×

Uniform central limit theorems for the Grenander estimator. (English) Zbl 1321.60043

Summary: We consider the Grenander estimator that is the maximum likelihood estimator for non-increasing densities. We prove uniform central limit theorems for certain subclasses of bounded variation functions and for Hölder balls of smoothness \(s>1/2\). We do not assume that the density is differentiable or continuous. The proof can be seen as an adaptation of the method for the parametric maximum likelihood estimator to the nonparametric setting. Since nonparametric maximum likelihood estimators lie on the boundary, the derivative of the likelihood cannot be expected to equal zero as in the parametric case. Nevertheless, our proofs rely on the fact that the derivative of the likelihood can be shown to be small at the maximum likelihood estimator.

MSC:

60F05 Central limit and other weak theorems
62G07 Density estimation
62E20 Asymptotic distribution theory in statistics

Software:

logcondens
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Balabdaoui, F. and Wellner, J. A. (2007). A Kiefer-Wolfowitz theorem for convex densities. In, Asymptotics: particles, processes and inverse problems , Volume 55 of IMS Lecture Notes Monogr. Ser. , pp. 1-31. Beachwood, OH: Inst. Math. Statist. · Zbl 1176.62051 · doi:10.1214/074921707000000256
[2] Bickel, P. J. and Ritov, Y. (2003). Nonparametric estimators which can be “plugged-in”., Ann. Statist. 31 (4), 1033-1053. · Zbl 1058.62031 · doi:10.1214/aos/1059655904
[3] Cohen, A., Daubechies, I. and Vial, P. (1993). Wavelets on the interval and fast wavelet transforms., Appl. Comput. Harmon. Anal. 1 (1), 54-81. · Zbl 0795.42018 · doi:10.1006/acha.1993.1005
[4] de la Peña, V. H. and Giné, E. (1999)., Decoupling. From Dependence to Independence . Probability and its Applications. Springer-Verlag, New York.
[5] Dümbgen, L. and Rufibach, K. (2009). Maximum likelihood estimation of a log-concave density and its distribution function: basic properties and uniform consistency., Bernoulli 15 (1), 40-68. · Zbl 1200.62030 · doi:10.3150/08-BEJ141
[6] Durot, C. and Lopuhaä, H. P. (2014). A Kiefer-Wolfowitz type of result in a general setting, with an application to smooth monotone estimation., Electron. J. Stat. 8 (2), 2479-2513. · Zbl 1309.62065 · doi:10.1214/14-EJS958
[7] Durot, C. and Tocquet, A.-S. (2003). On the distance between the empirical process and its concave majorant in a monotone regression framework., Ann. Inst. H. Poincaré Probab. Statist. 39 (2), 217-240. · Zbl 1010.62032 · doi:10.1016/S0246-0203(02)00013-4
[8] Gao, F. and Wellner, J. A. (2009). On the rate of convergence of the maximum likelihood estimator of a \(k\)-monotone density., Sci. China Ser. A 52 (7), 1525-1538. · Zbl 1176.62031 · doi:10.1007/s11425-009-0102-y
[9] Giné, E. and Koltchinskii, V. (2006). Concentration inequalities and asymptotic results for ratio type empirical processes., Ann. Probab. 34 (3), 1143-1216. · Zbl 1152.60021 · doi:10.1214/009117906000000070
[10] Giné, E. and Mason, D. M. (2007). On local \(U\)-statistic processes and the estimation of densities of functions of several sample variables., Ann. Statist. 35 (3), 1105-1145. · Zbl 1175.60017 · doi:10.1214/009053607000000154
[11] Giné, E. and Nickl, R. (2008). Uniform central limit theorems for kernel density estimators., Probab. Theory Related Fields 141 (3-4), 333-387. · Zbl 1141.62022 · doi:10.1007/s00440-007-0087-9
[12] Giné, E. and Nickl, R. (2009). Uniform limit theorems for wavelet density estimators., Ann. Probab. 37 (4), 1605-1646. · Zbl 1255.62103 · doi:10.1214/08-AOP447
[13] Giné, E. and Nickl, R. (2015)., Mathematical Foundations of Infinite-Dimensional Statistical Models . Cambridge University Press, · Zbl 1358.62014 · doi:10.1017/CBO9781107337862
[14] Grenander, U. (1956). On the theory of mortality measurement. II., Skand. Aktuarietidskr. 39 , 125-153. · Zbl 0077.33715
[15] Jankowski, H. (2014). Convergence of linear functionals of the Grenander estimator under misspecification., Ann. Statist. 42 (2), 625-653. · Zbl 1302.62045 · doi:10.1214/13-AOS1196
[16] Kiefer, J. and Wolfowitz, J. (1976). Asymptotically minimax estimation of concave and convex distribution functions., Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1), 73-85. · Zbl 0354.62035 · doi:10.1007/BF00532690
[17] Kulikov, V. N. and Lopuhaä, H. P. (2005). Asymptotic normality of the \(L_k\)-error of the Grenander estimator., Ann. Statist. 33 (5), 2228-2255. · Zbl 1086.62063 · doi:10.1214/009053605000000462
[18] Nickl, R. (2007). Donsker-type theorems for nonparametric maximum likelihood estimators., Probab. Theory Related Fields 138 (3-4), 411-449. · Zbl 1113.60028 · doi:10.1007/s00440-006-0031-4
[19] Nickl, R. (2009). On convergence and convolutions of random signed measures., J. Theoret. Probab. 22 (1), 38-56. · Zbl 1175.60030 · doi:10.1007/s10959-008-0177-3
[20] Nickl, R. and Pötscher, B. M. (2007). Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov- and Sobolev-type., J. Theoret. Probab. 20 (2), 177-199. · Zbl 1130.46020 · doi:10.1007/s10959-007-0058-1
[21] Schick, A. and Wefelmeyer, W. (2004). Root \(n\) consistent density estimators for sums of independent random variables., J. Nonparametr. Stat. 16 (6), 925-935. · Zbl 1062.62065 · doi:10.1080/10485250410001713990
[22] Schick, A. and Wefelmeyer. W. (2007). Root-\(n\) consistent density estimators of convolutions in weighted \(L_1\)-norms., J. Statist. Plann. Inference 137 (6), 1765-1774. · Zbl 1118.62040 · doi:10.1016/j.jspi.2006.06.041
[23] Sen, B., Banerjee, M. and Woodroofe, M. (2010). Inconsistency of bootstrap: the Grenander estimator., Ann. Statist. 38 (4), 1953-1977. · Zbl 1176.62051 · doi:10.1214/074921707000000256
[24] van de Geer, S. A. (2000)., Empirical Processes in M-Estimation . Cambridge University Press, Cambridge. · Zbl 1179.62073
[25] van der Vaart, A. W. and Wellner, J. A. (1996)., Weak Convergence and Empirical Processes. With Applications to Statistics . Springer Series in Statistics. Springer-Verlag, New York. · Zbl 0862.60002
[26] Wang, Y. (1994). The limit distribution of the concave majorant of an empirical distribution function., Statist. Probab. Lett. 20 (1), 81-84. · Zbl 0801.62017 · doi:10.1016/0167-7152(94)90238-0
[27] Ziemer, W. P. (1989)., Weakly differentiable functions. Sobolev spaces and functions of bounded variation , Volume 120 of Graduate Texts in Mathematics . Springer-Verlag, New York. · Zbl 0692.46022 · doi:10.1007/978-1-4612-1015-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.