Digar, Abhik; Kosuru, G. Sankara Raju Cyclic uniform Lipschitzian mappings and proximal uniform normal structure. (English) Zbl 07428147 Ann. Funct. Anal. 13, No. 1, Paper No. 5, 14 p. (2022). MSC: 47H10 47H09 41A65 PDF BibTeX XML Cite \textit{A. Digar} and \textit{G. S. R. Kosuru}, Ann. Funct. Anal. 13, No. 1, Paper No. 5, 14 p. (2022; Zbl 07428147) Full Text: DOI OpenURL
Normohamadi, Z.; Moosaei, M.; Gabeleh, M. Relatively nonexpansive mappings in \(k\)-uniformly convex Banach spaces. (English) Zbl 07502603 Numer. Funct. Anal. Optim. 42, No. 15, Part 3, 1785-1801 (2021). MSC: 47H10 47H09 34A12 PDF BibTeX XML Cite \textit{Z. Normohamadi} et al., Numer. Funct. Anal. Optim. 42, No. 15, Part 3, 1785--1801 (2021; Zbl 07502603) Full Text: DOI OpenURL
Domínguez Benavides, T.; Moshtaghioun, S. M.; Sadeghi Hafshejani, A. Fixed points for several classes of mappings in variable Lebesgue spaces. (English) Zbl 07367139 Optimization 70, No. 5-6, 911-927 (2021). MSC: 46E30 47H09 47H10 PDF BibTeX XML Cite \textit{T. Domínguez Benavides} et al., Optimization 70, No. 5--6, 911--927 (2021; Zbl 07367139) Full Text: DOI OpenURL
Chen, Bowen; Gong, Wanzhong Uniformly normal structure and uniform non-squareness of Orlicz-Lorentz sequence spaces endowed with the Orlicz norm. (English) Zbl 1474.46029 Math. Appl. 34, No. 2, 436-447 (2021). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{B. Chen} and \textit{W. Gong}, Math. Appl. 34, No. 2, 436--447 (2021; Zbl 1474.46029) OpenURL
Chen, Bowen; Gong, Wanzhong Uniformly normal structure and uniform non-squareness of Orlicz-Lorentz function spaces endowed with the Orlicz norm. (English) Zbl 1471.46013 Ann. Funct. Anal. 12, No. 2, Paper No. 36, 26 p. (2021). Reviewer: Barry Turett (Rochester) MSC: 46B20 46E30 PDF BibTeX XML Cite \textit{B. Chen} and \textit{W. Gong}, Ann. Funct. Anal. 12, No. 2, Paper No. 36, 26 p. (2021; Zbl 1471.46013) Full Text: DOI arXiv OpenURL
Ramasinghe, W. Multidimensional moduli of convexity and rotundity in Banach spaces. (English. Russian original) Zbl 1455.46019 Funct. Anal. Appl. 54, No. 1, 59-63 (2020); translation from Funkts. Anal. Prilozh. 54, No. 1, 75-80 (2020). Reviewer: Barry Turett (Rochester) MSC: 46B20 PDF BibTeX XML Cite \textit{W. Ramasinghe}, Funct. Anal. Appl. 54, No. 1, 59--63 (2020; Zbl 1455.46019); translation from Funkts. Anal. Prilozh. 54, No. 1, 75--80 (2020) Full Text: DOI OpenURL
Gabeleh, Moosa; Markin, Jack Common best proximity pairs via the concept of complete proximal normal structure. (English) Zbl 07222429 Ann. Funct. Anal. 11, No. 3, 831-847 (2020). MSC: 47H09 46B20 90C48 41A50 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{J. Markin}, Ann. Funct. Anal. 11, No. 3, 831--847 (2020; Zbl 07222429) Full Text: DOI OpenURL
Gao, Ji Research on normal structure in a Banach space via some parameters in its dual space. (English) Zbl 1437.46015 Commun. Korean Math. Soc. 34, No. 2, 465-475 (2019). Reviewer: Barry Turett (Rochester) MSC: 46B20 PDF BibTeX XML Cite \textit{J. Gao}, Commun. Korean Math. Soc. 34, No. 2, 465--475 (2019; Zbl 1437.46015) Full Text: DOI OpenURL
Amini-Harandi, A.; Rahimi, M. On some geometric constants in Banach spaces. (English) Zbl 1425.46009 Mediterr. J. Math. 16, No. 4, Paper No. 99, 20 p. (2019). MSC: 46B20 46C15 PDF BibTeX XML Cite \textit{A. Amini-Harandi} and \textit{M. Rahimi}, Mediterr. J. Math. 16, No. 4, Paper No. 99, 20 p. (2019; Zbl 1425.46009) Full Text: DOI OpenURL
Gabeleh, M.; Künzi, H.-P. A. Min-max property in metric spaces with convex structure. (English) Zbl 1438.54095 Acta Math. Hung. 157, No. 1, 173-190 (2019). MSC: 54E35 47H09 46B20 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{H. P. A. Künzi}, Acta Math. Hung. 157, No. 1, 173--190 (2019; Zbl 1438.54095) Full Text: DOI OpenURL
Gao, Ji wUR modulus and normal structure in Banach spaces. (English) Zbl 1406.46008 Adv. Oper. Theory 3, No. 3, 639-646 (2018). Reviewer: Satit Saejung (Khon Kaen) MSC: 46B20 PDF BibTeX XML Cite \textit{J. Gao}, Adv. Oper. Theory 3, No. 3, 639--646 (2018; Zbl 1406.46008) Full Text: DOI Euclid OpenURL
Gao, Ji The introduction of new modulus \(\zeta_X(\varepsilon)\), uniform non-squareness and uniform normal structure in Banach spaces. (English) Zbl 1399.46016 Rev. Roum. Math. Pures Appl. 63, No. 1, 49-59 (2018). MSC: 46B20 46C05 52A07 47H10 PDF BibTeX XML Cite \textit{J. Gao}, Rev. Roum. Math. Pures Appl. 63, No. 1, 49--59 (2018; Zbl 1399.46016) OpenURL
Alfuraidan, M. R.; Khamsi, M. A.; Manav, N. A fixed point theorem for uniformly Lipschitzian mappings in modular vector spaces. (English) Zbl 1482.47095 Filomat 31, No. 17, 5435-5444 (2017). MSC: 47H10 47H09 PDF BibTeX XML Cite \textit{M. R. Alfuraidan} et al., Filomat 31, No. 17, 5435--5444 (2017; Zbl 1482.47095) Full Text: DOI OpenURL
