Wanduku, Divine Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. (English) Zbl 07495836 Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 283-313 (2022). MSC: 92D30 92C60 34D05 PDF BibTeX XML Cite \textit{D. Wanduku}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 283--313 (2022; Zbl 07495836) Full Text: DOI OpenURL
Zhang, Li; Xu, Gen Qi; Mastorakis, Nikos E. A new approach for stabilization of Heat-ODE cascaded systems with boundary delayed control. (English) Zbl 1485.93249 IMA J. Math. Control Inf. 39, No. 1, 112-131 (2022). MSC: 93C15 93D23 PDF BibTeX XML Cite \textit{L. Zhang} et al., IMA J. Math. Control Inf. 39, No. 1, 112--131 (2022; Zbl 1485.93249) Full Text: DOI OpenURL
Liu, Jiankang; Hao, Ruiqi; Guo, Bao-Zhu Order reduction-based uniform approximation of exponential stability for one-dimensional Schrödinger equation. (English) Zbl 1485.93488 Syst. Control Lett. 160, Article ID 105136, 9 p. (2022). MSC: 93D23 93C20 35J10 93B11 PDF BibTeX XML Cite \textit{J. Liu} et al., Syst. Control Lett. 160, Article ID 105136, 9 p. (2022; Zbl 1485.93488) Full Text: DOI OpenURL
Zhou, Bin Lyapunov differential equations and inequalities for stability and stabilization of linear time-varying systems. (English) Zbl 1478.93569 Automatica 131, Article ID 109785, 11 p. (2021). MSC: 93D23 93C15 34A40 93C05 PDF BibTeX XML Cite \textit{B. Zhou}, Automatica 131, Article ID 109785, 11 p. (2021; Zbl 1478.93569) Full Text: DOI OpenURL
Karpuz, Başak; Koyuncuoğlu, Halis Can Positivity and uniform exponential stability for Volterra integro-dynamical systems on time scales. (English) Zbl 1477.45001 Nonlinear Anal., Hybrid Syst. 41, Article ID 101049, 15 p. (2021). MSC: 45D05 34N05 45M10 45M20 PDF BibTeX XML Cite \textit{B. Karpuz} and \textit{H. C. Koyuncuoğlu}, Nonlinear Anal., Hybrid Syst. 41, Article ID 101049, 15 p. (2021; Zbl 1477.45001) Full Text: DOI OpenURL
Feng, Yue; Yi, Wenfan Uniform error bounds of an exponential wave integrator for the long-time dynamics of the nonlinear Klein-Gordon equation. (English) Zbl 07382150 Multiscale Model. Simul. 19, No. 3, 1212-1235 (2021). MSC: 65-XX 35L70 65M12 65M15 65M70 81-08 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{W. Yi}, Multiscale Model. Simul. 19, No. 3, 1212--1235 (2021; Zbl 07382150) Full Text: DOI arXiv OpenURL
Domoshnitsky, Alexander; Levi, Shai; Kappel, Ron Hay; Litsyn, Elena; Yavich, Roman Stability of neutral delay differential equations with applications in a model of human balancing. (English) Zbl 1465.34079 Math. Model. Nat. Phenom. 16, Paper No. 21, 18 p. (2021). MSC: 34K20 34K40 34K12 34K21 PDF BibTeX XML Cite \textit{A. Domoshnitsky} et al., Math. Model. Nat. Phenom. 16, Paper No. 21, 18 p. (2021; Zbl 1465.34079) Full Text: DOI OpenURL
Gregosiewicz, Adam Uniform exponential stability of perturbed semigroups: the Dyson-Phillips formula versus Gil’s approach via commutators. (English) Zbl 07368854 Result. Math. 76, No. 1, Paper No. 45, 18 p. (2021). MSC: 47D06 47D60 PDF BibTeX XML Cite \textit{A. Gregosiewicz}, Result. Math. 76, No. 1, Paper No. 45, 18 p. (2021; Zbl 07368854) Full Text: DOI OpenURL
Ben Aissa, Akram; Abdelli, Mama; Duca, Alessandro Well-posedness and exponential decay for the Euler-Bernoulli beam conveying fluid equation with non-constant velocity and dynamical boundary conditions. (English) Zbl 1462.35188 Z. Angew. Math. Phys. 72, No. 2, Paper No. 49, 15 p. (2021). MSC: 35L35 35L15 35B40 35Q35 93D15 PDF BibTeX XML Cite \textit{A. Ben Aissa} et al., Z. Angew. Math. Phys. 72, No. 2, Paper No. 49, 15 p. (2021; Zbl 1462.35188) Full Text: DOI arXiv OpenURL
Khemmoudj, Ammar Stabilisation of a viscoelastic beam conveying fluid. (English) Zbl 1461.93435 Int. J. Control 94, No. 1, 235-247 (2021). MSC: 93D23 93C20 74H45 76A10 PDF BibTeX XML Cite \textit{A. Khemmoudj}, Int. J. Control 94, No. 1, 235--247 (2021; Zbl 1461.93435) Full Text: DOI OpenURL
Araújo, Rawlilson O.; Marinho, Sheyla S.; Prates Filho, Julio S. Uniform stability of a non-autonomous semilinear Bresse system with memory. (English) Zbl 1467.74029 Appl. Math. Comput. 387, Article ID 124418, 11 p. (2020). MSC: 74H45 74K10 74D10 74H20 74H25 35Q74 PDF BibTeX XML Cite \textit{R. O. Araújo} et al., Appl. Math. Comput. 387, Article ID 124418, 11 p. (2020; Zbl 1467.74029) Full Text: DOI OpenURL
Egger, Herbert; Kugler, Thomas; Liljegren-Sailer, Björn Stability preserving approximations of a semilinear hyperbolic gas transport model. (English) Zbl 1466.65129 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS). AIMS Ser. Appl. Math. 10, 427-433 (2020). MSC: 65M60 65M22 35L71 35L05 35A01 35A02 35R02 PDF BibTeX XML Cite \textit{H. Egger} et al., AIMS Ser. Appl. Math. 10, 427--433 (2020; Zbl 1466.65129) Full Text: arXiv OpenURL
