07243027) Full Text: DOI
Laurent, Karine; Flauraud, Éric; Preux, Christophe; Tran, Quang Huy; Berthon, Christophe Design of coupled finite volume schemes minimizing the grid orientation effect in reservoir simulation. (English) Zbl 1454.65148 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 575-583 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65N08 65M22 76S05 76T06 86A60 35Q35 35Q86 PDF BibTeX XML Cite \textit{K. Laurent} et al., Springer Proc. Math. Stat. 323, 575--583 (2020; Zbl 1454.65148) Full Text: DOI
Boon, Wietse M.; Nordbotten, Jan M. Convergence of a TPFA finite volume scheme for mixed-dimensional flow problems. (English) Zbl 1454.65135 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 435-444 (2020). MSC: 65N08 65N30 65N12 76S05 76M12 76M10 PDF BibTeX XML Cite \textit{W. M. Boon} and \textit{J. M. Nordbotten}, Springer Proc. Math. Stat. 323, 435--444 (2020; Zbl 1454.65135) Full Text: DOI
Smirnov, Sergey A geometrical criterion for nonexistence of constant-sign solutions for some third-order two-point boundary value problems. (English) Zbl 1453.34035 Nonlinear Anal., Model. Control 25, No. 3, 502-508 (2020). Reviewer: Smail Djebali (Algiers) MSC: 34B18 PDF BibTeX XML Cite \textit{S. Smirnov}, Nonlinear Anal., Model. Control 25, No. 3, 502--508 (2020; Zbl 1453.34035) Full Text: DOI
Chowdhury, Atiqur; Tanveer, Saleh; Wang, Xueying Nonlinear two-point boundary value problems: applications to a cholera epidemic model. (English) Zbl 1439.34028 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2234, Article ID 20190673, 23 p. (2020). MSC: 34B15 92D30 PDF BibTeX XML Cite \textit{A. Chowdhury} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2234, Article ID 20190673, 23 p. (2020; Zbl 1439.34028) Full Text: DOI
Baccouch, Mahboub An adaptive local discontinuous Galerkin method for nonlinear two-point boundary-value problems. (English) Zbl 1444.65036 Numer. Algorithms 84, No. 3, 1121-1153 (2020). Reviewer: Kevin Burrage (Brisbane) MSC: 65L10 65L50 65L60 65L70 PDF BibTeX XML Cite \textit{M. Baccouch}, Numer. Algorithms 84, No. 3, 1121--1153 (2020; Zbl 1444.65036) Full Text: DOI
Shivanian, Elyas; Abbasbandy, Saeid Pseudospectral meshless radial point interpolation for generalized biharmonic equation in the presence of Cahn-Hilliard conditions. (English) Zbl 1449.65336 Comput. Appl. Math. 39, No. 3, Paper No. 148, 18 p. (2020). MSC: 65N35 65D05 31A30 PDF BibTeX XML Cite \textit{E. Shivanian} and \textit{S. Abbasbandy}, Comput. Appl. Math. 39, No. 3, Paper No. 148, 18 p. (2020; Zbl 1449.65336) Full Text: DOI
Soradi-Zeid, Samaneh Efficient radial basis functions approaches for solving a class of fractional optimal control problems. (English) Zbl 1449.49029 Comput. Appl. Math. 39, No. 1, Paper No. 20, 22 p. (2020). MSC: 49M37 49M05 49L99 65K05 PDF BibTeX XML Cite \textit{S. Soradi-Zeid}, Comput. Appl. Math. 39, No. 1, Paper No. 20, 22 p. (2020; Zbl 1449.49029) Full Text: DOI
Zhang, Yuhong; Shan, Li; Hou, Yanren New approach to prove the stability of a decoupled algorithm for a fluid-fluid interaction problem. (English) Zbl 1440.65239 J. Comput. Appl. Math. 371, Article ID 112695, 19 p. (2020). MSC: 65N30 65M06 76M10 76M20 65M12 65M15 76D05 76T06 47H10 PDF BibTeX XML Cite \textit{Y. Zhang} et al., J. Comput. Appl. Math. 371, Article ID 112695, 19 p. (2020; Zbl 1440.65239) Full Text: DOI
Shen, Wen An introduction to numerical computation. 2nd edition. (English) Zbl 07102013 Hackensack, NJ: World Scientific (ISBN 978-981-12-0441-8/hbk; 978-981-120-518-7/pbk; 978-981-12-0443-2/ebook). xv, 322 p. (2020). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65-01 65Dxx 65Lxx 65Mxx 65Nxx 65Rxx 65T40 65T50 65F15 PDF BibTeX XML Cite \textit{W. Shen}, An introduction to numerical computation. 2nd edition. Hackensack, NJ: World Scientific (2020; Zbl 07102013) Full Text: DOI
