Almeida, Víctor; Betancor, Jorge J.; Fariña, Juan C.; Rodríguez-Mesa, Lourdes Littlewood-Paley-Stein theory and Banach spaces in the inverse Gaussian setting. (English) Zbl 07749909 Potential Anal. 59, No. 3, 1235-1284 (2023). MSC: 42B20 42B25 47B90 PDF BibTeX XML Cite \textit{V. Almeida} et al., Potential Anal. 59, No. 3, 1235--1284 (2023; Zbl 07749909) Full Text: DOI arXiv OA License
Quilis, Andrés Renormings preserving local geometry at countably many points in spheres of Banach spaces and applications. (English) Zbl 07707888 J. Math. Anal. Appl. 526, No. 2, Article ID 127276, 16 p. (2023). MSC: 46B03 46B20 46G05 PDF BibTeX XML Cite \textit{A. Quilis}, J. Math. Anal. Appl. 526, No. 2, Article ID 127276, 16 p. (2023; Zbl 07707888) Full Text: DOI arXiv
Shafi, Sumeera Iterating a system of set-valued variational inclusion problems in semi-inner product spaces. (English) Zbl 1522.47086 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 29, No. 4, 255-275 (2022). MSC: 47J22 47H06 47J25 PDF BibTeX XML Cite \textit{S. Shafi}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 29, No. 4, 255--275 (2022; Zbl 1522.47086) Full Text: DOI
Wójcik, Paweł When are maps preserving semi-inner products linear? (English) Zbl 1514.39015 Aequationes Math. 96, No. 3, 669-676 (2022). Reviewer: Nasrin Eghbali (Ardabil) MSC: 39B52 46C50 46B04 47J05 46B20 15A04 PDF BibTeX XML Cite \textit{P. Wójcik}, Aequationes Math. 96, No. 3, 669--676 (2022; Zbl 1514.39015) Full Text: DOI
Luo, Sijie On Azuma-type inequalities for Banach space-valued martingales. (English) Zbl 1487.60042 J. Theor. Probab. 35, No. 2, 772-800 (2022). MSC: 60E15 60G42 46B09 PDF BibTeX XML Cite \textit{S. Luo}, J. Theor. Probab. 35, No. 2, 772--800 (2022; Zbl 1487.60042) Full Text: DOI arXiv
Nhu, Vu Huu Levenberg-Marquardt method for ill-posed inverse problems with possibly non-smooth forward mappings between Banach spaces. (English) Zbl 1510.65112 Inverse Probl. 38, No. 1, Article ID 015007, 36 p. (2022). MSC: 65J20 65J22 47J06 65J15 PDF BibTeX XML Cite \textit{V. H. Nhu}, Inverse Probl. 38, No. 1, Article ID 015007, 36 p. (2022; Zbl 1510.65112) Full Text: DOI
Vedel, Yana; Semenov, Vladimir; Denisov, Sergey A novel algorithm with self-adaptive technique for solving variational inequalities in Banach spaces. (English) Zbl 1507.49008 Olenev, Nicholas N. (ed.) et al., Advances in optimization and applications. 12th international conference, OPTIMA 2021, Petrovac, Montenegro, September 27 – October 1, 2021. Revised selected papers. Cham: Springer. Commun. Comput. Inf. Sci. 1514, 50-64 (2021). MSC: 49J40 49J27 47J20 49J45 PDF BibTeX XML Cite \textit{Y. Vedel} et al., Commun. Comput. Inf. Sci. 1514, 50--64 (2021; Zbl 1507.49008) Full Text: DOI
Powell, Thomas; Wiesnet, Franziskus Rates of convergence for asymptotically weakly contractive mappings in normed spaces. (English) Zbl 1503.47109 Numer. Funct. Anal. Optim. 42, No. 15, Part 3, 1802-1838 (2021). MSC: 47J26 47H09 03F10 PDF BibTeX XML Cite \textit{T. Powell} and \textit{F. Wiesnet}, Numer. Funct. Anal. Optim. 42, No. 15, Part 3, 1802--1838 (2021; Zbl 1503.47109) Full Text: DOI arXiv
Nakajo, Kazuhide On strong convergence for a forward-backward splitting method in Banach spaces. (English) Zbl 07476158 Linear Nonlinear Anal. 7, No. 1, 89-102 (2021). MSC: 47H05 49J40 47H14 PDF BibTeX XML Cite \textit{K. Nakajo}, Linear Nonlinear Anal. 7, No. 1, 89--102 (2021; Zbl 07476158) Full Text: Link