Zheng, Fu; Li, Yan The uniform exponential stability of wave equation with dynamical boundary damping discretized by the order reduction finite difference. (Chinese. English summary) Zbl 1463.65347 Control Theory Appl. 37, No. 7, 1589-1594 (2020). MSC: 65N06 65N12 49J20 35J05 PDF BibTeX XML Cite \textit{F. Zheng} and \textit{Y. Li}, Control Theory Appl. 37, No. 7, 1589--1594 (2020; Zbl 1463.65347) Full Text: DOI OpenURL
Augner, Björn; Laasri, Hafida Exponential stability for infinite-dimensional non-autonomous port-Hamiltonian systems. (English) Zbl 1454.93233 Syst. Control Lett. 144, Article ID 104757, 11 p. (2020). MSC: 93D23 93C35 93B70 PDF BibTeX XML Cite \textit{B. Augner} and \textit{H. Laasri}, Syst. Control Lett. 144, Article ID 104757, 11 p. (2020; Zbl 1454.93233) Full Text: DOI arXiv OpenURL
Zhang, Li; Xu, Gen Qi; Chen, Hao Uniform stabilization of 1-d wave equation with anti-damping and delayed control. (English) Zbl 1454.93242 J. Franklin Inst. 357, No. 17, 12473-12494 (2020). MSC: 93D23 93C20 35L05 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Franklin Inst. 357, No. 17, 12473--12494 (2020; Zbl 1454.93242) Full Text: DOI OpenURL
Xu, Gen Qi; Zhang, Li Uniform stabilization of 1-D coupled wave equations with anti-dampings and joint delayed control. (English) Zbl 1453.93204 SIAM J. Control Optim. 58, No. 6, 3161-3184 (2020). MSC: 93D23 93C20 35L05 93B17 93B52 PDF BibTeX XML Cite \textit{G. Q. Xu} and \textit{L. Zhang}, SIAM J. Control Optim. 58, No. 6, 3161--3184 (2020; Zbl 1453.93204) Full Text: DOI OpenURL
Han, Zongfei; Zhou, Shengfan Random uniform exponential attractors for non-autonomous stochastic lattice systems and FitzHugh-Nagumo lattice systems with quasi-periodic forces and multiplicative noise. (English) Zbl 1454.37076 Stoch. Dyn. 20, No. 5, Article ID 2050036, 38 p. (2020). MSC: 37L55 37L60 37L30 35B41 35B40 37H30 PDF BibTeX XML Cite \textit{Z. Han} and \textit{S. Zhou}, Stoch. Dyn. 20, No. 5, Article ID 2050036, 38 p. (2020; Zbl 1454.37076) Full Text: DOI OpenURL
Yue, Tian; Liu, Kaituo Hölder’s characterizations for the uniform exponential stability of linear skew-product semiflows in Banach spaces. (Chinese. English summary) Zbl 1463.34252 Math. Pract. Theory 50, No. 7, 292-296 (2020). MSC: 34G10 34D20 47D03 47D06 PDF BibTeX XML Cite \textit{T. Yue} and \textit{K. Liu}, Math. Pract. Theory 50, No. 7, 292--296 (2020; Zbl 1463.34252) OpenURL
Jin, Kun-Peng; Liang, Jin; Xiao, Ti-Jun Stability of initial-boundary value problem for quasilinear viscoelastic equations. (English) Zbl 1441.35227 Electron. J. Differ. Equ. 2020, Paper No. 85, 15 p. (2020). MSC: 35Q74 35B35 74H55 74H40 93D15 PDF BibTeX XML Cite \textit{K.-P. Jin} et al., Electron. J. Differ. Equ. 2020, Paper No. 85, 15 p. (2020; Zbl 1441.35227) Full Text: Link OpenURL
Buşe, Constantin; O’Regan, Donal A weak integral condition and its connections with existence and uniqueness of solutions for some abstract Cauchy problems in Banach spaces. (English) Zbl 1441.35177 Monatsh. Math. 192, No. 3, 493-512 (2020). MSC: 35L90 35B40 47D06 46E30 PDF BibTeX XML Cite \textit{C. Buşe} and \textit{D. O'Regan}, Monatsh. Math. 192, No. 3, 493--512 (2020; Zbl 1441.35177) Full Text: DOI OpenURL
Dragičević, Davor; Sasu, Adina Luminiţa; Sasu, Bogdan On the asymptotic behavior of discrete dynamical systems – an ergodic theory approach. (English) Zbl 1434.37016 J. Differ. Equations 268, No. 8, 4786-4829 (2020). MSC: 37C75 37C20 37C35 37A30 PDF BibTeX XML Cite \textit{D. Dragičević} et al., J. Differ. Equations 268, No. 8, 4786--4829 (2020; Zbl 1434.37016) Full Text: DOI OpenURL
Li, Xiao; Ju, Lili; Meng, Xucheng Convergence analysis of exponential time differencing schemes for the Cahn-Hilliard equation. (English) Zbl 1483.65141 Commun. Comput. Phys. 26, No. 5, 1510-1529 (2019). MSC: 65M06 65N06 65L05 65L06 35K35 35K59 65M12 65M15 PDF BibTeX XML Cite \textit{X. Li} et al., Commun. Comput. Phys. 26, No. 5, 1510--1529 (2019; Zbl 1483.65141) Full Text: DOI OpenURL
Yue, Tian Criteria for the existence of uniform exponential expansiveness of linear skew-product semiflows in Hilbert spaces. (Chinese. English summary) Zbl 1463.37049 J. Cent. China Norm. Univ., Nat. Sci. 53, No. 6, 876-878 (2019). MSC: 37L15 34G10 PDF BibTeX XML Cite \textit{T. Yue}, J. Cent. China Norm. Univ., Nat. Sci. 53, No. 6, 876--878 (2019; Zbl 1463.37049) Full Text: DOI OpenURL
Yan, Dongxue; Cao, Hui The global dynamics for an age-structured tuberculosis transmission model with the exponential progression rate. (English) Zbl 1481.92172 Appl. Math. Modelling 75, 769-786 (2019). MSC: 92D30 34D20 34D23 PDF BibTeX XML Cite \textit{D. Yan} and \textit{H. Cao}, Appl. Math. Modelling 75, 769--786 (2019; Zbl 1481.92172) Full Text: DOI OpenURL
Bartosiewicz, Zbigniew Exponential stability of nonlinear positive systems on time scales. (English) Zbl 1429.93305 Nonlinear Anal., Hybrid Syst. 33, 143-150 (2019). MSC: 93D23 93C28 93B18 93C10 PDF BibTeX XML Cite \textit{Z. Bartosiewicz}, Nonlinear Anal., Hybrid Syst. 33, 143--150 (2019; Zbl 1429.93305) Full Text: DOI OpenURL