Soliman, Ahmed H. A common fixed point theorem for semigroups of nonlinear uniformly continuous mappings with an application to asymptotic stability of nonlinear systems. (English) Zbl 1484.47138 Filomat 31, No. 7, 1949-1957 (2017). MSC: 47H20 47H09 47H10 PDF BibTeX XML Cite \textit{A. H. Soliman}, Filomat 31, No. 7, 1949--1957 (2017; Zbl 1484.47138) Full Text: DOI OpenURL
Gabeleh, M.; Otafudu, O. O. Global optimization of cyclic Kannan nonexpansive mappings in nonreflexive Banach spaces. (English) Zbl 07117218 Quaest. Math. 40, No. 6, 739-751 (2017). MSC: 47H09 46B20 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{O. O. Otafudu}, Quaest. Math. 40, No. 6, 739--751 (2017; Zbl 07117218) Full Text: DOI OpenURL
Soliman, Ahmed H.; Imdad, Mohammad; Ahmadullah, Md Fixed point theorems for uniformly generalized Kannan type semigroup of self-mappings. (English) Zbl 1413.47085 Creat. Math. Inform. 26, No. 2, 231-240 (2017). MSC: 47H20 47H09 47H10 PDF BibTeX XML Cite \textit{A. H. Soliman} et al., Creat. Math. Inform. 26, No. 2, 231--240 (2017; Zbl 1413.47085) OpenURL
Gabeleh, Moosa A characterization of proximal normal structure via proximal diametral sequences. (English) Zbl 06817782 J. Fixed Point Theory Appl. 19, No. 4, 2909-2925 (2017). MSC: 47H09 41A65 46B20 90C48 PDF BibTeX XML Cite \textit{M. Gabeleh}, J. Fixed Point Theory Appl. 19, No. 4, 2909--2925 (2017; Zbl 06817782) Full Text: DOI OpenURL
Gabeleh, Moosa Remarks on minimal sets for cyclic mappings in uniformly convex Banach spaces. (English) Zbl 1458.47028 Numer. Funct. Anal. Optim. 38, No. 3, 360-375 (2017). MSC: 47H09 46B20 47H10 PDF BibTeX XML Cite \textit{M. Gabeleh}, Numer. Funct. Anal. Optim. 38, No. 3, 360--375 (2017; Zbl 1458.47028) Full Text: DOI OpenURL
Koldanov, Petr; Koldanov, Alexander; Kalyagin, Valeriy; Pardalos, Panos Uniformly most powerful unbiased test for conditional independence in Gaussian graphical model. (English) Zbl 1463.62170 Stat. Probab. Lett. 122, 90-95 (2017). MSC: 62H15 62H22 PDF BibTeX XML Cite \textit{P. Koldanov} et al., Stat. Probab. Lett. 122, 90--95 (2017; Zbl 1463.62170) Full Text: DOI arXiv OpenURL
Saejung, Satit; Gao, Ji On Banas-Hajnosz-Wedrychowicz type modulus of convexity and fixed point property. (English) Zbl 1431.46008 Nonlinear Funct. Anal. Appl. 21, No. 4, 717-725 (2016). MSC: 46B20 47H09 47H10 PDF BibTeX XML Cite \textit{S. Saejung} and \textit{J. Gao}, Nonlinear Funct. Anal. Appl. 21, No. 4, 717--725 (2016; Zbl 1431.46008) OpenURL
Górnicki, Jarosław Fixed point theorems for multi-valued uniformly Lipschitzian mappings in Banach and metric spaces. (English) Zbl 1439.47037 J. Nonlinear Convex Anal. 17, No. 12, 2455-2467 (2016). MSC: 47H10 47H04 47H09 54H25 54C60 54E40 PDF BibTeX XML Cite \textit{J. Górnicki}, J. Nonlinear Convex Anal. 17, No. 12, 2455--2467 (2016; Zbl 1439.47037) Full Text: Link OpenURL
Saejung, Satit; Gao, Ji Normal structure and polygons in Banach spaces. (English) Zbl 1310.46019 Nonlinear Funct. Anal. Appl. 19, No. 1, 131-143 (2014). Reviewer: Barry Turett (Rochester) MSC: 46B20 52A10 PDF BibTeX XML Cite \textit{S. Saejung} and \textit{J. Gao}, Nonlinear Funct. Anal. Appl. 19, No. 1, 131--143 (2014; Zbl 1310.46019) OpenURL
Kalinin, Boris; Sadovskaya, Victoria Cocycles with one exponent over partially hyperbolic systems. (English) Zbl 1301.37017 Geom. Dedicata 167, 167-188 (2013). Reviewer: Pengfei Zhang (Houston) MSC: 37D30 37D20 37C15 37H15 34C20 PDF BibTeX XML Cite \textit{B. Kalinin} and \textit{V. Sadovskaya}, Geom. Dedicata 167, 167--188 (2013; Zbl 1301.37017) Full Text: DOI arXiv OpenURL
Soliman, Ahmed H.; Barakat, Mohamed A. Uniformly normal structure and uniformly generalized Lipschitzian semigroups. (English) Zbl 1439.47041 J. Nonlinear Sci. Appl. 5, No. 5, 379-388 (2012). MSC: 47H20 PDF BibTeX XML Cite \textit{A. H. Soliman} and \textit{M. A. Barakat}, J. Nonlinear Sci. Appl. 5, No. 5, 379--388 (2012; Zbl 1439.47041) Full Text: DOI Link OpenURL
Sahu, D. R.; Agarwal, R. P.; O’Regan, Donal The structure of fixed-point sets of Lipschitzian type semigroups. (English) Zbl 1405.47018 Fixed Point Theory Appl. 2012, Paper No. 163, 21 p. (2012). MSC: 47H09 47H10 47B20 54C15 PDF BibTeX XML Cite \textit{D. R. Sahu} et al., Fixed Point Theory Appl. 2012, Paper No. 163, 21 p. (2012; Zbl 1405.47018) Full Text: DOI OpenURL
Bouziad, A.; Filali, M. The Stone-Čech compactification of a topological group as a semigroup and the SIN property. (English) Zbl 1273.22001 Houston J. Math. 38, No. 4, 1329-1341 (2012). Reviewer: Mihail I. Ursul (Oradea) MSC: 22A05 22A20 54C30 54C35 PDF BibTeX XML Cite \textit{A. Bouziad} and \textit{M. Filali}, Houston J. Math. 38, No. 4, 1329--1341 (2012; Zbl 1273.22001) Full Text: Link OpenURL