Chidume, C. E. Remarks on a recent paper titled: “On the split common fixed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in Banach spaces”. (English) Zbl 1494.46010 J. Inequal. Appl. 2021, Paper No. 47, 5 p. (2021). MSC: 46B20 46C15 47H09 47H10 PDF BibTeX XML Cite \textit{C. E. Chidume}, J. Inequal. Appl. 2021, Paper No. 47, 5 p. (2021; Zbl 1494.46010) Full Text: DOI
Sheng, Baohuai; Zuo, Lan Error analysis of the kernel regularized regression based on refined convex losses and RKBSs. (English) Zbl 1478.62095 Int. J. Wavelets Multiresolut. Inf. Process. 19, No. 5, Article ID 2150012, 52 p. (2021). MSC: 62G08 46E22 41A25 68T05 PDF BibTeX XML Cite \textit{B. Sheng} and \textit{L. Zuo}, Int. J. Wavelets Multiresolut. Inf. Process. 19, No. 5, Article ID 2150012, 52 p. (2021; Zbl 1478.62095) Full Text: DOI
Adamu, Abubakar; Adam, Aisha A. Approximation of solutions of split equality fixed point problems with applications. (English) Zbl 1485.47088 Carpathian J. Math. 37, No. 3, 381-392 (2021). MSC: 47J25 47H05 47A50 PDF BibTeX XML Cite \textit{A. Adamu} and \textit{A. A. Adam}, Carpathian J. Math. 37, No. 3, 381--392 (2021; Zbl 1485.47088) Full Text: DOI Link
Bhat, Mohd Iqbal; Shafi, Sumeera; Malik, Mudasir Ahmad \(H\)-mixed accretive mapping and proximal point method for solving a system of generalized set-valued variational inclusions. (English) Zbl 1494.47103 Numer. Funct. Anal. Optim. 42, No. 8, 955-972 (2021). MSC: 47J25 47H06 47H09 47J22 49J40 PDF BibTeX XML Cite \textit{M. I. Bhat} et al., Numer. Funct. Anal. Optim. 42, No. 8, 955--972 (2021; Zbl 1494.47103) Full Text: DOI
Dilworth, S.; Garrigós, G.; Hernández, E.; Kutzarova, D.; Temlyakov, V. Lebesgue-type inequalities in greedy approximation. (English) Zbl 1458.41010 J. Funct. Anal. 280, No. 5, Article ID 108885, 38 p. (2021). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 41A65 41A25 41A46 46B15 46B20 65D15 PDF BibTeX XML Cite \textit{S. Dilworth} et al., J. Funct. Anal. 280, No. 5, Article ID 108885, 38 p. (2021; Zbl 1458.41010) Full Text: DOI arXiv
Kohlenbach, Ulrich; Sipoş, Andrei The finitary content of sunny nonexpansive retractions. (English) Zbl 07266076 Commun. Contemp. Math. 23, No. 1, Article ID 1950093, 63 p. (2021). MSC: 47H06 47H09 47H10 03F10 PDF BibTeX XML Cite \textit{U. Kohlenbach} and \textit{A. Sipoş}, Commun. Contemp. Math. 23, No. 1, Article ID 1950093, 63 p. (2021; Zbl 07266076) Full Text: DOI arXiv
Al-Homidan, S.; Ali, B.; Suleiman, Y. I. An iterative method for solving multiple-set split feasibility problems in Banach spaces. (English) Zbl 1488.49020 Carpathian J. Math. 36, No. 1, 1-13 (2020). MSC: 49J40 49J52 47J20 49J27 65K15 PDF BibTeX XML Cite \textit{S. Al-Homidan} et al., Carpathian J. Math. 36, No. 1, 1--13 (2020; Zbl 1488.49020) Full Text: DOI
Rather, Zahoor Ahmad; Rizvi, Haider Abbas; Ahmad, Rais; Wong, Mu-Ming System of random variational inclusions involving random fuzzy mappings with XOR-operation. (English) Zbl 1487.47111 J. Nonlinear Convex Anal. 21, No. 10, 2257-2271 (2020). MSC: 47J25 47J22 47H40 47S40 47H09 PDF BibTeX XML Cite \textit{Z. A. Rather} et al., J. Nonlinear Convex Anal. 21, No. 10, 2257--2271 (2020; Zbl 1487.47111) Full Text: Link
Kohlenbach, Ulrich Quantitative analysis of a Halpern-type proximal point algorithm for accretive operators in Banach spaces. (English) Zbl 1487.47108 J. Nonlinear Convex Anal. 21, No. 9, 2125-2138 (2020). MSC: 47J25 47H06 03F10 PDF BibTeX XML Cite \textit{U. Kohlenbach}, J. Nonlinear Convex Anal. 21, No. 9, 2125--2138 (2020; Zbl 1487.47108) Full Text: Link
