×

A novel approach to stability and stabilization of fuzzy sampled-data Markovian chaotic systems. (English) Zbl 1397.93229

Summary: This paper studies the problems of stability and stabilization of a class of Markovian chaotic systems via fuzzy sampled-data control. Different from some existing results, the Markovian jumping with general uncertain transition rates is considered for such systems. A novel approach, i.e., input-delay-dependent vector approach, is proposed for the first time. Based on this approach, an input-delay-dependent Lyapunov-Krasovskii functional (LKF) with cubic function of input delay is successfully constructed, and the convex combination technique is used with ease to derive stability and stabilization criteria. Compared with some existing stability and stabilization criteria for chaotic systems, our results are not only less conservative but also with reduced calculation complexity. Finally, the superiorities of proposed results are illustrated by two numerical examples.

MSC:

93E15 Stochastic stability in control theory
93C42 Fuzzy control/observation systems
93C57 Sampled-data control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lian, K.-Y.; Chiu, C.-S.; Chiang, T.-S.; Liu, P., Secure communications of chaotic systems with robust performance via fuzzy observer-based design, IEEE Trans. Fuzzy Syst., 9, 1, 212-220, (2001)
[2] Hu, C.; Jiang, H.; Teng, Z., General impulsive control of chaotic systems based on a TS fuzzy model, Fuzzy Sets Syst., 174, 66-82, (2011) · Zbl 1221.93143
[3] Zhang, R.; Zeng, D.; Zhong, S.; Shi, K., Memory feedback PID control for exponential synchronisation of chaotic Lur’e systems, Int. J. Syst. Sci., 48, 12, 2473-2484, (2017) · Zbl 1372.93104
[4] Deng, F.; Guan, S.; Yue, X.; Gu, X.; Chen, J.; Lv, J.; Li, J., Energy-based sound source localization with low power consumption in wireless sensor networks, IEEE Trans. Ind. Electron., 64, 6, 4894-4902, (2017)
[5] Zeng, D.; Zhang, R.; Liu, Y.; Zhong, S., Sampled-data synchronization of chaotic Lur’e systems via input-delay-dependent-free-matrix zero equality approach, Appl. Math. Comput., 315, 34-46, (2017) · Zbl 1426.93179
[6] Liu, Y.; Park, J. H.; Guo, B.-Z.; Shu, Y., Further results on stabilization of chaotic systems based on fuzzy memory sampled-data control, IEEE Trans. Fuzzy Syst., (2017)
[7] Lin, D.; Wang, X., Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation, Fuzzy Sets Syst., 161, 2066-2080, (2010) · Zbl 1194.93065
[8] Cheng, J.; Park, J. H.; Karimi, H. R.; Zhao, X., Static output feedback control of nonhomogeneous Markovian jump systems with asynchronous time delays, Inf. Sci., 399, 219-238, (2017) · Zbl 1432.93103
[9] Guan, X.; Chen, C., Adaptive fuzzy control for chaotic systems with \(H_\infty\) tracking performance, Fuzzy Sets Syst., 139, 81-93, (2003) · Zbl 1053.93022
[10] Lee, T. H.; Park, J. H., New methods of fuzzy sampled-data control for stabilization of chaotic systems, IEEE Trans. Syst. Man Cybern. Syst., (2017)
[11] Rafikov, M.; Balthazar, J., On an optimal control design for Rössler system, Phys. Lett. A, 333, 3-4, 241-245, (2004) · Zbl 1123.49300
[12] Yu, W., Passive equivalence of chaos in Lorenz system, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 46, 7, 876-878, (1999)
[13] Xu, W.; Shen, H.; Hu, D.; Lei, A., Impulse tuning of Chua chaos, Int. J. Eng. Sci., 43, 3, 275-280, (2005) · Zbl 1211.93100
[14] Liu, Y.; Guo, B.-Z.; Park, J. H., Non-fragile \(H_\infty\) filtering for delayed Takagi-sugeno fuzzy systems with randomly occurring gain variations, Fuzzy Sets Syst., 316, 99-116, (2017) · Zbl 1392.93048
[15] Shen, H.; Su, L.; Park, J. H., Reliable mixed \(H_\infty\)/passive control for T-S fuzzy delayed systems based on a semi-Markov jump model approach, Fuzzy Sets Syst., 314, 79-98, (2017) · Zbl 1368.93156
[16] Wang, Z.-P.; Wu, H.-N., Fuzzy impulsive control for uncertain nonlinear systems with guaranteed cost, Fuzzy Sets Syst., 302, 143-162, (2016) · Zbl 1378.93070
[17] Shi, P.; Su, X.; Li, F., Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation, IEEE Trans. Autom. Control, 61, 6, 1694-1699, (2016) · Zbl 1359.93493
[18] Cheng, J.; Park, J. H.; Liu, Y.; Liu, Z.; Tang, L., Finite-time \(H_\infty\) fuzzy control of nonlinear Markovian jump delayed systems with partly uncertain transition descriptions, Fuzzy Sets Syst., 314, 99-115, (2017) · Zbl 1368.93147
[19] Sakthivel, R.; Saravanakumar, T.; Ma, Y.-K.; Anthoni, S. M., Finite-time resilient reliable sampled-data control for fuzzy systems with randomly occurring uncertainties, Fuzzy Sets Syst., 329, 1-18, (2017) · Zbl 1381.93067
[20] Zhang, R.; Zeng, D.; Zhong, S.; Yu, Y., Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays, Appl. Math. Comput., 310, 57-74, (2017) · Zbl 1426.94180