Yang, Changsen; Wang, Yamin Some properties on von Neumann-Jordan type constants of Banach spaces. (Chinese. English summary) Zbl 1265.46032 Acta Math. Sci., Ser. A, Chin. Ed. 32, No. 1, 212-221 (2012). MSC: 46B20 PDF BibTeX XML Cite \textit{C. Yang} and \textit{Y. Wang}, Acta Math. Sci., Ser. A, Chin. Ed. 32, No. 1, 212--221 (2012; Zbl 1265.46032) OpenURL
Ouahab, Abdelmalek; Mbarki, Abderrahim; Masude, Jamal; Rahmoune, Mohamed A fixed point theorem for mean non-expansive mappings semigroups in uniformly convex Banach spaces. (English) Zbl 1247.47043 Int. J. Math. Anal., Ruse 6, No. 1-4, 101-109 (2012). MSC: 47H20 47H09 PDF BibTeX XML Cite \textit{A. Ouahab} et al., Int. J. Math. Anal., Ruse 6, No. 1--4, 101--109 (2012; Zbl 1247.47043) Full Text: Link OpenURL
Sahu, D. R.; Agarwal, R. P.; O’Regan, Donal Structure of the fixed point set of asymptotically nonexpansive mappings in Banach spaces with weak uniformly normal structure. (English) Zbl 1276.47070 J. Appl. Anal. 17, No. 1, 51-68 (2011). MSC: 47H09 PDF BibTeX XML Cite \textit{D. R. Sahu} et al., J. Appl. Anal. 17, No. 1, 51--68 (2011; Zbl 1276.47070) Full Text: DOI OpenURL
Gao, Ji; Saejung, Satit A constant related to fixed points and normal structure in Banach spaces. (English) Zbl 1263.46016 Nonlinear Funct. Anal. Appl. 16, No. 1, 17-28 (2011). MSC: 46B20 PDF BibTeX XML Cite \textit{J. Gao} and \textit{S. Saejung}, Nonlinear Funct. Anal. Appl. 16, No. 1, 17--28 (2011; Zbl 1263.46016) OpenURL
Cho, Yeol Je; Hussain, Nawab; Pathak, Hemant Kumar Approximation of nearest common fixed points of asymptotically \(I\)-nonexpansive mappings in Banach spaces. (English) Zbl 1368.47050 Commun. Korean Math. Soc. 26, No. 3, 483-498 (2011). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{Y. J. Cho} et al., Commun. Korean Math. Soc. 26, No. 3, 483--498 (2011; Zbl 1368.47050) Full Text: DOI OpenURL
Ye, Runping; Dong, Qixing; Li, Gang Viscosity approximation for fixed points of asymptotically nonexpansive semigroup in Banach space. (English) Zbl 1301.47093 Int. J. Nonlinear Sci. 10, No. 3, 333-341 (2010). MSC: 47J25 47H09 47H20 PDF BibTeX XML Cite \textit{R. Ye} et al., Int. J. Nonlinear Sci. 10, No. 3, 333--341 (2010; Zbl 1301.47093) OpenURL
Yu, Yumin; Wang, Yuanheng Strong convergence of an iteration process for asymptotically nonexpansive mappings. (Chinese. English summary) Zbl 1229.47129 J. Henan Norm. Univ., Nat. Sci. 38, No. 6, 18-22 (2010). MSC: 47J25 47H10 47H09 PDF BibTeX XML Cite \textit{Y. Yu} and \textit{Y. Wang}, J. Henan Norm. Univ., Nat. Sci. 38, No. 6, 18--22 (2010; Zbl 1229.47129) OpenURL
Peng, Chun; Ji, Weiming Viscosity approximation methods for fixed points of asymptotically nonexpansive semigroup in Banach space. (English) Zbl 1220.47111 Int. J. Nonlinear Sci. 10, No. 1, 122-128 (2010). MSC: 47J25 47H09 47H20 PDF BibTeX XML Cite \textit{C. Peng} and \textit{W. Ji}, Int. J. Nonlinear Sci. 10, No. 1, 122--128 (2010; Zbl 1220.47111) OpenURL
Ouahab, Abdulmalek; Mbarki, Abderrahim; Masude, Jamal; Rais, Said A fixed point theorem for \((\alpha)\)-mappings semigroups in uniformly convex Banach spaces. (English) Zbl 1237.47063 Int. Math. Forum 5, No. 25-28, 1357-1363 (2010). MSC: 47H20 47H09 PDF BibTeX XML Cite \textit{A. Ouahab} et al., Int. Math. Forum 5, No. 25--28, 1357--1363 (2010; Zbl 1237.47063) Full Text: Link OpenURL
Zhao, Liangcai Strong convergence theorems for asymptotically nonexpansive mappings. (Chinese. English summary) Zbl 1219.47139 Pure Appl. Math. 26, No. 3, 367-375 (2010). MSC: 47J25 47H20 47H09 PDF BibTeX XML Cite \textit{L. Zhao}, Pure Appl. Math. 26, No. 3, 367--375 (2010; Zbl 1219.47139) OpenURL
Ceng, Lu-Chuan; Xu, Hong-Kun; Yao, Jen-Chih Uniformly normal structure and uniformly Lipschitzian semigroups. (English) Zbl 1250.47055 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 12, 3742-3750 (2010). MSC: 47H20 47H09 47H10 PDF BibTeX XML Cite \textit{L.-C. Ceng} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 12, 3742--3750 (2010; Zbl 1250.47055) Full Text: DOI OpenURL
Kiriki, Shin; Nakajima, Masaki Blenders for a non-normally Henon-like family. (English) Zbl 1209.37022 Tamkang J. Math. 41, No. 2, 149-166 (2010). Reviewer: Hans Crauel (Frankfurt am Main) MSC: 37C29 37D20 37D30 37D99 37G99 PDF BibTeX XML Cite \textit{S. Kiriki} and \textit{M. Nakajima}, Tamkang J. Math. 41, No. 2, 149--166 (2010; Zbl 1209.37022) Full Text: Link OpenURL