Phaneendra, K.; Mahesh, G. Fourth order computational method for two parameters singularly perturbed boundary value problem using non-polynomial cubic spline. (English) Zbl 1453.65179 Int. J. Comput. Sci. Math. 10, No. 3, 261-275 (2019). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{K. Phaneendra} and \textit{G. Mahesh}, Int. J. Comput. Sci. Math. 10, No. 3, 261--275 (2019; Zbl 1453.65179) Full Text: DOI
Wenzel, E. A.; Garrick, S. C. A point-mass particle method for the simulation of immiscible multiphase flows on an Eulerian grid. (English) Zbl 1453.76171 J. Comput. Phys. 397, Article ID 108835, 37 p. (2019). MSC: 76M28 65M75 76T06 76T10 PDF BibTeX XML Cite \textit{E. A. Wenzel} and \textit{S. C. Garrick}, J. Comput. Phys. 397, Article ID 108835, 37 p. (2019; Zbl 1453.76171) Full Text: DOI
Hsu, Shih-Hsuan; Chu, Jay; Lai, Ming-Chih; Tsai, Richard A coupled grid based particle and implicit boundary integral method for two-phase flows with insoluble surfactant. (English) Zbl 1452.76174 J. Comput. Phys. 395, 747-764 (2019). MSC: 76M28 76D45 65M75 76T06 35R01 PDF BibTeX XML Cite \textit{S.-H. Hsu} et al., J. Comput. Phys. 395, 747--764 (2019; Zbl 1452.76174) Full Text: DOI
Gupta, Sumit; Kumar, Devendra; Singh, Jagdev ADMP: a Maple package for symbolic computation and error estimating to singular two-point boundary value problems with initial conditions. (English) Zbl 1451.65130 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 89, No. 2, 405-414 (2019). MSC: 65M15 PDF BibTeX XML Cite \textit{S. Gupta} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 89, No. 2, 405--414 (2019; Zbl 1451.65130) Full Text: DOI
Russell, Ryan P. On the solution to every Lambert problem. (English) Zbl 1451.70014 Celest. Mech. Dyn. Astron. 131, No. 11, Paper No. 50, 33 p. (2019). MSC: 70F05 65L10 PDF BibTeX XML Cite \textit{R. P. Russell}, Celest. Mech. Dyn. Astron. 131, No. 11, Paper No. 50, 33 p. (2019; Zbl 1451.70014) Full Text: DOI
Mawhin, Jean; Szymańska-Dębowska, Katarzyna Bound sets and two-point boundary value problems for second order differential systems. (English) Zbl 07217261 Math. Bohem. 144, No. 4, 373-392 (2019). MSC: 34B15 47H11 PDF BibTeX XML Cite \textit{J. Mawhin} and \textit{K. Szymańska-Dębowska}, Math. Bohem. 144, No. 4, 373--392 (2019; Zbl 07217261) Full Text: DOI
Zhang, Jingjing; Shen, Yue; He, Jihuan Some analytical methods for singular boundary value problem in a fractal space: a review. (English) Zbl 1440.34025 Appl. Comput. Math. 18, No. 3, 225-235 (2019). MSC: 34B16 34B15 34L30 34-02 34E15 34A25 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Comput. Math. 18, No. 3, 225--235 (2019; Zbl 1440.34025) Full Text: Link
Luo, Jiongxing Homotopy analysis solution for solving boundary value problems on the second order nonlinear differential equation. (Chinese. English summary) Zbl 1449.34054 Math. Pract. Theory 49, No. 9, 253-263 (2019). MSC: 34A45 34B15 34A25 PDF BibTeX XML Cite \textit{J. Luo}, Math. Pract. Theory 49, No. 9, 253--263 (2019; Zbl 1449.34054)
Yong, Longquan An improved harmony search for linear two-point boundary value problem. (Chinese. English summary) Zbl 07156597 Math. Pract. Theory 49, No. 10, 226-233 (2019). MSC: 65L10 34B05 34B10 90C59 PDF BibTeX XML Cite \textit{L. Yong}, Math. Pract. Theory 49, No. 10, 226--233 (2019; Zbl 07156597)
Tkach, B. P.; Urmancheva, L. B. A numerical-analytic method for the solution of two-point problems for some systems of partial differential equations. (English. Ukrainian original) Zbl 1433.65251 J. Math. Sci., New York 243, No. 2, 313-325 (2019); translation from Neliniĭni Kolyvannya 21, No. 2, 262-272 (2018). MSC: 65M99 PDF BibTeX XML Full Text: DOI
Du, Qiang; Zhang, Jiwei; Zheng, Chunxiong On uniform second order nonlocal approximations to linear two-point boundary value problems. (English) Zbl 1426.47013 Commun. Math. Sci. 17, No. 6, 1737-1755 (2019). MSC: 47N20 45A05 65M60 65R20 34B10 PDF BibTeX XML Cite \textit{Q. Du} et al., Commun. Math. Sci. 17, No. 6, 1737--1755 (2019; Zbl 1426.47013) Full Text: DOI