[21] Liu, Y.; Guo, B.; Park, J. H.; Lee, S. M., Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control, IEEE Trans. Neural Netw. Learn. Syst., (2016)
[22] Zhang, R.; Zeng, D.; Zhong, S., Novel master-slave synchronization criteria of chaotic Lur’e systems with time delays using sampled-data control, J. Franklin Inst., 354, 4930-4954, (2017) · Zbl 1367.93357
[23] Fridman, E., A refined input delay approach to sampled-data control, Automatica, 46, 421-427, (2010) · Zbl 1205.93099
[24] Seuret, A., A novel stability analysis of linear systems under asynchronous samplings, Automatica, 48, 1, 177-182, (2012) · Zbl 1244.93095
[25] Briat, C., Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwelltime constraints, Automatica, 49, 3449-3457, (2013) · Zbl 1315.93058
[26] Lam, H. K.; Leung, F. H.F., Stabilization of chaotic systems using linear sampled-data controller, Int. J. Bifurc. Chaos, 17, 6, 2021-2031, (2007) · Zbl 1142.93022
[27] Zhu, X.; Chen, B.; Yue, D.; Wang, Y., An improved input delay approach to stabilization of fuzzy systems under variable sampling, IEEE Trans. Fuzzy Syst., 20, 2, 330-341, (2012)
[28] Ariño, C.; Sala, A., Extensions to stability analysis of fuzzy control systems subject to uncertain grades of membership, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 38, 2, 558-563, (2008)
[29] Wu, Z. G.; Shi, P.; Su, H.; Chu, J., Sampled-data fuzzy control of chaotic systems based on a T-S fuzzy system model, IEEE Trans. Fuzzy Syst., 22, 1, 153-162, (2014)
[30] Wang, Z. P.; Wu, H. N., On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach, IEEE Trans. Cybern., 45, 1, 819-829, (2015)
[31] Wang, Y.; Xia, Y.; Zhou, P., Fuzzy-model-based sampled-data control of chaotic systems: a fuzzy time-dependent Lyapunov-krasovskii functional approach, IEEE Trans. Fuzzy Syst., (2016)
[32] Zhang, C.-K.; He, Y.; Jiang, L.; Wu, M., Stability analysis for delayed neural networks considering both conservativeness and complexity, IEEE Trans. Neural Netw. Learn. Syst., 27, 7, 1486-1501, (2016)
[33] Guo, Y.; Wang, Z., Stability of Markovian jump systems with generally uncertain transition rates, J. Franklin Inst., 350, 2826-2836, (2013) · Zbl 1287.93106
[34] Zeng, D.; Zhang, R.; Zhong, S.; Wang, J.; Shi, K., Sampled-data synchronization control for Markovian delayed complex dynamical networks via a novel convex optimization method, Neurocomputing, 266, 606-618, (2017)
[35] Wu, Z.-G.; Dong, S.; Su, H.; Li, C., Asynchronous dissipative control for fuzzy Markov jump systems, IEEE Trans. Cybern., (2017)
[36] Wu, Z.-G.; Shi, P.; Shu, Z.; Su, H.; Lu, R., Passivity-based asynchronous control for Markov jump systems, IEEE Trans. Autom. Control, 62, 4, 2020-2025, (2017) · Zbl 1366.93611
[37] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Asynchronous \(l_2\)-\(l_\infty\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities, Automatica, 50, 180-186, (2014) · Zbl 1417.93317
[38] Cheng, J.; Park, J. H.; Zhang, L.; Zhu, Y., An asynchronous operation approach to event-triggered control for fuzzy Markovian jump systems with general switching policies, IEEE Trans. Fuzzy Syst., (2016)
[39] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data, IEEE Trans. Cybern., 43, 6, 1796-1806, (2013)
[40] Yue, D.; Tian, E.; Zhang, Y.; Peng, C., Delay-distribution-dependent robust stability of uncertain systems with time-varying delay, Int. J. Robust Nonlinear Control, 19, 4, 377-393, (2009) · Zbl 1157.93478
[41] Yi, J.; Wang, Y.; Xiao, J.; Huang, Y., Exponential synchronization of complex dynamical networks with Markovian jump parameters and stochastic delays and its application to multi-agent systems, Commun. Nonlinear Sci. Numer. Simul., 18, 1175-1192, (2013) · Zbl 1269.34058
[42] Liu, K.; Fridman, E., Wirtinger’s inequality and Lyapunov-based sampled-data stabilization, Automatica, 48, 102-108, (2012) · Zbl 1244.93094
[43] Lee, T. H.; Park, J. H., Stability analysis of sampled-data systems via free-matrix-based time-dependent discontinuous Lyapunov approach, IEEE Trans. Autom. Control, (2017) · Zbl 1370.93236
[44] Yoneyama, J., Robust \(H_\infty\) control of uncertain fuzzy systems under time-varying sampling, Fuzzy Sets Syst., 161, 6, 859-871, (2010) · Zbl 1217.93053
[45] Shi, K.; Liu, X.; Zhu, H.; Zhong, S., On designing stochastic sampled-data controller for master-slave synchronization of chaotic Lur’e system via a novel integral inequality, Commun. Nonlinear Sci. Numer. Simul., 34, 165-184, (2016) · Zbl 1510.34133
[46] Wu, Z.-G.; Xu, Y.; Lu, R.; Wu, Y.; Huang, T., Event-triggered control for consensus of multiagent systems with fixed/switching topologies, IEEE Trans. Syst. Man Cybern. Syst., (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.