Mitani, Ken-ichi; Saito, Kichi-Suke A new geometrical constant of Banach spaces and the uniform normal structure. (English) Zbl 1245.46009 Commentat. Math. 49, No. 1, 3-13 (2009). Reviewer: Jarosław Górnicki (Rzeszów) MSC: 46B20 PDF BibTeX XML Cite \textit{K.-i. Mitani} and \textit{K.-S. Saito}, Commentat. Math. 49, No. 1, 3--13 (2009; Zbl 1245.46009) OpenURL
Peng, Chun; Ji, Weiming; Li, Gang Viscosity approximation methods for fixed points of asymptotically nonexpansive mappings in Banach space. (English) Zbl 1226.47085 J. Math. Sci. Adv. Appl. 3, No. 2, 229-241 (2009). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{C. Peng} et al., J. Math. Sci. Adv. Appl. 3, No. 2, 229--241 (2009; Zbl 1226.47085) OpenURL
Chang, S. S.; Lee, H. W. J.; Chan, Chi Kin; Kim, J. K. Approximating solutions of variational inequalities for asymptotically nonexpansive mappings. (English) Zbl 1181.65098 Appl. Math. Comput. 212, No. 1, 51-59 (2009). Reviewer: Mihail M. Konstantinov (Sofia) MSC: 65K15 49J40 PDF BibTeX XML Cite \textit{S. S. Chang} et al., Appl. Math. Comput. 212, No. 1, 51--59 (2009; Zbl 1181.65098) Full Text: DOI OpenURL
Espínola, Rafa; Fernández-León, Aurora CAT\((k)\)-spaces, weak convergence and fixed points. (English) Zbl 1182.47043 J. Math. Anal. Appl. 353, No. 1, 410-427 (2009). Reviewer: Dariusz Bugajewski (Baltimore) MSC: 47H10 54H25 55M20 47H09 PDF BibTeX XML Cite \textit{R. Espínola} and \textit{A. Fernández-León}, J. Math. Anal. Appl. 353, No. 1, 410--427 (2009; Zbl 1182.47043) Full Text: DOI OpenURL
Yost, David Uniformly non-hexagonal Banach spaces. (English) Zbl 1188.46009 Dhompongsa, Sompong (ed.) et al., Fixed point theory and its applications. Proceedings of the 8th international conference on fixed point theory and its applications (ICFPTA), Chiang Mai, Thailand, July 16–22, 2007. Yokohama: Yokohama Publishers (ISBN 978-4-946552-31-1/hbk). 211-217 (2008). Reviewer: Barry Turett (Rochester) MSC: 46B20 47H10 PDF BibTeX XML Cite \textit{D. Yost}, in: Fixed point theory and its applications. Proceedings of the 8th international conference on fixed point theory and its applications (ICFPTA), Chiang Mai, Thailand, July 16--22, 2007. Yokohama: Yokohama Publishers. 211--217 (2008; Zbl 1188.46009) OpenURL
Cui, Yunan; Ge, Lei; Zuo, Zhanfei Geometric properties concerning some parameters. (English) Zbl 1199.46039 J. Nat. Sci. Heilongjiang Univ. 25, No. 6, 711-718 (2008). MSC: 46B20 PDF BibTeX XML Cite \textit{Y. Cui} et al., J. Nat. Sci. Heilongjiang Univ. 25, No. 6, 711--718 (2008; Zbl 1199.46039) OpenURL
Gao, Ji; Saejung, Satit A note on Pythagorean parameters and normal structure in Banach spaces. (English) Zbl 1183.46015 Int. J. Pure Appl. Math. 48, No. 4, 557-562 (2008). MSC: 46B20 PDF BibTeX XML Cite \textit{J. Gao} and \textit{S. Saejung}, Int. J. Pure Appl. Math. 48, No. 4, 557--562 (2008; Zbl 1183.46015) OpenURL
Huang, Jianfeng; Wang, Yuanheng Approximation of the iterative method for a zero of \(m\)-accretive mappings. (Chinese. English summary) Zbl 1174.47053 Acta Math. Sin., Chin. Ser. 51, No. 3, 435-446 (2008). MSC: 47J25 47H06 47H10 PDF BibTeX XML Cite \textit{J. Huang} and \textit{Y. Wang}, Acta Math. Sin., Chin. Ser. 51, No. 3, 435--446 (2008; Zbl 1174.47053) OpenURL
Huang, Shuechin Fixed points of a sequence of asymptotically nonexpansive mappings. (English) Zbl 1175.47060 Fixed Point Theory 9, No. 2, 465-485 (2008). Reviewer: Ulrich Kosel (Freiberg) MSC: 47J25 49J30 47H10 PDF BibTeX XML Cite \textit{S. Huang}, Fixed Point Theory 9, No. 2, 465--485 (2008; Zbl 1175.47060) OpenURL
Wang, Fenghui; Yang, Changsen Uniform non-squareness, uniform normal structure and Gao’s constants. (English) Zbl 1170.46018 Math. Inequal. Appl. 11, No. 4, 607-614 (2008). MSC: 46B20 47H10 PDF BibTeX XML Cite \textit{F. Wang} and \textit{C. Yang}, Math. Inequal. Appl. 11, No. 4, 607--614 (2008; Zbl 1170.46018) Full Text: DOI OpenURL
Bag, T.; Samanta, S. K. Fixed point theorems in Felbin’s type fuzzy normed linear spaces. (English) Zbl 1155.47061 J. Fuzzy Math. 16, No. 1, 243-260 (2008). Reviewer: Ismat Beg (Lahore) MSC: 47S40 47H10 47H09 46B20 PDF BibTeX XML Cite \textit{T. Bag} and \textit{S. K. Samanta}, J. Fuzzy Math. 16, No. 1, 243--260 (2008; Zbl 1155.47061) OpenURL
Alonso, Javier; Llorens-Fuster, Enrique Geometric mean and triangles inscribed in a semicircle in Banach spaces. (English) Zbl 1153.46007 J. Math. Anal. Appl. 340, No. 2, 1271-1283 (2008). Reviewer: Satit Saejung (Khon Kaen) MSC: 46B20 PDF BibTeX XML Cite \textit{J. Alonso} and \textit{E. Llorens-Fuster}, J. Math. Anal. Appl. 340, No. 2, 1271--1283 (2008; Zbl 1153.46007) Full Text: DOI OpenURL