Kim, Young Jin Generalized second-order differential equations with two-point boundary conditions. (English) Zbl 1429.34033 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 3, 157-175 (2019). MSC: 34B15 34B37 39A10 47N20 PDF BibTeX XML Cite \textit{Y. J. Kim}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 3, 157--175 (2019; Zbl 1429.34033) Full Text: DOI
Xie, Yaning; Ying, Wenjun; Wang, Wei-Cheng A high-order kernel-free boundary integral method for the biharmonic equation on irregular domains. (English) Zbl 1428.65103 J. Sci. Comput. 80, No. 3, 1681-1699 (2019). MSC: 65N38 31A30 65N06 65T50 PDF BibTeX XML Cite \textit{Y. Xie} et al., J. Sci. Comput. 80, No. 3, 1681--1699 (2019; Zbl 1428.65103) Full Text: DOI
Zheng, Chunhua; Ma, Rui The existence of the solution for a class of the fractional differential equation with a \(p\)-Laplace operator and delay at resonance. (Chinese. English summary) Zbl 1438.34277 J. Yunnan Minzu Univ., Nat. Sci. 28, No. 2, 144-150 (2019). MSC: 34K37 34K10 47N20 PDF BibTeX XML Cite \textit{C. Zheng} and \textit{R. Ma}, J. Yunnan Minzu Univ., Nat. Sci. 28, No. 2, 144--150 (2019; Zbl 1438.34277) Full Text: DOI
Asaduzzaman, Md.; Ali, Md. Zulfikar Existence of three positive solutions for nonlinear third order arbitrary two-point boundary value problems. (English) Zbl 1425.34046 Differ. Uravn. Protsessy Upr. 2019, No. 2, 83-100 (2019). MSC: 34B18 34B15 47N20 PDF BibTeX XML Cite \textit{Md. Asaduzzaman} and \textit{Md. Z. Ali}, Differ. Uravn. Protsessy Upr. 2019, No. 2, 83--100 (2019; Zbl 1425.34046) Full Text: Link
Kiguradze, I. T. Two-point boundary value problems for essentially singular second-order linear differential equations. (English. Russian original) Zbl 1428.34034 Differ. Equ. 55, No. 5, 591-608 (2019); translation from Differ. Uravn. 55, No. 5, 607-624 (2019). Reviewer: Petio S. Kelevedjiev (Sliven) MSC: 34B05 34B16 PDF BibTeX XML Cite \textit{I. T. Kiguradze}, Differ. Equ. 55, No. 5, 591--608 (2019; Zbl 1428.34034); translation from Differ. Uravn. 55, No. 5, 607--624 (2019) Full Text: DOI
Aktaş, Mustafa Fahri; Çakmak, Devrim; Ahmetoğlu, Abdullah Lyapunov-type inequalities for fourth-order boundary value problems. (English) Zbl 1421.34018 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 615-625 (2019). MSC: 34B05 34B27 PDF BibTeX XML Cite \textit{M. F. Aktaş} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 615--625 (2019; Zbl 1421.34018) Full Text: DOI
Hadjian, Armin; Delavar, Mohsen Rostamian Existence of multiple solutions to a two-point boundary value system via variational method. (English) Zbl 1438.34078 Casp. J. Math. Sci. 8, No. 1, 43-50 (2019). MSC: 34B08 34B15 58E05 58E50 PDF BibTeX XML Cite \textit{A. Hadjian} and \textit{M. R. Delavar}, Casp. J. Math. Sci. 8, No. 1, 43--50 (2019; Zbl 1438.34078) Full Text: DOI
Liang, Hui; Stynes, Martin Collocation methods for general Riemann-Liouville two-point boundary value problems. (English) Zbl 1415.65168 Adv. Comput. Math. 45, No. 2, 897-928 (2019). MSC: 65L10 65R10 65R20 PDF BibTeX XML Cite \textit{H. Liang} and \textit{M. Stynes}, Adv. Comput. Math. 45, No. 2, 897--928 (2019; Zbl 1415.65168) Full Text: DOI
Nytrebych, Zinovii; Malanchuk, Oksana The conditions of existence of a solution of the degenerate two-point in time problem for PDE. (English) Zbl 1418.35078 Asian-Eur. J. Math. 12, No. 3, Article ID 1950037, 12 p. (2019). MSC: 35G15 35R50 PDF BibTeX XML Cite \textit{Z. Nytrebych} and \textit{O. Malanchuk}, Asian-Eur. J. Math. 12, No. 3, Article ID 1950037, 12 p. (2019; Zbl 1418.35078) Full Text: DOI
Korman, Philip; Li, Yi; Schmidt, Dieter S. A computer assisted study of uniqueness of nodal ground state solutions. (English) Zbl 1422.65445 J. Comput. Appl. Math. 356, 402-406 (2019). Reviewer: Olaf Hansen (San Marcos) MSC: 65N99 35B05 35J61 35Q41 PDF BibTeX XML Cite \textit{P. Korman} et al., J. Comput. Appl. Math. 356, 402--406 (2019; Zbl 1422.65445) Full Text: DOI