Sajja, Shravan; Corless, Martin; Zeheb, Ezra; Shorten, Robert Some stability tests for switched descriptor systems. (English) Zbl 1429.93309 Automatica 106, 257-265 (2019). MSC: 93D23 93C30 93C05 PDF BibTeX XML Cite \textit{S. Sajja} et al., Automatica 106, 257--265 (2019; Zbl 1429.93309) Full Text: DOI OpenURL
Liu, Jiankang; Guo, Bao-Zhu A novel semi-discrete scheme preserving uniformly exponential stability for an Euler-Bernoulli beam. (English) Zbl 1428.93090 Syst. Control Lett. 134, Article ID 104518, 10 p. (2019). MSC: 93D20 74K10 74S10 PDF BibTeX XML Cite \textit{J. Liu} and \textit{B.-Z. Guo}, Syst. Control Lett. 134, Article ID 104518, 10 p. (2019; Zbl 1428.93090) Full Text: DOI OpenURL
Biriş, Larisa Elena; Ceauşu, Traian; Mihiţ, Claudia Luminiţa On uniform exponential splitting of variational nonautonomous difference equations in Banach spaces. (English) Zbl 1426.39005 Elaydi, Saber (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA 23, Timişoara, Romania, July 24–28, 2017. Proceedings of the 23rd international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 287, 199-213 (2019). MSC: 39A12 39A30 37B55 PDF BibTeX XML Cite \textit{L. E. Biriş} et al., Springer Proc. Math. Stat. 287, 199--213 (2019; Zbl 1426.39005) Full Text: DOI OpenURL
Ngoc, Pham Huu Anh; Anh, Tran The Stability of nonlinear Volterra equations and applications. (English) Zbl 1428.45009 Appl. Math. Comput. 341, 1-14 (2019). MSC: 45J05 34K20 45D05 45M10 PDF BibTeX XML Cite \textit{P. H. A. Ngoc} and \textit{T. T. Anh}, Appl. Math. Comput. 341, 1--14 (2019; Zbl 1428.45009) Full Text: DOI OpenURL
Biris, Larisa Elena; Ceausu, Traian; Mihit, Claudia Luminita; Popa, Ioan-Lucian Uniform exponential trisplitting – a new criterion for discrete skew-product semiflows. (English) Zbl 1449.37025 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 70, 22 p. (2019). MSC: 37D20 37C75 37C05 PDF BibTeX XML Cite \textit{L. E. Biris} et al., Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 70, 22 p. (2019; Zbl 1449.37025) Full Text: DOI OpenURL
Musafirov, Eduard V. Admissible perturbations of the Lorenz-84 climate model. (English) Zbl 1423.34053 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 6, Article ID 1950080, 8 p. (2019). MSC: 34C60 34D10 34D23 37D45 PDF BibTeX XML Cite \textit{E. V. Musafirov}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 6, Article ID 1950080, 8 p. (2019; Zbl 1423.34053) Full Text: DOI OpenURL
Buşe, Constantin; Diagana, Toka; Nguyen, Lan Thanh; O’Regan, Donal Exponential stability for solutions of continuous and discrete abstract Cauchy problems in Banach spaces. (English) Zbl 1447.47039 Electron. J. Differ. Equ. 2019, Paper No. 78, 16 p. (2019). MSC: 47D06 34G10 35B35 47A30 46A30 PDF BibTeX XML Cite \textit{C. Buşe} et al., Electron. J. Differ. Equ. 2019, Paper No. 78, 16 p. (2019; Zbl 1447.47039) Full Text: Link OpenURL
Berezansky, Leonid; Braverman, Elena Explicit stability tests for linear neutral delay equations using infinite series. (English) Zbl 1433.34094 Rocky Mt. J. Math. 49, No. 2, 387-403 (2019). MSC: 34K20 34K06 34K40 PDF BibTeX XML Cite \textit{L. Berezansky} and \textit{E. Braverman}, Rocky Mt. J. Math. 49, No. 2, 387--403 (2019; Zbl 1433.34094) Full Text: DOI arXiv Euclid OpenURL
Constantinou, P.; Franz, S.; Ludwig, L.; Xenophontos, C. A mixed \(hp\) FEM for the approximation of fourth-order singularly perturbed problems on smooth domains. (English) Zbl 1462.65182 Numer. Methods Partial Differ. Equations 35, No. 1, 114-127 (2019). MSC: 65N30 65N12 65N15 35B25 35A15 35B65 PDF BibTeX XML Cite \textit{P. Constantinou} et al., Numer. Methods Partial Differ. Equations 35, No. 1, 114--127 (2019; Zbl 1462.65182) Full Text: DOI OpenURL
Babiarz, Artur; Czornik, Adam; Niezabitowski, Michał Relations between Bohl exponents and general exponent of discrete linear time-varying systems. (English) Zbl 1415.39009 J. Difference Equ. Appl. 25, No. 4, 560-572 (2019). MSC: 39A30 PDF BibTeX XML Cite \textit{A. Babiarz} et al., J. Difference Equ. Appl. 25, No. 4, 560--572 (2019; Zbl 1415.39009) Full Text: DOI OpenURL
Jin, Kun-Peng; Liang, Jin; Xiao, Ti-Jun Uniform stability of semilinear wave equations with arbitrary local memory effects versus frictional dampings. (English) Zbl 1412.35323 J. Differ. Equations 266, No. 11, 7230-7263 (2019). MSC: 35Q74 74H55 74H40 35B35 93D15 74D99 35R09 74M10 PDF BibTeX XML Cite \textit{K.-P. Jin} et al., J. Differ. Equations 266, No. 11, 7230--7263 (2019; Zbl 1412.35323) Full Text: DOI OpenURL
Zada, Akbar; Zada, Bakht On uniform exponential stability of linear switching system. (English) Zbl 1407.39009 Math. Methods Appl. Sci. 42, No. 2, 717-722 (2019). MSC: 39A30 37N35 35B35 PDF BibTeX XML Cite \textit{A. Zada} and \textit{B. Zada}, Math. Methods Appl. Sci. 42, No. 2, 717--722 (2019; Zbl 1407.39009) Full Text: DOI OpenURL