Chang, S. S.; Cho, Yeol Je; Tian, Y. X. Strong convergence theorems of Reich type iterative sequence for non-self asymptotically nonexpansive mappings. (English) Zbl 1219.47103 Taiwanese J. Math. 11, No. 3, 729-743 (2007). MSC: 47J25 47H05 47H06 47H10 PDF BibTeX XML Cite \textit{S. S. Chang} et al., Taiwanese J. Math. 11, No. 3, 729--743 (2007; Zbl 1219.47103) Full Text: DOI OpenURL
Chen, Ying; He, Humin; Chen, Rudong Fixed point solutions of variational inequalities for asymptotically pseudocontractive mappings in Banach spaces. (English) Zbl 1152.47052 Appl. Math. Sci., Ruse 1, No. 53-56, 2735-2745 (2007). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 47J20 47H10 47J25 49J40 PDF BibTeX XML Cite \textit{Y. Chen} et al., Appl. Math. Sci., Ruse 1, No. 53--56, 2735--2745 (2007; Zbl 1152.47052) OpenURL
Bag, T.; Samanta, S. K. Some fixed point theorems in fuzzy normed linear spaces. (English) Zbl 1127.47059 Inf. Sci. 177, No. 16, 3271-3289 (2007). Reviewer: Salvatore Sessa (Napoli) MSC: 47S40 47H10 54H25 PDF BibTeX XML Cite \textit{T. Bag} and \textit{S. K. Samanta}, Inf. Sci. 177, No. 16, 3271--3289 (2007; Zbl 1127.47059) Full Text: DOI OpenURL
Johanis, Michal; Rychtár, Jan On uniformly Gâteaux smooth norms and normal structure. (English) Zbl 1119.46019 Proc. Am. Math. Soc. 135, No. 5, 1511-1514 (2007). Reviewer: Barry Turett (Rochester) MSC: 46B20 47H10 PDF BibTeX XML Cite \textit{M. Johanis} and \textit{J. Rychtár}, Proc. Am. Math. Soc. 135, No. 5, 1511--1514 (2007; Zbl 1119.46019) Full Text: DOI OpenURL
Bárcenas, Diomedes The Minkowski plane and the geometry of Banach spaces. (El plano de Minkowski y geometria de espacios de Banach.) (Spanish) Zbl 1155.46006 Notas Mat. 2, No. 2, 17-35 (2006). Reviewer: Elói M. Galego (Sao Paulo) MSC: 46B20 52A21 PDF BibTeX XML Cite \textit{D. Bárcenas}, Notas Mat. 2, No. 2, 17--35 (2006; Zbl 1155.46006) OpenURL
Chidume, C. E.; Ofoedu, E. U. Strong convergence theorems for uniformly L-Lipschitzian mappings in Banach spaces. (English) Zbl 1218.47096 Panam. Math. J. 16, No. 4, 1-11 (2006). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{C. E. Chidume} and \textit{E. U. Ofoedu}, Panam. Math. J. 16, No. 4, 1--11 (2006; Zbl 1218.47096) OpenURL
Saluja, G. S. Fixed points for an admissible class of asymptotically regular semigroup in Banach spaces with weak uniformly normal structure. (English) Zbl 1159.47035 Math. Stud. 75, No. 1-4, 231-238 (2006). Reviewer: Mihai Turinici (Iaşi) MSC: 47H20 47H10 54H25 PDF BibTeX XML Cite \textit{G. S. Saluja}, Math. Stud. 75, No. 1--4, 231--238 (2006; Zbl 1159.47035) OpenURL
Bag, T.; Samanta, S. K. Fixed point theorems on fuzzy normed linear spaces. (English) Zbl 1111.46059 Inf. Sci. 176, No. 19, 2910-2931 (2006). MSC: 46S40 47S40 47H09 47H10 54A40 PDF BibTeX XML Cite \textit{T. Bag} and \textit{S. K. Samanta}, Inf. Sci. 176, No. 19, 2910--2931 (2006; Zbl 1111.46059) Full Text: DOI OpenURL
Nilsrakoo, Weerayuth; Saejung, Satit The James constant of normalized norms on \(\mathbb R^{2}\). (English) Zbl 1104.46007 J. Inequal. Appl. 2006, Article ID 26265, 12 p. (2006). MSC: 46B20 PDF BibTeX XML Cite \textit{W. Nilsrakoo} and \textit{S. Saejung}, J. Inequal. Appl. 2006, Article ID 26265, 12 p. (2006; Zbl 1104.46007) Full Text: DOI EuDML OpenURL
Zeng, Liu-Chuan Uniform normal structure and solutions of Reich’s open question. (English) Zbl 1144.47322 Appl. Math. Mech., Engl. Ed. 26, No. 9, 1204-1211 (2005). MSC: 47H06 47H10 PDF BibTeX XML Cite \textit{L.-C. Zeng}, Appl. Math. Mech., Engl. Ed. 26, No. 9, 1204--1211 (2005; Zbl 1144.47322) Full Text: DOI OpenURL
Gao, Ji Normal structure and Pythagorean approach in Banach spaces. (English) Zbl 1113.46008 Period. Math. Hung. 51, No. 2, 19-30 (2005). Reviewer: Jan Hamhalter (Praha) MSC: 46B20 PDF BibTeX XML Cite \textit{J. Gao}, Period. Math. Hung. 51, No. 2, 19--30 (2005; Zbl 1113.46008) Full Text: DOI OpenURL
Wu, Xian; Yao, Jen-Chih; Zeng, Lu-Chuan Uniform normal structure and strong convergence theorems for asymptotically pseudocontractive mappings. (English) Zbl 1100.46008 J. Nonlinear Convex Anal. 6, No. 3, 453-463 (2005). Reviewer: Poom Kumam (Bangkok) MSC: 46B20 47H10 47H09 PDF BibTeX XML Cite \textit{X. Wu} et al., J. Nonlinear Convex Anal. 6, No. 3, 453--463 (2005; Zbl 1100.46008) OpenURL
Zhang, Haixia; Tian, Changan; Yang, Changsen Modulus of \(U_{\beta^-}\) convexity and normal structure. (Chinese. English summary) Zbl 1098.46505 J. Henan Norm. Univ., Nat. Sci. 33, No. 4, 140-141 (2005). MSC: 46B20 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Henan Norm. Univ., Nat. Sci. 33, No. 4, 140--141 (2005; Zbl 1098.46505) OpenURL
Gao, Ji Normal structure and smoothness in Banach spaces. (English) Zbl 1079.46006 Nonlinear Funct. Anal. Appl. 10, No. 1, 103-115 (2005). Reviewer: Poom Kumam (Bangkok) MSC: 46B20 PDF BibTeX XML Cite \textit{J. Gao}, Nonlinear Funct. Anal. Appl. 10, No. 1, 103--115 (2005; Zbl 1079.46006) OpenURL