Lu, Yanfei; Yin, Qingfei; Li, Hongyi; Sun, Hongli; Yang, Yunlei; Hou, Muzhou The LS-SVM algorithms for boundary value problems of high-order ordinary differential equations. (English) Zbl 07062657 Adv. Difference Equ. 2019, Paper No. 195, 22 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{Y. Lu} et al., Adv. Difference Equ. 2019, Paper No. 195, 22 p. (2019; Zbl 07062657) Full Text: DOI
Cimatti, Giovanni Functional solutions for problems of heat and mass transfer. (English) Zbl 1412.34238 Meccanica 54, No. 1-2, 7-18 (2019). MSC: 34L99 35J66 80A20 PDF BibTeX XML Cite \textit{G. Cimatti}, Meccanica 54, No. 1--2, 7--18 (2019; Zbl 1412.34238) Full Text: DOI arXiv
Su, Shuai; Dong, Qiannan; Wu, Jiming A vertex-centered and positivity-preserving scheme for anisotropic diffusion equations on general polyhedral meshes. (English) Zbl 1407.65251 Math. Methods Appl. Sci. 42, No. 1, 59-84 (2019). MSC: 65N06 PDF BibTeX XML Cite \textit{S. Su} et al., Math. Methods Appl. Sci. 42, No. 1, 59--84 (2019; Zbl 1407.65251) Full Text: DOI
Ghorbani, Asghar; Gachpazan, Morteza A spectral quasilinearization parametric method for nonlinear two-point boundary value problems. (English) Zbl 1407.34027 Bull. Malays. Math. Sci. Soc. (2) 42, No. 1, 1-13 (2019). MSC: 34A45 34B15 PDF BibTeX XML Cite \textit{A. Ghorbani} and \textit{M. Gachpazan}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 1, 1--13 (2019; Zbl 1407.34027) Full Text: DOI
Wang, Jing; Tong, Lining Vanishing viscosity limit of 1D quasilinear parabolic equation with multiple boundary layers. (English) Zbl 1404.35018 Commun. Pure Appl. Anal. 18, No. 2, 887-910 (2019). MSC: 35B25 35L50 35K51 PDF BibTeX XML Cite \textit{J. Wang} and \textit{L. Tong}, Commun. Pure Appl. Anal. 18, No. 2, 887--910 (2019; Zbl 1404.35018) Full Text: DOI
Raslan, Kamal R.; Ramadan, Mohamed A.; Shaalan, M. A. Theoretical and numerical studies of two point boundary value problems using trigonometric and exponential cubic b-splines. (English) Zbl 1435.65111 J. Egypt. Math. Soc. 26, 259-268 (2018). MSC: 65L10 65L60 41A15 41A25 65D07 PDF BibTeX XML Cite \textit{K. R. Raslan} et al., J. Egypt. Math. Soc. 26, 259--268 (2018; Zbl 1435.65111) Full Text: DOI
Khaleghi, M.; Talebi Moghaddam, M.; Babolian, E.; Abbasbandy, S. Solving a class of singular two-point boundary value problems using new effective reproducing kernel technique. (English) Zbl 1427.65121 Appl. Math. Comput. 331, 264-273 (2018). MSC: 65L10 34A45 46E22 65L11 PDF BibTeX XML Cite \textit{M. Khaleghi} et al., Appl. Math. Comput. 331, 264--273 (2018; Zbl 1427.65121) Full Text: DOI
Kurdyumov, Vitaliĭ Pavlovich; Khromov, Avgust Petrovich; Khalova, Viktoriya Anatol’evna A mixed problem for a wave equation with a nonzero initial velocity. (Russian. English summary) Zbl 1423.35243 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 18, No. 2, 157-171 (2018). MSC: 35L20 35L05 35C10 PDF BibTeX XML Cite \textit{V. P. Kurdyumov} et al., Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 18, No. 2, 157--171 (2018; Zbl 1423.35243) Full Text: DOI MNR
Pandey, Pramod Kumar; Batarseh, Mufeed High order variable mesh exponential finite difference method for the numerical solutions of two point boundary value problems. (English) Zbl 1438.65158 J. Int. Math. Virtual Inst. 8, 19-33 (2018). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{P. K. Pandey} and \textit{M. Batarseh}, J. Int. Math. Virtual Inst. 8, 19--33 (2018; Zbl 1438.65158) Full Text: DOI
Wang, Yupin; Liu, Shutang; Han, Zhenlai Eigenvalue problems for fractional differential equations with mixed derivatives and generalized \(p\)-Laplacian. (English) Zbl 1420.34027 Nonlinear Anal., Model. Control 23, No. 6, 830-850 (2018). MSC: 34A08 34B09 34B18 47N20 PDF BibTeX XML Cite \textit{Y. Wang} et al., Nonlinear Anal., Model. Control 23, No. 6, 830--850 (2018; Zbl 1420.34027) Full Text: DOI
Jiang, Ruiting; Zhai, Chengbo Positive solutions for a system of fourth-order differential equations with integral boundary conditions and two parameters. (English) Zbl 1420.34049 Nonlinear Anal., Model. Control 23, No. 3, 401-422 (2018). MSC: 34B18 34B10 34B08 34B27 47N20 PDF BibTeX XML Cite \textit{R. Jiang} and \textit{C. Zhai}, Nonlinear Anal., Model. Control 23, No. 3, 401--422 (2018; Zbl 1420.34049) Full Text: DOI