Constantinou, P.; Franz, S.; Ludwig, L.; Xenophontos, C. Finite element approximation of reaction-diffusion problems using an exponentially graded mesh. (English) Zbl 1442.65355 Comput. Math. Appl. 76, No. 10, 2523-2534 (2018). MSC: 65N30 65N12 65N50 35B25 35J25 PDF BibTeX XML Cite \textit{P. Constantinou} et al., Comput. Math. Appl. 76, No. 10, 2523--2534 (2018; Zbl 1442.65355) Full Text: DOI OpenURL
Dong, Suhui; Yue, Tian; Wu, Yuanyuan; Wu, Wenhuan Averaging theorems for the exponential asymptotic behaviors of linear skew-product semiflows. (Chinese. English summary) Zbl 1438.34208 J. Sichuan Norm. Univ., Nat. Sci. 41, No. 6, 753-756 (2018). MSC: 34G10 34D05 34C29 34D20 PDF BibTeX XML Cite \textit{S. Dong} et al., J. Sichuan Norm. Univ., Nat. Sci. 41, No. 6, 753--756 (2018; Zbl 1438.34208) Full Text: DOI OpenURL
Yue, Tian; Hou, Jie Characterizations for the uniform exponential instability of evolution operators based on Lyapunov norms. (Chinese. English summary) Zbl 1438.34199 J. Cent. China Norm. Univ., Nat. Sci. 52, No. 6, 778-780 (2018). MSC: 34D20 34G10 47D06 PDF BibTeX XML Cite \textit{T. Yue} and \textit{J. Hou}, J. Cent. China Norm. Univ., Nat. Sci. 52, No. 6, 778--780 (2018; Zbl 1438.34199) Full Text: DOI OpenURL
Pandey, Pramod Kumar; Batarseh, Mufeed High order variable mesh exponential finite difference method for the numerical solutions of two point boundary value problems. (English) Zbl 1438.65158 J. Int. Math. Virtual Inst. 8, 19-33 (2018). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{P. K. Pandey} and \textit{M. Batarseh}, J. Int. Math. Virtual Inst. 8, 19--33 (2018; Zbl 1438.65158) OpenURL
Yue, Tian; Song, Xiaoqiu Some characterizations for the uniform exponential stability of linear skew-product semiflows. (Chinese. English summary) Zbl 1424.34211 J. Zhejiang Univ., Sci. Ed. 45, No. 5, 545-548 (2018). MSC: 34G10 34D20 PDF BibTeX XML Cite \textit{T. Yue} and \textit{X. Song}, J. Zhejiang Univ., Sci. Ed. 45, No. 5, 545--548 (2018; Zbl 1424.34211) Full Text: DOI OpenURL
Champagnat, Nicolas; Villemonais, Denis Uniform convergence of penalized time-inhomogeneous Markov processes. (English) Zbl 1405.60004 ESAIM, Probab. Stat. 22, 129-162 (2018). MSC: 60B10 60F99 60J57 37A25 PDF BibTeX XML Cite \textit{N. Champagnat} and \textit{D. Villemonais}, ESAIM, Probab. Stat. 22, 129--162 (2018; Zbl 1405.60004) Full Text: DOI arXiv OpenURL
Zada, Akbar; Li, Tongxing; Arif, Muhammad; Lassoued, Dhaou Criteria for the exponential stability of linear evolution difference equations. (English) Zbl 1402.93218 IMA J. Math. Control Inf. 35, No. 1, 25-34 (2018). MSC: 93D20 93D09 93C25 93C23 93C05 PDF BibTeX XML Cite \textit{A. Zada} et al., IMA J. Math. Control Inf. 35, No. 1, 25--34 (2018; Zbl 1402.93218) Full Text: DOI OpenURL
Buse, Constantin; Nguyen, Lan Thanh; O’Regan, Donal Global and local versions for a Phóng Vũ theorem for periodic evolution families in Hilbert spaces. (English) Zbl 06983567 Electron. J. Differ. Equ. 2018, Paper No. 188, 12 p. (2018). MSC: 35B35 47A30 46A30 PDF BibTeX XML Cite \textit{C. Buse} et al., Electron. J. Differ. Equ. 2018, Paper No. 188, 12 p. (2018; Zbl 06983567) Full Text: Link OpenURL
Zada, Bakht Uniform exponential stability in the sense of Hyers and Ulam for periodic time varying linear systems. (English) Zbl 1400.34021 Differ. Equ. Appl. 10, No. 2, 227-234 (2018). MSC: 34A30 37C60 34D20 PDF BibTeX XML Cite \textit{B. Zada}, Differ. Equ. Appl. 10, No. 2, 227--234 (2018; Zbl 1400.34021) Full Text: DOI OpenURL
Pham Huu Anh Ngoc; Tran The Anh New stability criteria for nonlinear Volterra integro-differential equations. (English) Zbl 1393.45005 Acta Math. Vietnam. 43, No. 3, 485-501 (2018). MSC: 45J05 34D20 PDF BibTeX XML Cite \textit{Pham Huu Anh Ngoc} and \textit{Tran The Anh}, Acta Math. Vietnam. 43, No. 3, 485--501 (2018; Zbl 1393.45005) Full Text: DOI OpenURL
Lassoued, Dhaou Exponential stability and boundedness of solutions for periodic discrete Cauchy problems. (English) Zbl 06908916 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 25, No. 4, 245-256 (2018). MSC: 35B35 PDF BibTeX XML Cite \textit{D. Lassoued}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 25, No. 4, 245--256 (2018; Zbl 06908916) Full Text: Link OpenURL
Poulsen, Dylan; Davis, John M.; Gravagne, Ian A. The geometry of the region of uniform exponential stability for linear time invariant dynamic equations on time scales. (English) Zbl 1395.34092 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 25, No. 3, 159-173 (2018). Reviewer: Antonín Slavík (Praha) MSC: 34N05 34D20 34A30 PDF BibTeX XML Cite \textit{D. Poulsen} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 25, No. 3, 159--173 (2018; Zbl 1395.34092) Full Text: Link OpenURL