Kumam, Poom Fixed point theorems for nonexpansive mappings in modular spaces. (English) Zbl 1117.47045 Arch. Math., Brno 40, No. 4, 345-353 (2004). Reviewer: Ondřej Došlý (Brno) MSC: 47H10 46A80 47H09 46B20 46E30 PDF BibTeX XML Cite \textit{P. Kumam}, Arch. Math., Brno 40, No. 4, 345--353 (2004; Zbl 1117.47045) Full Text: EuDML EMIS OpenURL
Eshita, Kazutaka; Takahashi, Wataru On the uniform convexity of subsets of Banach spaces. (English) Zbl 1074.46009 Sci. Math. Jpn. 60, No. 3, 577-594 (2004). Reviewer: Barry Turett (Rochester) MSC: 46B20 47H09 47H10 PDF BibTeX XML Cite \textit{K. Eshita} and \textit{W. Takahashi}, Sci. Math. Jpn. 60, No. 3, 577--594 (2004; Zbl 1074.46009) OpenURL
Prempeh, E. Fixed point theorems for a finite family of asymptotically nonexpansive mappings. (English) Zbl 1073.47053 Aust. J. Math. Anal. Appl. 1, No. 2, Article 6, 10 p. (2004). Reviewer: T. D. Narang (Amritsar) MSC: 47H09 47H06 47J25 PDF BibTeX XML Cite \textit{E. Prempeh}, Aust. J. Math. Anal. Appl. 1, No. 2, Article 6, 10 p. (2004; Zbl 1073.47053) Full Text: Link OpenURL
Saluja, G. S.; Sahu, D. R. An existence result for asymptotically regular mappings. (English) Zbl 1069.47510 Pure Appl. Math. Sci. 59, No. 1-2, 25-32 (2004). Reviewer: Mihai Turinici (Iaşi) MSC: 47H10 46B20 PDF BibTeX XML Cite \textit{G. S. Saluja} and \textit{D. R. Sahu}, Pure Appl. Math. Sci. 59, No. 1--2, 25--32 (2004; Zbl 1069.47510) OpenURL
Ramírez, P. Lorenzo Random fixed points of uniformly Lipschitzian mappings. (English) Zbl 1058.47050 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 57, No. 1, 23-34 (2004). MSC: 47H40 47H10 PDF BibTeX XML Cite \textit{P. L. Ramírez}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 57, No. 1, 23--34 (2004; Zbl 1058.47050) Full Text: DOI OpenURL
Chidume, C. E. Strong convergence theorems for fixed points of asymptotically pseudocontractive semi-groups. (English) Zbl 1065.47064 J. Math. Anal. Appl. 296, No. 2, 410-421 (2004). Reviewer: Mihai Turinici (Iaşi) MSC: 47H20 47J25 PDF BibTeX XML Cite \textit{C. E. Chidume}, J. Math. Anal. Appl. 296, No. 2, 410--421 (2004; Zbl 1065.47064) Full Text: DOI OpenURL
Gao, Ji Mazur distance and normal structure in Banach spaces. (English) Zbl 1045.46007 Haroske, Dorothee (ed.) et al., Function spaces, differential operators and nonlinear analysis. The Hans Triebel anniversary volume. Based on the lectures given at the international conference on function spaces, differential operators and nonlinear analysis, FSDONA-01, Teistungen, Germany, June 28–July 4, 2001, in honor of the 65th birthday of H. J. Triebel. Basel: Birkhäuser (ISBN 3-7643-6935-3/hbk). 305-316 (2003). Reviewer: Barry Turett (Rochester) MSC: 46B20 PDF BibTeX XML Cite \textit{J. Gao}, in: Function spaces, differential operators and nonlinear analysis. The Hans Triebel anniversary volume. Based on the lectures given at the international conference on function spaces, differential operators and nonlinear analysis, FSDONA-01, Teistungen, Germany, June 28--July 4, 2001, in honor of the 65th birthday of H. J. Triebel. Basel: Birkhäuser. 305--316 (2003; Zbl 1045.46007) OpenURL
Dhompongsa, S.; Kaewkhao, A.; Tasena, S. On a generalized James constant. (English) Zbl 1030.46010 J. Math. Anal. Appl. 285, No. 2, 419-435 (2003). MSC: 46B20 PDF BibTeX XML Cite \textit{S. Dhompongsa} et al., J. Math. Anal. Appl. 285, No. 2, 419--435 (2003; Zbl 1030.46010) Full Text: DOI OpenURL
Zeng, Luchuan Fixed point theorems for asymptotically regulary semigroups in Banach spaces. (Chinese. English summary) Zbl 1026.47049 Chin. Ann. Math., Ser. A 23, No. 6, 699-706 (2002). MSC: 47H10 47H20 47H09 PDF BibTeX XML Cite \textit{L. Zeng}, Chin. Ann. Math., Ser. A 23, No. 6, 699--706 (2002; Zbl 1026.47049) OpenURL
Gao, Ji A new class of Banach spaces with uniform normal structure. (English) Zbl 1025.46009 Northeast. Math. J. 17, No. 1, 103-110 (2001). MSC: 46B20 47H10 52A05 PDF BibTeX XML Cite \textit{J. Gao}, Northeast. Math. J. 17, No. 1, 103--110 (2001; Zbl 1025.46009) OpenURL
Sirotkin, G. G. New properties of Lebesgue-Bochner \(L_p(\Omega,\Sigma,\mu;X)\) spaces. (English) Zbl 1030.46043 Houston J. Math. 27, No. 4, 897-906 (2001). Reviewer: Surjit Singh Khurana (Iowa City) MSC: 46E40 46E30 PDF BibTeX XML Cite \textit{G. G. Sirotkin}, Houston J. Math. 27, No. 4, 897--906 (2001; Zbl 1030.46043) OpenURL
Gao, Ji Mappings between Banach spaces. (English) Zbl 1009.46006 Nonlinear Funct. Anal. Appl. 6, No. 2, 301-306 (2001). MSC: 46B20 PDF BibTeX XML Cite \textit{J. Gao}, Nonlinear Funct. Anal. Appl. 6, No. 2, 301--306 (2001; Zbl 1009.46006) OpenURL