Brott, Victoria; Kunze, Herb Image-driven two-point boundary value inverse problems: a case study. (English) Zbl 1418.34041 Kilgour, D. Marc (ed.) et al., Recent advances in mathematical and statistical methods. IV AMMCS international conference, Waterloo, Canada, August 20–25, 2017. Cham: Springer. Springer Proc. Math. Stat. 259, 71-79 (2018). MSC: 34A55 34B15 PDF BibTeX XML Cite \textit{V. Brott} and \textit{H. Kunze}, Springer Proc. Math. Stat. 259, 71--79 (2018; Zbl 1418.34041) Full Text: DOI
Sobolev, A. A.; Timerbaev, M. R. High-order accuracy approximation for a two-point boundary value problem of fourth order with degenerate coefficients. (English. Russian original) Zbl 1435.65112 Lobachevskii J. Math. 39, No. 9, 1466-1477 (2018); translation from Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 159, No. 4, 493-508 (2017). Reviewer: Lijun Yi (Shanghai) MSC: 65L10 65L60 PDF BibTeX XML Cite \textit{A. A. Sobolev} and \textit{M. R. Timerbaev}, Lobachevskii J. Math. 39, No. 9, 1466--1477 (2018; Zbl 1435.65112); translation from Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 159, No. 4, 493--508 (2017) Full Text: DOI
Minhós, Feliz; Coxe, Infeliz Solvability of generalized third-order coupled systems with two-point boundary conditions. (English) Zbl 1424.34086 Acta Sci. Math. 84, No. 3-4, 659-672 (2018). Reviewer: Petio S. Kelevedjiev (Sliven) MSC: 34B15 34B27 47N20 PDF BibTeX XML Cite \textit{F. Minhós} and \textit{I. Coxe}, Acta Sci. Math. 84, No. 3--4, 659--672 (2018; Zbl 1424.34086) Full Text: DOI
Guo, Caixia; Guo, Jianmin; Gao, Ying; Kang, Shugui Existence of positive solutions for two-point boundary value problems of nonlinear fractional \(q\)-difference equation. (English) Zbl 1446.39017 Adv. Difference Equ. 2018, Paper No. 180, 12 p. (2018). MSC: 39A27 39A13 26A33 34B18 34A08 PDF BibTeX XML Cite \textit{C. Guo} et al., Adv. Difference Equ. 2018, Paper No. 180, 12 p. (2018; Zbl 1446.39017) Full Text: DOI
Liu, Ruyi; Wu, Zhen Well-posedness of a class of two-point boundary value problems associated with ordinary differential equations. (English) Zbl 1445.34049 Adv. Difference Equ. 2018, Paper No. 54, 12 p. (2018). MSC: 34B10 34C20 PDF BibTeX XML Cite \textit{R. Liu} and \textit{Z. Wu}, Adv. Difference Equ. 2018, Paper No. 54, 12 p. (2018; Zbl 1445.34049) Full Text: DOI
Li, Hongyu; Zhang, Junting Positive solutions for a system of fractional differential equations with two parameters. (English) Zbl 1406.34012 J. Funct. Spaces 2018, Article ID 1462505, 9 p. (2018). MSC: 34A08 34B08 34B09 34B15 34B18 PDF BibTeX XML Cite \textit{H. Li} and \textit{J. Zhang}, J. Funct. Spaces 2018, Article ID 1462505, 9 p. (2018; Zbl 1406.34012) Full Text: DOI
Cimatti, Giovanni An application of a theorem of G. Zwirner to a class of non-linear elliptic systems in divergence form. (English) Zbl 1404.35164 Boll. Unione Mat. Ital. 11, No. 4, 533-539 (2018). MSC: 35J57 34B09 PDF BibTeX XML Cite \textit{G. Cimatti}, Boll. Unione Mat. Ital. 11, No. 4, 533--539 (2018; Zbl 1404.35164) Full Text: DOI arXiv
Li, Gang On uniqueness of conformally compact Einstein metrics with homogeneous conformal infinity. (English) Zbl 1404.53061 Adv. Math. 340, 983-1011 (2018). Reviewer: Mohammad Hasan Shahid (New Delhi) MSC: 53C25 58J05 53C30 34B15 PDF BibTeX XML Cite \textit{G. Li}, Adv. Math. 340, 983--1011 (2018; Zbl 1404.53061) Full Text: DOI
Baccouch, Mahboub A superconvergent local discontinuous Galerkin method for nonlinear two-point boundary-value problems. (English) Zbl 1416.65227 Numer. Algorithms 79, No. 3, 697-718 (2018). MSC: 65L60 65L10 65L20 65L70 PDF BibTeX XML Cite \textit{M. Baccouch}, Numer. Algorithms 79, No. 3, 697--718 (2018; Zbl 1416.65227) Full Text: DOI
McCoid, Conor; Trummer, Manfred R. Preconditioning of spectral methods via Birkhoff interpolation. (English) Zbl 1404.65296 Numer. Algorithms 79, No. 2, 555-573 (2018). MSC: 65N35 65L10 65F08 65D05 PDF BibTeX XML Cite \textit{C. McCoid} and \textit{M. R. Trummer}, Numer. Algorithms 79, No. 2, 555--573 (2018; Zbl 1404.65296) Full Text: DOI