Berezansky, Leonid; Braverman, Elena A new stability test for linear neutral differential equations. (English) Zbl 1390.34211 Appl. Math. Lett. 81, 79-85 (2018). MSC: 34K20 34K06 34K40 PDF BibTeX XML Cite \textit{L. Berezansky} and \textit{E. Braverman}, Appl. Math. Lett. 81, 79--85 (2018; Zbl 1390.34211) Full Text: DOI arXiv OpenURL
Taieb, Nizar Hadj; Hammami, Mohamed Ali; Delmotte, François Stabilization of a certain class of fuzzy control systems with uncertainties. (English) Zbl 1440.93217 Arch. Control Sci. 27, No. 3, 453-481 (2017). MSC: 93D23 93C42 93C41 PDF BibTeX XML Cite \textit{N. H. Taieb} et al., Arch. Control Sci. 27, No. 3, 453--481 (2017; Zbl 1440.93217) OpenURL
Tang, Shuhong; Zada, Akbar; Khalid, Habiba; Li, Tongxing Asymptotic behavior of discrete semigroups of bounded linear operators over Banach spaces. (English) Zbl 1427.47017 J. Math. Comput. Sci., JMCS 17, No. 2, 301-307 (2017). MSC: 47D06 47D03 PDF BibTeX XML Cite \textit{S. Tang} et al., J. Math. Comput. Sci., JMCS 17, No. 2, 301--307 (2017; Zbl 1427.47017) Full Text: DOI OpenURL
Zada, Akbar; Wang, Peiguang; Lassoued, Dhaou; Li, Tongxing Connections between Hyers-Ulam stability and uniform exponential stability of 2-periodic linear nonautonomous systems. (English) Zbl 1422.34172 Adv. Difference Equ. 2017, Paper No. 192, 7 p. (2017). MSC: 34D20 34D10 37C60 PDF BibTeX XML Cite \textit{A. Zada} et al., Adv. Difference Equ. 2017, Paper No. 192, 7 p. (2017; Zbl 1422.34172) Full Text: DOI OpenURL
Yue, Tian; Song, Xiaoqiu New criteria for uniform exponential stability of evolution operators in Banach spaces. (Chinese. English summary) Zbl 1399.47115 J. Cent. China Norm. Univ., Nat. Sci. 51, No. 5, 578-580 (2017). MSC: 47D03 47D06 PDF BibTeX XML Cite \textit{T. Yue} and \textit{X. Song}, J. Cent. China Norm. Univ., Nat. Sci. 51, No. 5, 578--580 (2017; Zbl 1399.47115) Full Text: DOI OpenURL
Onitsuka, Masakazu On the exponential stability of two-dimensional nonautonomous difference systems which have a weighted homogeneity of the solution. (English) Zbl 1382.39024 Elaydi, Saber (ed.) et al., Advances in difference equations and discrete dynamical systems. ICDEA, Osaka, Japan, July 24–28, 2016. Proceedings of the 22nd international conference on difference equations and applications. Singapore: Springer (ISBN 978-981-10-6408-1/hbk; 978-981-10-6409-8/ebook). Springer Proceedings in Mathematics & Statistics 212, 183-198 (2017). MSC: 39A30 39A22 PDF BibTeX XML Cite \textit{M. Onitsuka}, Springer Proc. Math. Stat. 212, 183--198 (2017; Zbl 1382.39024) Full Text: DOI OpenURL
Wang, Hongwei; Lian, Jie Control of non-uniform sampling systems based on switching principle. (Chinese. English summary) Zbl 1389.93169 Control Decis. 32, No. 4, 619-624 (2017). MSC: 93C57 93D09 93C10 93C30 PDF BibTeX XML Cite \textit{H. Wang} and \textit{J. Lian}, Control Decis. 32, No. 4, 619--624 (2017; Zbl 1389.93169) Full Text: DOI OpenURL
Ouzahra, M. Exponential stability of nondissipative linear system in Banach space and application to unbounded bilinear systems. (English) Zbl 1377.93136 Syst. Control Lett. 109, 53-62 (2017). MSC: 93D20 93C25 93C05 35L99 PDF BibTeX XML Cite \textit{M. Ouzahra}, Syst. Control Lett. 109, 53--62 (2017; Zbl 1377.93136) Full Text: DOI OpenURL
Zada, Akbar; Arif, Muhammed Evolution semigroups and spectral criteria for asymptotically almost periodic solutions of discrete periodic evolution equations. (English) Zbl 06816563 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 24, No. 6, 447-455 (2017). MSC: 35B35 PDF BibTeX XML Cite \textit{A. Zada} and \textit{M. Arif}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 24, No. 6, 447--455 (2017; Zbl 06816563) Full Text: Link OpenURL
Gorbachuk, M. L.; Gorbachuk, V. M. On behavior at infinity of solutions of elliptic differential equations in a Banach space. (English) Zbl 1389.34184 Methods Funct. Anal. Topol. 23, No. 2, 108-122 (2017). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 34G10 34D20 34D05 PDF BibTeX XML Cite \textit{M. L. Gorbachuk} and \textit{V. M. Gorbachuk}, Methods Funct. Anal. Topol. 23, No. 2, 108--122 (2017; Zbl 1389.34184) Full Text: Link OpenURL
Preda, Ciprian; Popiţiu, Adriana-Paula A discrete-time approach in the qualitative theory of skew-product three-parameter semiflows. (English) Zbl 1377.37032 Bull. Belg. Math. Soc. - Simon Stevin 24, No. 3, 367-379 (2017). MSC: 37C10 37C75 39A12 47D06 PDF BibTeX XML Cite \textit{C. Preda} and \textit{A.-P. Popiţiu}, Bull. Belg. Math. Soc. - Simon Stevin 24, No. 3, 367--379 (2017; Zbl 1377.37032) Full Text: Euclid OpenURL
Zhao, Xiaofei Uniformly accurate multiscale time integrators for second order oscillatory differential equations with large initial data. (English) Zbl 1377.65087 BIT 57, No. 3, 649-683 (2017). Reviewer: Kai Diethelm (Braunschweig) MSC: 65L05 65L20 65L70 34C10 34A25 PDF BibTeX XML Cite \textit{X. Zhao}, BIT 57, No. 3, 649--683 (2017; Zbl 1377.65087) Full Text: DOI OpenURL
