×

A Nyström method for a class of Fredholm integral equations of the third kind on unbounded domains. (English) Zbl 1186.65162

The author develops a numerical method of collocation type for a class of integral equations
\[ y^{\delta}f(y)-y^{\lambda}\log^{l}y\int_{a}^b {k_0(x,y)f(x)w(x)}dx = g(y), \]
where \((a,b)=(0,\infty)\), \(f\) is unknown, \(k\) and \(g\) are given functions, \(w(x)=|x|^{\alpha}\exp\{-|x|^\beta\}\). The case of \((a,b)=(-\infty, \infty)\) is reduced to a system of two integral equations on the semi-axes \((0,\infty)\). The singular equation of the third kind is transformed in an equation of the second kind (on the semi-axes) with smooth functions via the change of variables \(x=t^{q/\lambda}\) and \(y=s^{q/\lambda}\).
The author suggests to approximate the solution of the regularized equation by a Nyström method which is based on the application of the truncated Gaussian rule to the equation’s integral. The obtained functional system should be changed by a collocation system with special knots. The proposed method is theoretically proved and three numerical examples are presented.
It is also productive to mention a method of normal splines for the linear integral-differential equations with arbitrary degenerate main parts, including the cases of unbounded intervals: V. K. Gorbunov [U.S.S.R. Comput. Math. Math. Phys. 29, No. 1, 145–154 (1989; Zbl 0702.65106)], V. K. Gorbunov, V. V. Petrischev and V. Y. Sviridov [Lecture Notes in Computer Science 2658, 492–499 (2003; Zbl 1143.45002)], V. K. Gorbunov and V. Yu. Sviridov [Appl. Numer. Math. 59, No. 3–4, 656–670 (2009; Zbl 1160.65045)].

MSC:

65R20 Numerical methods for integral equations
45B05 Fredholm integral equations
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monographs on Applied and Computational Mathematics (1997), University Press: University Press Cambridge · Zbl 0155.47404
[2] Comtet, L., Advanced Combinatorics. The Art of Finite and Infnite Expansions (1974), D. Reidel Publishing Co.: D. Reidel Publishing Co. Dordrecht
[3] Cvetković, A. S.; Milovanović, G. V., The Mathematica package “OrthogonalPolynomials”, Facta Univ. Ser. Math. Inform., 19, 17-36 (2004) · Zbl 1081.33001
[4] De Bonis, M. C.; Mastroianni, G., Nyström method for systems of integral equations on the real semiaxis, IMA J. Numer. Anal., 29, 632-650 (July 2009)
[5] De Bonis, M. C.; Mastroianni, G., Some simple Quadrature Rules to evaluate the Hilbert Transform on the real axis, Arch. Inequal. Appl., 1, 3-4, 475-494 (2003) · Zbl 1056.65019
[6] Della Vecchia, B.; Mastroianni, G., Gaussian rules on unbounded intervals, J. Complexity, 19, 3, 247-258 (2003) · Zbl 1024.41020
[7] Fermo, L.; Russo, M. G., A Nyström method for Fredholm integral equations with right-hand sides having isolated singularities, Calcolo, 46, 61-93 (2009) · Zbl 1181.65147
[8] Gabbasov, N. S., A special version of the collocation method for integral equations of the third kind, Differential Equations, 41, 1768-1774 (2006) · Zbl 1126.65116
[9] Gabbasov, N. S.; Solov’eva, S. A., Generalized moment method for a class of integral equations of the third kind, Differential Equations, 42, 1490-1498 (2006) · Zbl 1136.65124
[10] Gauschy, W., Algorithm 726:ORTHPOL - a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules, ACM Trans. Math. Softw., 20, 21-62 (1994) · Zbl 0888.65013
[11] Golub, G. H., Some modified matrix eigenvalue problems, SIAM Rev., 15, 318-334 (1973) · Zbl 0254.65027
[12] Golub, G. H.; Welsch, J. H., Calculation of Gaussian quadrature rules, Math. Comput., 23, 221-230 (1969) · Zbl 0179.21901
[13] G. Mastroianni, G.V. Milovanovic, Some numerical methods for second kind Fredholm integral equation on the real semiaxis, IMA J. Numer. Anal., in press, doi:10.1093/imanum/drn056; G. Mastroianni, G.V. Milovanovic, Some numerical methods for second kind Fredholm integral equation on the real semiaxis, IMA J. Numer. Anal., in press, doi:10.1093/imanum/drn056 · Zbl 1180.65177
[14] Mastroianni, G.; Monegato, G., Truncated Gauss-Laguerre quadrature rules, (Recent Trends in Numerical Analysis. Recent Trends in Numerical Analysis, Adv. Theory Comput. Math., vol. 3 (2001), Nova Sci. Publ.: Nova Sci. Publ. Huntington, NY), 213-221 · Zbl 1019.65022
[15] Mastroianni, G.; Monegato, G., Truncated quadrature rules over \((0, \infty)\) and Nyström type methods, SIAM J. Numer. Anal., 41, 1870-1892 (2003) · Zbl 1056.65022
[16] G. Mastroianni, I. Notarangelo, A Lagrange-type projector on the real line, Math. Comp., in press, Posted on July 7 (2009), doi:10.1090/S0025-5718-09-02278-9; G. Mastroianni, I. Notarangelo, A Lagrange-type projector on the real line, Math. Comp., in press, Posted on July 7 (2009), doi:10.1090/S0025-5718-09-02278-9 · Zbl 1196.41004
[17] G. Mastroianni, I. Notarangelo, A Nyström method for Fredholm integral equations on the real line, J. Integral Equations Appl., in press; G. Mastroianni, I. Notarangelo, A Nyström method for Fredholm integral equations on the real line, J. Integral Equations Appl., in press · Zbl 1219.65163
[18] Mastroianni, G.; Russo, M. G., Lagrange Interpolation in weighted Besov spaces, Constr. Approx., 15, 257-289 (1990) · Zbl 0926.41001
[19] Mastroianni, G.; Russo, M. G., Lagrange interpolation in some weighted uniform spaces, Facta Univ. Ser. Math. Inform., 12, 185-201 (1997), Dedicated to Professor Dragoslav S. Mitrinović (1908-1995), Niš, 1996 · Zbl 0951.41004
[20] Mastroianni, G.; Szabados, J., Polynomial Approximation on infinite intervals with weights having inner zeros, Acta Math. Hungar., 96, 221-258 (2002) · Zbl 1012.41008
[21] Mastroianni, G.; Szabados, J., Polynomial approximation on the real semiaxis with generalized Laguerre weights, Stud. Univ. Babeş-Bolyai Math., 52, 4, 105-128 (2007) · Zbl 1174.41007
[22] Pereverzev, S. V.; Schock, E.; Solodky, S. G., On the efficient discretization of integral equations of the third kind, J. Integral Equations Appl., 11, 4, 501-514 (1999) · Zbl 0974.65119
[23] Saff, E. B.; Totik, V., Logarithmic Potentials with External Fields, Grundlehren der Mathematischen Wissenschaften (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0881.31001
[24] Schock, E., Integral equations of the third kind, Studia Math., 81, 1, 1-11 (1985) · Zbl 0536.45002
[25] Shulaia, D., On one Fredholm integral equation of third kind, Georgian Math. J., 4, 461-476 (1997) · Zbl 0888.45001
[26] Shulaia, D., Solution of a linear integral equation of third kind, Georgian Math. J., 9, 179-196 (2002) · Zbl 1002.45001
[27] Sloan, I., Quadrature methods for integral equations of the second kind over infinite intervals, Math. Comp., 36, 154, 511-523 (1981) · Zbl 0475.65083
[28] Timan, A. F., Theory of Approximation of Functions of a Real Variable (1994), Dover Publications, Inc.: Dover Publications, Inc. New York · Zbl 0117.29001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.