Anello, Giovanni Structure of the solution set for two-point boundary-value problems. (English) Zbl 1401.34029 Electron. J. Differ. Equ. 2018, Conf. 25, 15-25 (2018). Reviewer: Fatma Hıra (Çorum) MSC: 34B18 34B15 34B16 34B09 PDF BibTeX XML Cite \textit{G. Anello}, Electron. J. Differ. Equ. 2018, 15--25 (2018; Zbl 1401.34029) Full Text: Link
Liang, Hui; Stynes, Martin Collocation methods for general Caputo two-point boundary value problems. (English) Zbl 1398.65180 J. Sci. Comput. 76, No. 1, 390-425 (2018). MSC: 65L10 65R10 65R20 PDF BibTeX XML Cite \textit{H. Liang} and \textit{M. Stynes}, J. Sci. Comput. 76, No. 1, 390--425 (2018; Zbl 1398.65180) Full Text: DOI
Kirichuka, A. Multiple solutions of boundary-value problems for Hamiltonian systems. (English) Zbl 1395.34028 J. Math. Sci., New York 231, No. 6, 730-744 (2018) and Neliniĭni Kolyvannya 20, No. 2, 184-197 (2017). MSC: 34B08 34C23 37J20 PDF BibTeX XML Cite \textit{A. Kirichuka}, J. Math. Sci., New York 231, No. 6, 730--744 (2018; Zbl 1395.34028) Full Text: DOI
Ferreira, Chelo; López, José L.; Sinusía, Ester Pérez The use of two-point Taylor expansions in singular one-dimensional boundary value problems I. (English) Zbl 1395.34030 J. Math. Anal. Appl. 463, No. 2, 708-725 (2018). MSC: 34B16 34B15 34A25 PDF BibTeX XML Cite \textit{C. Ferreira} et al., J. Math. Anal. Appl. 463, No. 2, 708--725 (2018; Zbl 1395.34030) Full Text: DOI
Farjami, Saeed; Kirk, Vivien; Osinga, Hinke M. Computing the stable manifold of a saddle slow manifold. (English) Zbl 1403.37036 SIAM J. Appl. Dyn. Syst. 17, No. 1, 350-379 (2018). Reviewer: Josef Diblík (Brno) MSC: 37D10 37M20 34D15 34E15 37C10 65L10 34D35 34C45 65P40 70K70 PDF BibTeX XML Cite \textit{S. Farjami} et al., SIAM J. Appl. Dyn. Syst. 17, No. 1, 350--379 (2018; Zbl 1403.37036) Full Text: DOI
Lyu, Pin; Vong, Seakweng; Wang, Zhibo A finite difference method for boundary value problems of a Caputo fractional differential equation. (English) Zbl 1383.65079 East Asian J. Appl. Math. 7, No. 4, 752-766 (2018). MSC: 65L10 65L12 34A08 65L20 34B15 PDF BibTeX XML Cite \textit{P. Lyu} et al., East Asian J. Appl. Math. 7, No. 4, 752--766 (2018; Zbl 1383.65079) Full Text: DOI
Tabrizidooz, Hamid Reza; Shabanpanah, Khadigeh Bernstein polynomial basis for numerical solution of boundary value problems. (English) Zbl 1381.65058 Numer. Algorithms 77, No. 1, 211-228 (2018). MSC: 65L10 34B05 34B15 65L70 PDF BibTeX XML Cite \textit{H. R. Tabrizidooz} and \textit{K. Shabanpanah}, Numer. Algorithms 77, No. 1, 211--228 (2018; Zbl 1381.65058) Full Text: DOI
McEneaney, William M.; Dower, Peter M. Static duality and a stationary-action application. (English) Zbl 1381.49036 J. Differ. Equations 264, No. 2, 525-549 (2018). MSC: 49N25 49L20 PDF BibTeX XML Cite \textit{W. M. McEneaney} and \textit{P. M. Dower}, J. Differ. Equations 264, No. 2, 525--549 (2018; Zbl 1381.49036) Full Text: DOI
Zhang, Xuemei Exact interval of parameter and two infinite families of positive solutions for a \(n\)th order impulsive singular equation. (English) Zbl 1375.34040 J. Comput. Appl. Math. 330, 896-908 (2018). MSC: 34B18 34B10 34B08 47N20 34A37 PDF BibTeX XML Cite \textit{X. Zhang}, J. Comput. Appl. Math. 330, 896--908 (2018; Zbl 1375.34040) Full Text: DOI
Justine, Hynichearry; Chew, Jackel Vui Ling; Sulaiman, Jumat Quartic non-polynomial spline solution for solving two-point boundary value problems by using conjugate gradient iterative method. (English) Zbl 07328063 J. Appl. Math. Comput. Mech. 16, No. 1, 41-50 (2017). MSC: 34B05 PDF BibTeX XML Cite \textit{H. Justine} et al., J. Appl. Math. Comput. Mech. 16, No. 1, 41--50 (2017; Zbl 07328063) Full Text: DOI
Nam, Hyewon Multiplicity of solutions of elliptic system using two critical point theorem. (English) Zbl 07148857 Korean J. Math. 25, No. 4, 495-511 (2017). MSC: 35J55 49J35 PDF BibTeX XML Cite \textit{H. Nam}, Korean J. Math. 25, No. 4, 495--511 (2017; Zbl 07148857) Full Text: DOI