De Bernardi, Carlo Alberto; Somaglia, Jacopo; Veselý, Libor Star-finite coverings of Banach spaces. (English) Zbl 1473.46019 J. Math. Anal. Appl. 491, No. 2, Article ID 124384, 20 p. (2020). Reviewer: Clemente Zanco (Milano) MSC: 46B20 46B26 PDF BibTeX XML Cite \textit{C. A. De Bernardi} et al., J. Math. Anal. Appl. 491, No. 2, Article ID 124384, 20 p. (2020; Zbl 1473.46019) Full Text: DOI arXiv
Kohlenbach, Ulrich; Powell, Thomas Rates of convergence for iterative solutions of equations involving set-valued accretive operators. (English) Zbl 1504.65118 Comput. Math. Appl. 80, No. 3, 490-503 (2020). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{U. Kohlenbach} and \textit{T. Powell}, Comput. Math. Appl. 80, No. 3, 490--503 (2020; Zbl 1504.65118) Full Text: DOI arXiv
Sahu, Nabin K.; Chadli, Ouayl; Mohapatra, R. N. Variational inequalities in semi-inner product spaces. (English) Zbl 1519.47066 Daras, Nicholas J. (ed.) et al., Computational mathematics and variational analysis. Cham: Springer. Springer Optim. Appl. 159, 421-439 (2020). MSC: 47J20 PDF BibTeX XML Cite \textit{N. K. Sahu} et al., Springer Optim. Appl. 159, 421--439 (2020; Zbl 1519.47066) Full Text: DOI
Betancor, Jorge J.; Fariña, Juan C.; Galli, Vanesa; Molina, Sandra M. Uniformly convex and smooth Banach spaces and \(L^p\)-boundedness properties of Littlewood-Paley and area functions associated with semigroups. (English) Zbl 1458.46013 J. Math. Anal. Appl. 482, No. 1, Article ID 123534, 56 p. (2020). Reviewer: Oscar Blasco (València) MSC: 46B20 42B25 46B07 47D03 PDF BibTeX XML Cite \textit{J. J. Betancor} et al., J. Math. Anal. Appl. 482, No. 1, Article ID 123534, 56 p. (2020; Zbl 1458.46013) Full Text: DOI arXiv
Ceng, L. C.; Cho, S. Y.; Qin, X.; Yao, J.-C. A general system of variational inequalities with nonlinear mappings in Banach spaces. (English) Zbl 1478.47067 J. Nonlinear Convex Anal. 20, No. 3, 395-410 (2019). MSC: 47J25 47H09 47J20 49J40 PDF BibTeX XML Cite \textit{L. C. Ceng} et al., J. Nonlinear Convex Anal. 20, No. 3, 395--410 (2019; Zbl 1478.47067) Full Text: Link
Nakajo, Kazuhide Strong convergence theorems by a modified forward-backward-forward splitting method in Banach spaces. (English) Zbl 1484.47163 Linear Nonlinear Anal. 5, No. 3, 439-453 (2019). MSC: 47J25 47H05 PDF BibTeX XML Cite \textit{K. Nakajo}, Linear Nonlinear Anal. 5, No. 3, 439--453 (2019; Zbl 1484.47163) Full Text: Link
Porte, Matthieu Linear response for Dirac observables of Anosov diffeomorphisms. (English) Zbl 1408.37043 Discrete Contin. Dyn. Syst. 39, No. 4, 1799-1819 (2019). MSC: 37C40 37C30 37D20 PDF BibTeX XML Cite \textit{M. Porte}, Discrete Contin. Dyn. Syst. 39, No. 4, 1799--1819 (2019; Zbl 1408.37043) Full Text: DOI arXiv
Hytönen, Tuomas; Merikoski, Jori Vector-valued local approximation spaces. (English) Zbl 1426.46019 J. Fourier Anal. Appl. 25, No. 2, 299-320 (2019). Reviewer: Oscar Blasco (Valencia) MSC: 46E35 41A10 42B25 46B07 60G46 PDF BibTeX XML Cite \textit{T. Hytönen} and \textit{J. Merikoski}, J. Fourier Anal. Appl. 25, No. 2, 299--320 (2019; Zbl 1426.46019) Full Text: DOI arXiv Link
Son, Ta Cong; Thang, Dang Hung; Dung, Le Van On convergence of moving average series of martingale differences fields taking values in Banach spaces. (English) Zbl 1511.60010 Commun. Stat., Theory Methods 47, No. 22, 5590-5603 (2018). MSC: 60B11 60B12 60F15 60G42 60G60 PDF BibTeX XML Cite \textit{T. C. Son} et al., Commun. Stat., Theory Methods 47, No. 22, 5590--5603 (2018; Zbl 1511.60010) Full Text: DOI