Zada, Akbar; Zada, Bakht; Cao, Jinde; Li, Tongxing Uniform exponential stability of periodic discrete switched linear system. (English) Zbl 1373.93279 J. Franklin Inst. 354, No. 14, 6247-6257 (2017). MSC: 93D20 93C30 93C05 PDF BibTeX XML Cite \textit{A. Zada} et al., J. Franklin Inst. 354, No. 14, 6247--6257 (2017; Zbl 1373.93279) Full Text: DOI OpenURL
Ríos, Héctor; González-Sierra, Jaime; Dzul, Alejandro Robust tracking output-control for a quad-rotor: a continuous sliding-mode approach. (English) Zbl 1373.93080 J. Franklin Inst. 354, No. 15, 6672-6691 (2017). MSC: 93B12 93B35 93C95 93B07 93D20 PDF BibTeX XML Cite \textit{H. Ríos} et al., J. Franklin Inst. 354, No. 15, 6672--6691 (2017; Zbl 1373.93080) Full Text: DOI OpenURL
Wang, Jing; Han, Zhong-Jie; Xu, Gen-Qi Energy decay rate of transmission problem between thermoelasticity of type I and type II. (English) Zbl 1391.35064 Z. Angew. Math. Phys. 68, No. 3, Paper No. 65, 19 p. (2017). MSC: 35B40 93D20 74F05 35G46 PDF BibTeX XML Cite \textit{J. Wang} et al., Z. Angew. Math. Phys. 68, No. 3, Paper No. 65, 19 p. (2017; Zbl 1391.35064) Full Text: DOI OpenURL
Braverman, Elena; Karpuz, Başak On different types of stability for linear delay dynamic equations. (English) Zbl 1384.34093 Z. Anal. Anwend. 36, No. 3, 343-375 (2017). Reviewer: Suzete M. Afonso (Bela Vista) MSC: 34N05 34K20 34K06 PDF BibTeX XML Cite \textit{E. Braverman} and \textit{B. Karpuz}, Z. Anal. Anwend. 36, No. 3, 343--375 (2017; Zbl 1384.34093) Full Text: DOI arXiv OpenURL
Buşe, Constantin; O’Regan, Donal; Saierli, Olivia An inequality concerning the growth bound of an evolution family and the norm of a convolution operator. (English) Zbl 06740690 Semigroup Forum 94, No. 3, 618-631 (2017). MSC: 47-XX PDF BibTeX XML Cite \textit{C. Buşe} et al., Semigroup Forum 94, No. 3, 618--631 (2017; Zbl 06740690) Full Text: DOI OpenURL
Pettersen, Kristin Y. Lyapunov sufficient conditions for uniform semiglobal exponential stability. (English) Zbl 1357.93083 Automatica 78, 97-102 (2017); corrigendum ibid. 107, 611 (2019). MSC: 93D20 93D05 93C15 93C05 93B35 PDF BibTeX XML Cite \textit{K. Y. Pettersen}, Automatica 78, 97--102 (2017; Zbl 1357.93083) Full Text: DOI OpenURL
Buşe, Constantin; O’Regan, Donal; Saierli, Olivia An inequality concerning the growth bound of a discrete evolution family on a complex Banach space. (English) Zbl 07355479 J. Difference Equ. Appl. 22, No. 7, 904-912 (2016). MSC: 47-XX 47A30 46A30 PDF BibTeX XML Cite \textit{C. Buşe} et al., J. Difference Equ. Appl. 22, No. 7, 904--912 (2016; Zbl 07355479) Full Text: DOI arXiv OpenURL
Ghanmi, B.; Hammami, M. A. Construction of strict Lyapunov function for nonlinear parameterised perturbed systems. (English) Zbl 1424.34202 J. Linear Topol. Algebra 5, No. 4, 241-261 (2016). MSC: 34D20 34D10 37C60 PDF BibTeX XML Cite \textit{B. Ghanmi} and \textit{M. A. Hammami}, J. Linear Topol. Algebra 5, No. 4, 241--261 (2016; Zbl 1424.34202) Full Text: Link OpenURL
Li, Tongxing; Zada, Akbar Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces. (English) Zbl 1419.39038 Adv. Difference Equ. 2016, Paper No. 153, 8 p. (2016). MSC: 39A30 47D06 PDF BibTeX XML Cite \textit{T. Li} and \textit{A. Zada}, Adv. Difference Equ. 2016, Paper No. 153, 8 p. (2016; Zbl 1419.39038) Full Text: DOI OpenURL
Rămneanţu, Sebastian A generalization of a Datko-type theorem for the stability and the instability of linear skew-product semiflows. (English) Zbl 1399.34163 Bul. Științ. Univ. Politeh. Timiș., Ser. Mat.-Fiz. 61(75), No. 1, 61-70 (2016). MSC: 34D10 34D05 34D20 PDF BibTeX XML Cite \textit{S. Rămneanţu}, Bul. Științ. Univ. Politeh. Timiș., Ser. Mat.-Fiz. 61(75), No. 1, 61--70 (2016; Zbl 1399.34163) OpenURL
Moszner, Zenon On the normal stability of functional equations. (English) Zbl 1369.39030 Ann. Math. Sil. 30, 111-128 (2016). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Z. Moszner}, Ann. Math. Sil. 30, 111--128 (2016; Zbl 1369.39030) Full Text: DOI OpenURL
Zada, Akbar; Arif, Muhammad; Khalid, Habiba Asymptotic behavior of linear and almost periodic discrete evolution systems on Banach space \(\mathcal {AAP}_0^r(\mathbb {Z}_+,\mathcal {W})\). (English) Zbl 1368.39011 Qual. Theory Dyn. Syst. 15, No. 2, 597-605 (2016). MSC: 39A22 39A06 39A30 39A24 PDF BibTeX XML Cite \textit{A. Zada} et al., Qual. Theory Dyn. Syst. 15, No. 2, 597--605 (2016; Zbl 1368.39011) Full Text: DOI OpenURL
Xenophontos, Christos; Franz, Sebastian; Ludwig, Lars Finite element approximation of convection-diffusion problems using an exponentially graded mesh. (English) Zbl 1361.65091 Comput. Math. Appl. 72, No. 6, 1532-1540 (2016). MSC: 65N30 65N12 65N50 35J25 PDF BibTeX XML Cite \textit{C. Xenophontos} et al., Comput. Math. Appl. 72, No. 6, 1532--1540 (2016; Zbl 1361.65091) Full Text: DOI OpenURL