Savenko, P. O. The numerical solution of two-point boundary-value problem for a system of linear differential equations with non-linear two-dimensional spectral parameter. (Ukrainian, English) Zbl 1449.65160 Mat. Metody Fiz.-Mekh. Polya 60, No. 4, 63-74 (2017). Reviewer: L. N. Chernetskaja (Kyïv) MSC: 65L10 65L20 PDF BibTeX XML Cite \textit{P. O. Savenko}, Mat. Metody Fiz.-Mekh. Polya 60, No. 4, 63--74 (2017; Zbl 1449.65160)
Khaleghi, M.; Babolian, E.; Abbasbandy, S. Chebyshev reproducing kernel method: application to two-point boundary value problems. (English) Zbl 1422.34104 Adv. Difference Equ. 2017, Paper No. 26, 19 p. (2017). MSC: 34B10 41A50 65L20 65L70 PDF BibTeX XML Cite \textit{M. Khaleghi} et al., Adv. Difference Equ. 2017, Paper No. 26, 19 p. (2017; Zbl 1422.34104) Full Text: DOI
Baranets’kyĭ, Ya. O.; Kolyasa, L. I. Boundary-value problem for second-order differential-operator equation with involution. (English) Zbl 1413.34085 Visn. Derzh. Univ. L’viv. Politekh. 871, 20-26 (2017). MSC: 34B10 34L10 PDF BibTeX XML Cite \textit{Ya. O. Baranets'kyĭ} and \textit{L. I. Kolyasa}, Visn. Derzh. Univ. L'viv. Politekh. 871, 20--26 (2017; Zbl 1413.34085)
Chen, Yuhua; Wang, Xinping; Wang, Xinfeng Solutions of two-point boundary value problems for second-order integro-differential equations in Banach spaces. (Chinese. English summary) Zbl 1399.34224 Math. Pract. Theory 47, No. 23, 316-320 (2017). MSC: 34K30 34K10 47N20 45J99 PDF BibTeX XML Cite \textit{Y. Chen} et al., Math. Pract. Theory 47, No. 23, 316--320 (2017; Zbl 1399.34224)
Rontó, A.; Rontó, M.; Varga, I. Partially solved differential systems with two-point non-linear boundary conditions. (English) Zbl 1399.34067 Miskolc Math. Notes 18, No. 2, 1001-1014 (2017). MSC: 34B15 34A09 34A45 PDF BibTeX XML Cite \textit{A. Rontó} et al., Miskolc Math. Notes 18, No. 2, 1001--1014 (2017; Zbl 1399.34067) Full Text: DOI
Perfilieva, Irina; Števuliáková, Petra; Valášek, Radek \(F\)-transform-based shooting method for nonlinear boundary value problems. (English) Zbl 1384.65046 Soft Comput. 21, No. 13, 3493-3502 (2017). MSC: 65L10 34B15 65L20 34A25 PDF BibTeX XML Cite \textit{I. Perfilieva} et al., Soft Comput. 21, No. 13, 3493--3502 (2017; Zbl 1384.65046) Full Text: DOI
Zhang, Xiaoping; Su, Shuai; Wu, Jiming A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids. (English) Zbl 1380.65337 J. Comput. Phys. 344, 419-436 (2017). MSC: 65N08 35Q79 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Comput. Phys. 344, 419--436 (2017; Zbl 1380.65337) Full Text: DOI
Zraiqat, Amjed Boubaker pivotal iteration scheme (BPIS). (English) Zbl 1381.65059 Ital. J. Pure Appl. Math. 37, 127-138 (2017). MSC: 65L10 34B15 65Y20 PDF BibTeX XML Cite \textit{A. Zraiqat}, Ital. J. Pure Appl. Math. 37, 127--138 (2017; Zbl 1381.65059) Full Text: Link
Schütz, Jochen; Seal, David C.; Jaust, Alexander Implicit multiderivative collocation solvers for linear partial differential equations with discontinuous Galerkin spatial discretizations. (English) Zbl 1381.65078 J. Sci. Comput. 73, No. 2-3, 1145-1163 (2017). MSC: 65M20 35K20 65M60 65L06 65M70 PDF BibTeX XML Cite \textit{J. Schütz} et al., J. Sci. Comput. 73, No. 2--3, 1145--1163 (2017; Zbl 1381.65078) Full Text: DOI
Da Costa, Fernando P.; Méndez, Maria Isabel; Pinto, João T. Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric case. (English) Zbl 1386.82073 Eur. J. Appl. Math. 28, No. 2, 243-260 (2017). MSC: 82D30 PDF BibTeX XML Cite \textit{F. P. Da Costa} et al., Eur. J. Appl. Math. 28, No. 2, 243--260 (2017; Zbl 1386.82073) Full Text: DOI
Liang, Changhong; Ma, Tingfu; Ge, Yongbin Mixed high-order compact difference scheme for solving the two-point boundary value problem. (Chinese. English summary) Zbl 1399.65299 J. Ningxia Univ., Nat. Sci. Ed. 38, No. 1, 1-4 (2017). MSC: 65N06 41A21 PDF BibTeX XML Cite \textit{C. Liang} et al., J. Ningxia Univ., Nat. Sci. Ed. 38, No. 1, 1--4 (2017; Zbl 1399.65299)