Xu, Hong-Kun; Marino, G.; Pietramala, P. On property \((M)\) and its generalizations. (English) Zbl 0996.46011 J. Math. Anal. Appl. 261, No. 1, 271-281 (2001). Reviewer: J.Górnicki (Rzeszów) MSC: 46B20 46B22 PDF BibTeX XML Cite \textit{H.-K. Xu} et al., J. Math. Anal. Appl. 261, No. 1, 271--281 (2001; Zbl 0996.46011) Full Text: DOI Link OpenURL
Elamrani, M.; Mbarki, A. B.; Mehdaoui, B. Common fixed point theorems for commuting \(k\)-uniformly Lipschitzian mappings. (English) Zbl 0985.47045 Int. J. Math. Math. Sci. 25, No. 3, 145-152 (2001). Reviewer: Billy E.Rhoades (Bloomington) MSC: 47H10 46B20 PDF BibTeX XML Cite \textit{M. Elamrani} et al., Int. J. Math. Math. Sci. 25, No. 3, 145--152 (2001; Zbl 0985.47045) Full Text: DOI EuDML OpenURL
Kato, Mikio; Maligranda, Lech; Takahashi, Yasuji On James and Jordan–von Neumann constants and the normal structure coefficient of Banach spaces. (English) Zbl 0997.46009 Stud. Math. 144, No. 3, 275-295 (2001). Reviewer: Mary Lilian Lourenco (Sao Paulo) MSC: 46B20 46B25 46A45 46E30 PDF BibTeX XML Cite \textit{M. Kato} et al., Stud. Math. 144, No. 3, 275--295 (2001; Zbl 0997.46009) Full Text: DOI OpenURL
Şerb, Ioan Geometric properties of normed spaces and estimates for rectangular modulus. (English) Zbl 1003.46006 Math. Pannonica 12, No. 1, 27-38 (2001). MSC: 46B20 46B08 PDF BibTeX XML Cite \textit{I. Şerb}, Math. Pannonica 12, No. 1, 27--38 (2001; Zbl 1003.46006) Full Text: EuDML OpenURL
Elamrani, M.; Mbarki, A.; Mehdaoui, B. Common fixed point theorems for commutings \(k\)-uniformly Lipschitzian mappings in metric spaces. (English) Zbl 0978.47039 Southwest J. Pure Appl. Math. 2000, No. 2, 160-171 (2000). Reviewer: Peter Zabreiko (Minsk) MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{M. Elamrani} et al., Southwest J. Pure Appl. Math. 2000, No. 2, 160--171 (2000; Zbl 0978.47039) Full Text: EuDML EMIS OpenURL
Jung, Jong Soo; Thakur, Balwant Singh; Sahu, Daya Ram Fixed points of a certain class of asymptotically regular mappings. (English) Zbl 0977.47049 Bull. Korean Math. Soc. 37, No. 4, 729-741 (2000). MSC: 47H10 46E30 46J15 PDF BibTeX XML Cite \textit{J. S. Jung} et al., Bull. Korean Math. Soc. 37, No. 4, 729--741 (2000; Zbl 0977.47049) OpenURL
Gao, Ji Normal structure and antipodal points in Banach spaces. (English) Zbl 0977.46005 Acta Anal. Funct. Appl. 2, No. 3, 247-263 (2000). MSC: 46B20 46M07 PDF BibTeX XML Cite \textit{J. Gao}, Acta Anal. Funct. Appl. 2, No. 3, 247--263 (2000; Zbl 0977.46005) OpenURL
Gao, Ji Normal hexagon and more general Banach spaces with uniform normal structure. (English) Zbl 0974.46018 J. Math., Wuhan Univ. 20, No. 3, 241-248 (2000). Reviewer: Joe Howard (Portales/New Mexico) MSC: 46B20 PDF BibTeX XML Cite \textit{J. Gao}, J. Math., Wuhan Univ. 20, No. 3, 241--248 (2000; Zbl 0974.46018) OpenURL
Thakur, B. S.; Jung, Jong S.; Cho, Yeol Je Random fixed points of asymptotically regular mappings. (English) Zbl 1110.47312 Commun. Appl. Nonlinear Anal. 6, No. 1, 61-71 (1999). MSC: 47H40 47H10 PDF BibTeX XML Cite \textit{B. S. Thakur} et al., Commun. Appl. Nonlinear Anal. 6, No. 1, 61--71 (1999; Zbl 1110.47312) OpenURL
Sharma, B. K.; Sahu, Dayaram Fixed point for a generalized Lipschitzian semigroup and demiclosed criteria. (English) Zbl 0949.47044 Indian J. Pure Appl. Math. 30, No. 9, 937-944 (1999). Reviewer: Vasile Berinde (Baia Mare) MSC: 47H10 PDF BibTeX XML Cite \textit{B. K. Sharma} and \textit{D. Sahu}, Indian J. Pure Appl. Math. 30, No. 9, 937--944 (1999; Zbl 0949.47044) OpenURL
Thakur, Balwant Singh; Jung, Jong Soo Fixed point theorems for generalized Lipschitzian semigroups in Banach spaces. (English) Zbl 0926.47039 Int. J. Math. Math. Sci. 22, No. 1, 119-129 (1999). MSC: 47H10 46E30 46E35 46J15 46B20 PDF BibTeX XML Cite \textit{B. S. Thakur} and \textit{J. S. Jung}, Int. J. Math. Math. Sci. 22, No. 1, 119--129 (1999; Zbl 0926.47039) Full Text: DOI EuDML OpenURL
Budzyńska, Monika; Kuczumow, Tadeusz; Reich, Simeon Uniform asymptotic normal structure, the uniform semi-Opial property and fixed points of asymptotically regular uniformly Lipschitzian semigroups. I. (English) Zbl 0973.47042 Abstr. Appl. Anal. 3, No. 1-2, 133-151 (1998). Reviewer: Daciberg Gonçalves (São Paulo) MSC: 47H10 46B20 PDF BibTeX XML Cite \textit{M. Budzyńska} et al., Abstr. Appl. Anal. 3, No. 1--2, 133--151 (1998; Zbl 0973.47042) Full Text: DOI EuDML Link OpenURL
Jung, Jong Soo; Sahu, Daya Ram Fixed point theorems for non-Lipschitzian semigroups without convexity. (English) Zbl 0942.47041 Indian J. Math. 40, No. 2, 169-176 (1998). Reviewer: Vasile Berinde (Baia Mare) MSC: 47H10 47H20 54H25 47H09 PDF BibTeX XML Cite \textit{J. S. Jung} and \textit{D. R. Sahu}, Indian J. Math. 40, No. 2, 169--176 (1998; Zbl 0942.47041) OpenURL