Preda, Ciprian; Rămneanţu, Sebastian; Mureşan, Raluca Perron type theorems for skew-evolution semiflows. (English) Zbl 1362.34085 Glas. Mat., III. Ser. 51, No. 2, 379-390 (2016). MSC: 34D05 34D09 34G10 47D06 PDF BibTeX XML Cite \textit{C. Preda} et al., Glas. Mat., III. Ser. 51, No. 2, 379--390 (2016; Zbl 1362.34085) Full Text: DOI Link OpenURL
Kundu, Sudeep; Pani, Amiya K.; Khebchareon, Morrakot On Kirchhoff’s model of parabolic type. (English) Zbl 1405.65123 Numer. Funct. Anal. Optim. 37, No. 6, 719-752 (2016). MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{S. Kundu} et al., Numer. Funct. Anal. Optim. 37, No. 6, 719--752 (2016; Zbl 1405.65123) Full Text: DOI arXiv OpenURL
Duan, Shengli; Tian, Hongjiong Exponential fitting Runge-Kutta methods for the delayed recruitment/renewal equation. (English) Zbl 1382.65203 J. Comput. Appl. Math. 303, 31-39 (2016). MSC: 65L06 65L03 65L11 65L20 PDF BibTeX XML Cite \textit{S. Duan} and \textit{H. Tian}, J. Comput. Appl. Math. 303, 31--39 (2016; Zbl 1382.65203) Full Text: DOI OpenURL
Errebii, Mouna; Hammami, Mohamed Ali On the practical stabilization of dynamical systems with application. (English) Zbl 07508989 J. Dyn. Syst. Geom. Theor. 13, No. 1, 51-70 (2015). MSC: 34K20 39A11 49K40 PDF BibTeX XML Cite \textit{M. Errebii} and \textit{M. A. Hammami}, J. Dyn. Syst. Geom. Theor. 13, No. 1, 51--70 (2015; Zbl 07508989) Full Text: DOI OpenURL
Onitsuka, Masakazu; Soeda, Tomomi Uniform asymptotic stability implies exponential stability for nonautonomous half-linear differential systems. (English) Zbl 1422.34154 Adv. Difference Equ. 2015, Paper No. 158, 24 p. (2015). MSC: 34D05 34D20 34D23 37C75 93D05 93D20 93D30 PDF BibTeX XML Cite \textit{M. Onitsuka} and \textit{T. Soeda}, Adv. Difference Equ. 2015, Paper No. 158, 24 p. (2015; Zbl 1422.34154) Full Text: DOI OpenURL
Saierli, O. Stability for periodic evolution families of bounded linear operators. (English) Zbl 1399.34165 Surv. Math. Appl. 10, 61-93 (2015). MSC: 34D20 34G10 42A16 45A05 47A10 47A35 47D06 47G10 93D20 PDF BibTeX XML Cite \textit{O. Saierli}, Surv. Math. Appl. 10, 61--93 (2015; Zbl 1399.34165) Full Text: EMIS OpenURL
Yue, Tian; Lei, Guoliang On polynomial dichotomy of linear discrete-time systems in Banach spaces. (English) Zbl 1363.39002 J. Math. Res. Appl. 35, No. 5, 543-550 (2015). MSC: 39A06 39A12 39A30 34D05 34D09 PDF BibTeX XML Cite \textit{T. Yue} and \textit{G. Lei}, J. Math. Res. Appl. 35, No. 5, 543--550 (2015; Zbl 1363.39002) Full Text: DOI OpenURL
Balandin, Anton Sergeyevich; Sabatulina, Tatyana Leonidovna The local stability of a population dynamics model in conditions of deleterious effects. (Russian. English summary) Zbl 1345.34135 Sib. Èlektron. Mat. Izv. 12, 610-624 (2015). MSC: 34K60 34K20 92D25 PDF BibTeX XML Cite \textit{A. S. Balandin} and \textit{T. L. Sabatulina}, Sib. Èlektron. Mat. Izv. 12, 610--624 (2015; Zbl 1345.34135) Full Text: DOI OpenURL
Errebii, M.; Ellouze, I.; Hammami, M. A. Exponential convergence of nonlinear time-varying differential equations. (English) Zbl 1341.34058 J. Contemp. Math. Anal., Armen. Acad. Sci. 50, No. 4, 167-175 (2015) and Izv. Nats. Akad. Nauk Armen., Mat. 50, No. 4, 23-35 (2015). MSC: 34D20 37C60 PDF BibTeX XML Cite \textit{M. Errebii} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 50, No. 4, 167--175 (2015; Zbl 1341.34058) Full Text: DOI OpenURL
Agarwal, Ravi P.; Domoshnitsky, Alexander; Maghakyan, Abraham On exponential stability of second order delay differential equations. (English) Zbl 1363.34250 Czech. Math. J. 65, No. 4, 1047-1068 (2015). MSC: 34K20 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Czech. Math. J. 65, No. 4, 1047--1068 (2015; Zbl 1363.34250) Full Text: DOI Link OpenURL
Berezansky, Leonid; Diblík, Josef; Svoboda, Zdeněk; Šmarda, Zdeněk Simple uniform exponential stability conditions for a system of linear delay differential equations. (English) Zbl 1328.34066 Appl. Math. Comput. 250, 605-614 (2015). MSC: 34K20 39B42 PDF BibTeX XML Cite \textit{L. Berezansky} et al., Appl. Math. Comput. 250, 605--614 (2015; Zbl 1328.34066) Full Text: DOI OpenURL
Mohapatra, Jugal; Mahalik, Manas Kumar An efficient numerical method for singularly perturbed second order ordinary differential equation. (English) Zbl 1325.65111 J. Math. Model. 3, No. 1, 33-48 (2015). MSC: 65L10 65L11 65L12 34B15 34E15 65L20 65L70 PDF BibTeX XML Cite \textit{J. Mohapatra} and \textit{M. K. Mahalik}, J. Math. Model. 3, No. 1, 33--48 (2015; Zbl 1325.65111) Full Text: Link OpenURL
Mohapatra, J.; Reddy, N. Raji Exponentially fitted finite difference scheme for singularly perturbed two point boundary value problems. (English) Zbl 1319.65065 Int. J. Appl. Comput. Math. 1, No. 2, 267-278 (2015). MSC: 65L10 34B05 34B15 34E15 65L11 65L20 65L70 PDF BibTeX XML Cite \textit{J. Mohapatra} and \textit{N. R. Reddy}, Int. J. Appl. Comput. Math. 1, No. 2, 267--278 (2015; Zbl 1319.65065) Full Text: DOI OpenURL