McEneaney, William M.; Dower, Peter M. Staticization, its dynamic program and solution propagation. (English) Zbl 1373.90169 Automatica 81, 56-67 (2017). MSC: 90C39 93C15 49N10 PDF BibTeX XML Cite \textit{W. M. McEneaney} and \textit{P. M. Dower}, Automatica 81, 56--67 (2017; Zbl 1373.90169) Full Text: DOI
Jamali, Hassan; Ghaedi, Sakineh Applications of frames of subspaces in Richardson and Chebyshev methods for solving operator equations. (English) Zbl 1376.65085 Math. Commun. 22, No. 1, 13-23 (2017). Reviewer: Bangti Jin (London) MSC: 65J10 47A50 34B05 65L10 PDF BibTeX XML Cite \textit{H. Jamali} and \textit{S. Ghaedi}, Math. Commun. 22, No. 1, 13--23 (2017; Zbl 1376.65085) Full Text: Link
Filipov, Stefan M.; Gospodinov, Ivan D.; Faragó, István Shooting-projection method for two-point boundary value problems. (English) Zbl 1373.34032 Appl. Math. Lett. 72, 10-15 (2017). MSC: 34A45 34B15 PDF BibTeX XML Cite \textit{S. M. Filipov} et al., Appl. Math. Lett. 72, 10--15 (2017; Zbl 1373.34032) Full Text: DOI
Niu, Yanmin; Yan, Baoqiang The existence of positive solutions for the singular two-point boundary value problem. (English) Zbl 1372.34053 Topol. Methods Nonlinear Anal. 49, No. 2, 665-682 (2017). MSC: 34B18 34B15 34B16 34L30 47N20 PDF BibTeX XML Cite \textit{Y. Niu} and \textit{B. Yan}, Topol. Methods Nonlinear Anal. 49, No. 2, 665--682 (2017; Zbl 1372.34053) Full Text: DOI Euclid
Nytrebych, Z. M.; Malanchuk, O. M.; Il’kiv, V. S.; Pukach, P. Ya. Homogeneous problem with two-point conditions in time for some equations of mathematical physics. (English) Zbl 1373.35092 Azerb. J. Math. 7, No. 2, 180-196 (2017). MSC: 35G15 35K05 35L05 PDF BibTeX XML Cite \textit{Z. M. Nytrebych} et al., Azerb. J. Math. 7, No. 2, 180--196 (2017; Zbl 1373.35092)
Tolstykh, A. I. On families high-order accurate multioperator approximations of derivatives using two-point operators. (English. Russian original) Zbl 1371.65100 Dokl. Math. 95, No. 2, 136-139 (2017); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 473, No. 2, 138-141 (2017). MSC: 65M20 65D25 35L02 65M12 PDF BibTeX XML Cite \textit{A. I. Tolstykh}, Dokl. Math. 95, No. 2, 136--139 (2017; Zbl 1371.65100); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 473, No. 2, 138--141 (2017) Full Text: DOI
Farrell, Patricio; Linke, Alexander Uniform second order convergence of a complete flux scheme on unstructured 1D grids for a singularly perturbed advection-diffusion equation and some multidimensional extensions. (English) Zbl 1378.65150 J. Sci. Comput. 72, No. 1, 373-395 (2017). Reviewer: Srinivasan Natesan (Assam) MSC: 65L11 65L20 65L50 34B05 34E15 65L12 65L10 PDF BibTeX XML Cite \textit{P. Farrell} and \textit{A. Linke}, J. Sci. Comput. 72, No. 1, 373--395 (2017; Zbl 1378.65150) Full Text: DOI
Cabrera, I.; Lopez, Belen; Sadarangani, Kishin Lyapunov type inequalities for a fractional two-point boundary value problem. (English) Zbl 1375.34004 Math. Methods Appl. Sci. 40, No. 10, 3409-3414 (2017). Reviewer: Hristo S. Kiskinov (Plovdiv) MSC: 34A08 34B15 34L15 PDF BibTeX XML Cite \textit{I. Cabrera} et al., Math. Methods Appl. Sci. 40, No. 10, 3409--3414 (2017; Zbl 1375.34004) Full Text: DOI
Kaushik, Aditya; Kumar, Vijayant; Vashishth, Anil K. A higher order accurate numerical method for singularly perturbed two point boundary value problems. (English) Zbl 1371.65068 Differ. Equ. Dyn. Syst. 25, No. 2, 267-285 (2017). MSC: 65L10 34B05 65L11 34E15 65L03 34K28 65L70 65L06 34K26 PDF BibTeX XML Cite \textit{A. Kaushik} et al., Differ. Equ. Dyn. Syst. 25, No. 2, 267--285 (2017; Zbl 1371.65068) Full Text: DOI
Haferssas, R.; Jolivet, P.; Nataf, F. An additive Schwarz method type theory for Lions’s algorithm and a symmetrized optimized restricted additive Schwarz method. (English) Zbl 1371.65129 SIAM J. Sci. Comput. 39, No. 4, A1345-A1365 (2017). MSC: 65N55 35J25 74B05 76D07 PDF BibTeX XML Cite \textit{R. Haferssas} et al., SIAM J. Sci. Comput. 39, No. 4, A1345--A1365 (2017; Zbl 1371.65129) Full Text: DOI