Katirtzoglou, Eleni Normal structure of Musielak-Orlicz spaces. (English) Zbl 0905.46015 Collect. Math. 48, No. 4-6, 571-585 (1997). MSC: 46E30 46B20 46A45 PDF BibTeX XML Cite \textit{E. Katirtzoglou}, Collect. Math. 48, No. 4--6, 571--585 (1997; Zbl 0905.46015) Full Text: EuDML OpenURL
Gupta, Rameshwar D.; Richards, Donald St. P. Multivariate Liouville distributions. V. (English) Zbl 0887.62060 Johnson, Norman L. (ed.) et al., Advances in the theory and practice of statistics. A volume in honor of Samuel Kotz. New York, NY: Wiley. Wiley Series in Probability and Statistics. 377-396 (1997). MSC: 62H05 62B05 62J10 62A01 PDF BibTeX XML Cite \textit{R. D. Gupta} and \textit{D. St. P. Richards}, in: Advances in the theory and practice of statistics. A volume in honor of Samuel Kotz. New York, NY: Wiley. 377--396 (1997; Zbl 0887.62060) OpenURL
Thakur, Balwant Singh; Jung, Jong Soo Fixed points of a certain class of mappings in uniformly convex Banach spaces. (English) Zbl 0902.47051 Bull. Korean Math. Soc. 34, No. 3, 385-394 (1997). MSC: 47H10 46B20 PDF BibTeX XML Cite \textit{B. S. Thakur} and \textit{J. S. Jung}, Bull. Korean Math. Soc. 34, No. 3, 385--394 (1997; Zbl 0902.47051) OpenURL
Wu, Qiguang; Feng, Tai; Dong, Xiuyuan A note on parameter estimation in growth curve models. (Chinese. English summary) Zbl 0880.62062 Appl. Math., Ser. A (Chin. Ed.) 12, No. 3, 311-320 (1997). MSC: 62H12 62J99 PDF BibTeX XML Cite \textit{Q. Wu} et al., Appl. Math., Ser. A (Chin. Ed.) 12, No. 3, 311--320 (1997; Zbl 0880.62062) OpenURL
Lau, Anthony To-ming; Mah, Peter F.; Ülger, Ali Fixed point property and normal structure for Banach spaces associated to locally compact groups. (English) Zbl 0868.43001 Proc. Am. Math. Soc. 125, No. 7, 2021-2027 (1997). Reviewer: Daniel Li (Orsay) MSC: 43A10 43A15 46B20 47H09 22D10 54G12 PDF BibTeX XML Cite \textit{A. T. m. Lau} et al., Proc. Am. Math. Soc. 125, No. 7, 2021--2027 (1997; Zbl 0868.43001) Full Text: DOI OpenURL
Gao, Ji Normal structure and modulus of \(U\)-convexity in Banach spaces. (English) Zbl 0868.46006 Rákosník, Jiří(ed.), Function spaces, differential operators and nonlinear analysis. Proceedings of the conference held in Paseky nad Jizerou, Czech Republic, September 3-9, 1995. Prague: Prometheus Publishing House. 195-199 (1996). Reviewer: E.Behrends (Berlin) MSC: 46B20 47H10 PDF BibTeX XML Cite \textit{J. Gao}, in: Function spaces, differential operators and nonlinear analysis. Proceedings of the conference held in Paseky nad Jizerou, Czech Republic, September 3-9, 1995. Prague: Prometheus Publishing House. 195--199 (1996; Zbl 0868.46006) OpenURL
Domínguez Benavides, Tomás; López Acedo, Genaro; Xu, Hong-Kun Qualitative and quantitative properties for the space \(\ell_{p,q}\). (English) Zbl 0857.46007 Houston J. Math. 22, No. 1, 89-100 (1996). MSC: 46B20 47H10 PDF BibTeX XML Cite \textit{T. Domínguez Benavides} et al., Houston J. Math. 22, No. 1, 89--100 (1996; Zbl 0857.46007) OpenURL
Gulevich, N. M. Fixed points of nonexpansive mappings. (English) Zbl 0865.47041 J. Math. Sci., New York 79, No. 1, 755-815 (1996). Reviewer: J.Górnicki (Rzeszów) MSC: 47H10 47H09 PDF BibTeX XML Cite \textit{N. M. Gulevich}, J. Math. Sci., New York 79, No. 1, 755--815 (1996; Zbl 0865.47041) Full Text: DOI OpenURL
Habala, Petr; Hájek, Petr; Zizler, Václav Introduction to Banach spaces I, II. (English) Zbl 0904.46001 Prague: Matfyzpress. 329 p. (1996). Reviewer: J.Appell (Würzburg) MSC: 46-01 47-01 PDF BibTeX XML Cite \textit{P. Habala} et al., Introduction to Banach spaces I, II. Prague: Matfyzpress (1996; Zbl 0904.46001) OpenURL
Prus, Stanisław Multi-dimensional uniform convexity and uniform smoothness of Banach spaces. (English) Zbl 0889.46015 Domínguez Benavides, Tomás (ed.), Recent advances on metric fixed point theory. Proceedings of the international workshop, Seville, Spain, September 25–29, 1995. Sevilla: Univ. de Sevilla. 111-136 (1996). Reviewer: A.C.Thompson MSC: 46B20 47H10 47H09 PDF BibTeX XML Cite \textit{S. Prus}, in: Recent advances on metric fixed point theory. Proceedings of the international workshop, Seville, Spain, September 25--29, 1995. Sevilla: Univ. de Sevilla. 111--136 (1996; Zbl 0889.46015) OpenURL
Górnicki, Jarosław Fixed points of Lipschitzian semigroups in metric spaces with uniformly normal structure. (English) Zbl 0881.47031 Zesz. Nauk. Politech. Rzesz. 154, Mat. 20, 41-48 (1996). MSC: 47H09 47H10 47H20 PDF BibTeX XML Cite \textit{J. Górnicki}, Zesz. Nauk. Politech. Rzesz., Mat. 154(20), 41--48 (1996; Zbl 0881.47031) OpenURL