×

Taylor dispersion in concentrated suspensions of rotating cylinders. (English) Zbl 0616.76100

This paper deals with the theoretical investigations of laminar heat or mass transfer processes for two-dimensional spatially periodic suspensions of rotating circular cylinders. A novel feature of this problem is the absence of convective motion at the suspension length scale (the macroscale) despite of its presence at particle length scale (the microscale). The latter fluid motion consists of cellular vortex- like flow characterized by closed streamlines. These periodically closed streamlines give rise to a situation in which there exists no net flow at macroscale and thus the transport of heat or mass is purely due to conduction alone. Generalized Taylor dispersion theory and the matched asymptotic methods are used to calculate this macroscale conductivity in the limit of large rotary Peclet numbers and small gap width between the adjacent cylinders. This model study indicates that the usual separation of transport process into distinct convective and conductive contributions is not generally a scale invariant concept. This analysis may find applications in the study of enhanced conduction rates in ferrofluids or other dipolar fluids rotating relative to a fixed external field.
Reviewer: A.Ramachandra Rao

MSC:

76R99 Diffusion and convection
76A02 Foundations of fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
76M99 Basic methods in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112083002359__S0022112083002359 · doi:10.1017/S0022112083002359__S0022112083002359
[2] DOI: 10.1063/1.1692218 · Zbl 0182.28401 · doi:10.1063/1.1692218
[3] Eringen, J. Math. Mech. 16 pp 1– (1966)
[4] Brenner, Phil. Trans. R. Soc. Lond. 297 pp 81– (1980)
[5] Brenner, PhysicoChem. Hydrodyn. 1 pp 91– (1980)
[6] DOI: 10.1016/0009-2509(72)80021-6 · doi:10.1016/0009-2509(72)80021-6
[7] DOI: 10.1016/0021-9797(70)90110-4 · doi:10.1016/0021-9797(70)90110-4
[8] Aris, Proc. R. Soc. Lond. 235 pp 67– (1956)
[9] DOI: 10.1017/S0022112071000508 · Zbl 0218.76044 · doi:10.1017/S0022112071000508
[10] DOI: 10.1016/0020-7225(64)90005-9 · Zbl 0136.45003 · doi:10.1016/0020-7225(64)90005-9
[11] Dahler, Proc. R. Soc. Lond. 275 pp 504– (1963)
[12] Dahler, Nature 192 pp 36– (1961)
[13] DOI: 10.1016/0021-9797(68)90003-9 · doi:10.1016/0021-9797(68)90003-9
[14] DOI: 10.1063/1.1711295 · Zbl 0125.15801 · doi:10.1063/1.1711295
[15] DOI: 10.1016/0021-9797(72)90374-8 · doi:10.1016/0021-9797(72)90374-8
[16] DOI: 10.1016/0021-9797(74)90093-9 · doi:10.1016/0021-9797(74)90093-9
[17] Brenner, Phil. Trans. R. Soc. Lond. 307 pp 645– (1982)
[18] DOI: 10.1016/0020-7225(84)90042-9 · Zbl 0559.76014 · doi:10.1016/0020-7225(84)90042-9
[19] Brenner, PhysicoChem. Hydrodyn. 3 pp 139– (1982)
[20] DOI: 10.1063/1.864370 · Zbl 0622.76114 · doi:10.1063/1.864370
[21] DOI: 10.1016/0021-9797(71)90211-6 · doi:10.1016/0021-9797(71)90211-6
[22] Taylor, Proc. K. Soc. Lond. 219 pp 186– (1953)
[23] DOI: 10.1017/S0022112083001822__S0022112083001822 · doi:10.1017/S0022112083001822__S0022112083001822
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.