Choi, Sang Il; Goo, Yoon Hoe Lipschitz and asymptotic stability for perturbed functional differential systems. (English) Zbl 1325.34079 J. Appl. Math. Inform. 33, No. 1-2, 219-228 (2015). Reviewer: Olusola Akinyele (Bowie) MSC: 34K20 PDF BibTeX XML Cite \textit{S. I. Choi} and \textit{Y. H. Goo}, J. Appl. Math. Inform. 33, No. 1--2, 219--228 (2015; Zbl 1325.34079) Full Text: DOI OpenURL
Cui, Haibo; Yao, Zheng-an Asymptotic behavior of compressible \(p\)-th power Newtonian fluid with large initial data. (English) Zbl 1305.35114 J. Differ. Equations 258, No. 3, 919-953 (2015). MSC: 35Q35 76N10 35B40 PDF BibTeX XML Cite \textit{H. Cui} and \textit{Z.-a. Yao}, J. Differ. Equations 258, No. 3, 919--953 (2015; Zbl 1305.35114) Full Text: DOI OpenURL
Dai, Xiongping Robust periodic stability implies uniform exponential stability of Markovian jump linear systems and random linear ordinary differential equations. (English) Zbl 1372.93209 J. Franklin Inst. 351, No. 5, 2910-2937 (2014). MSC: 93E15 93D20 60J75 93C05 60H10 PDF BibTeX XML Cite \textit{X. Dai}, J. Franklin Inst. 351, No. 5, 2910--2937 (2014; Zbl 1372.93209) Full Text: DOI arXiv OpenURL
Nunes, Eduardo V. L.; Peixoto, Alessandro J.; Oliveira, Tiago Roux; Hsu, Liu Global exact tracking for uncertain MIMO linear systems by output feedback sliding mode control. (English) Zbl 1372.93067 J. Franklin Inst. 351, No. 4, 2015-2032 (2014). MSC: 93B12 93B52 93C05 93C35 93C41 PDF BibTeX XML Cite \textit{E. V. L. Nunes} et al., J. Franklin Inst. 351, No. 4, 2015--2032 (2014; Zbl 1372.93067) Full Text: DOI OpenURL
Sasu, Adina Luminiţa; Sasu, Bogdan A Zabczyk type method for the study of the exponential trichotomy of discrete dynamical systems. (English) Zbl 1335.39027 Appl. Math. Comput. 245, 447-461 (2014). MSC: 39A30 PDF BibTeX XML Cite \textit{A. L. Sasu} and \textit{B. Sasu}, Appl. Math. Comput. 245, 447--461 (2014; Zbl 1335.39027) Full Text: DOI OpenURL
Ahmad, N.; Zada, A.; Khan, I. U. Discrete characterization of exponential stability of evolution family over Hilbert space. (English) Zbl 1340.47085 Acta Univ. Apulensis, Math. Inform. 39, 281-291 (2014). MSC: 47D03 PDF BibTeX XML Cite \textit{N. Ahmad} et al., Acta Univ. Apulensis, Math. Inform. 39, 281--291 (2014; Zbl 1340.47085) OpenURL
Ben Nasser, Bacem; Hammami, Mohamed Ali On practical stability of time scale perturbed systems. (English) Zbl 1319.34157 J. Dyn. Syst. Geom. Theor. 12, No. 1, 51-67 (2014). MSC: 34N05 34D20 PDF BibTeX XML Cite \textit{B. Ben Nasser} and \textit{M. A. Hammami}, J. Dyn. Syst. Geom. Theor. 12, No. 1, 51--67 (2014; Zbl 1319.34157) Full Text: DOI OpenURL
Muresan, Raluca; Preda, Petre Uniform exponential stability for evolution families that are not exponentially bounded. (English) Zbl 1349.34236 Acta Sci. Math. 80, No. 3-4, 531-538 (2014). MSC: 34G10 34D05 34D20 PDF BibTeX XML Cite \textit{R. Muresan} and \textit{P. Preda}, Acta Sci. Math. 80, No. 3--4, 531--538 (2014; Zbl 1349.34236) Full Text: DOI OpenURL
Bao, Jianhai; Yin, George; Yuan, Chenggui; Wang, Le Yi Exponential ergodicity for retarded stochastic differential equations. (English) Zbl 1314.60110 Appl. Anal. 93, No. 11, 2330-2349 (2014). MSC: 60H10 60J25 47D07 60H30 39B82 PDF BibTeX XML Cite \textit{J. Bao} et al., Appl. Anal. 93, No. 11, 2330--2349 (2014; Zbl 1314.60110) Full Text: DOI arXiv OpenURL
Chitour, Yacine; Colonius, Fritz; Sigalotti, Mario Growth rates for persistently excited linear systems. (English) Zbl 1300.93133 Math. Control Signals Syst. 26, No. 4, 589-616 (2014). MSC: 93D15 93D20 93C05 93C15 PDF BibTeX XML Cite \textit{Y. Chitour} et al., Math. Control Signals Syst. 26, No. 4, 589--616 (2014; Zbl 1300.93133) Full Text: DOI arXiv OpenURL
Fossen, Thor I.; Pettersen, Kristin Y. On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws. (English) Zbl 1300.93144 Automatica 50, No. 11, 2912-2917 (2014). MSC: 93D20 93C95 PDF BibTeX XML Cite \textit{T. I. Fossen} and \textit{K. Y. Pettersen}, Automatica 50, No. 11, 2912--2917 (2014; Zbl 1300.93144) Full Text: DOI Link OpenURL
Kao, Yonggui; Wang, Changhong; Zha, Fusheng; Cao, Hongxia Stability in mean of partial variables for stochastic reaction-diffusion systems with Markovian switching. (English) Zbl 1293.93765 J. Franklin Inst. 351, No. 1, 500-512 (2014). MSC: 93E15 60H10 60H15 92E20 PDF BibTeX XML Cite \textit{Y. Kao} et al., J. Franklin Inst. 351, No. 1, 500--512 (2014; Zbl 1293.93765) Full Text: DOI OpenURL
Goo, Yoon Hoe Lipschitz and asymptotic stability for perturbed nonlinear differential systems. (English) Zbl 1302.34083 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 21, No. 1, 11-21 (2014). Reviewer: Olusola Akinyele (Bowie) MSC: 34D20 34D10 PDF BibTeX XML Cite \textit{Y. H. Goo}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 21, No. 1, 11--21 (2014; Zbl 1302.34083) Full Text: DOI Link OpenURL