Al-Homidan, Suliman; Ali, Bashir; Suleiman, Yusuf I. Generalized split equilibrium problems for countable family of relatively quasi-nonexpansive mappings. (English) Zbl 1503.47089 J. Nonlinear Convex Anal. 19, No. 7, 1109-1126 (2018). MSC: 47J25 47H05 47H09 49M37 65K10 PDF BibTeX XML Cite \textit{S. Al-Homidan} et al., J. Nonlinear Convex Anal. 19, No. 7, 1109--1126 (2018; Zbl 1503.47089) Full Text: Link
Ahmad, Rais; Irfan, Syed Shakaib; Ahmad, Iqbal; Rahaman, Mijanur Co-proximal operators for solving generalized co-variational inclusion problems in \(q\)-uniformly smooth Banach spaces. (English) Zbl 1503.47088 J. Nonlinear Convex Anal. 19, No. 7, 1093-1107 (2018). MSC: 47J22 47H06 47J25 PDF BibTeX XML Cite \textit{R. Ahmad} et al., J. Nonlinear Convex Anal. 19, No. 7, 1093--1107 (2018; Zbl 1503.47088) Full Text: Link
Ogbuisi, F. U. An iterative method for solving split generalized mixed equilibrium and fixed point problems in Banach spaces. (English) Zbl 1454.49025 J. Nonlinear Convex Anal. 19, No. 5, 803-821 (2018). MSC: 49J53 65K10 49M37 90C25 PDF BibTeX XML Cite \textit{F. U. Ogbuisi}, J. Nonlinear Convex Anal. 19, No. 5, 803--821 (2018; Zbl 1454.49025) Full Text: Link
Jaiboon, Chaichana; Plubtieng, Somyot; Katchang, Phayap The generalized viscosity implicit rule of nonexpansive semigroup in Banach spaces. (English) Zbl 1438.47096 J. Nonlinear Sci. Appl. 11, No. 6, 746-761 (2018). MSC: 47H20 47H10 47H09 PDF BibTeX XML Cite \textit{C. Jaiboon} et al., J. Nonlinear Sci. Appl. 11, No. 6, 746--761 (2018; Zbl 1438.47096) Full Text: DOI
Romanus, Ogonnaya Michael; Nnyaba, Ukamaka Victoria; Nnakwe, Monday Ogudu Algorithms for a system of generalized mixed equilibrium problems and a countable family of some nonlinear multi-valued nonexpansive-type maps. (English) Zbl 1438.47116 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 6, 1805-1820 (2018). MSC: 47J25 47H09 47H04 47J20 PDF BibTeX XML Cite \textit{O. M. Romanus} et al., Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 6, 1805--1820 (2018; Zbl 1438.47116) Full Text: DOI
Yu, Lin; Wang, Ruhui; Zhao, Shoujiang Carleson measures and the generalized Campanato spaces of vector-valued martingales. (English) Zbl 1438.60055 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 6, 1779-1788 (2018). MSC: 60G42 60G48 46E30 PDF BibTeX XML Cite \textit{L. Yu} et al., Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 6, 1779--1788 (2018; Zbl 1438.60055) Full Text: DOI
Abdo, Mohammed S.; Ibrahim, Ahmed G.; Panchal, Satish K. State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces. (English) Zbl 1424.34222 Acta Univ. Apulensis, Math. Inform. 54, 139-159 (2018). MSC: 34K09 34K30 34K27 PDF BibTeX XML Cite \textit{M. S. Abdo} et al., Acta Univ. Apulensis, Math. Inform. 54, 139--159 (2018; Zbl 1424.34222) Full Text: DOI
Baladi, Viviane Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach. (English) Zbl 1405.37001 Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 68. Cham: Springer (ISBN 978-3-319-77660-6/hbk; 978-3-319-77661-3/ebook). xv, 291 p. (2018). Reviewer: Kazuhiro Sakai (Utsunomiya) MSC: 37-02 37C30 37D20 37D35 37F15 37A45 46E35 PDF BibTeX XML Cite \textit{V. Baladi}, Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach. Cham: Springer (2018; Zbl 1405.37001) Full Text: DOI
García-Lirola, Luis; Raja, Matías On strong asymptotic uniform smoothness and convexity. (English) Zbl 1403.46016 Rev. Mat. Complut. 31, No. 1, 131-152 (2018). Reviewer: Anna Pelczar-Barwacz (Kraków) MSC: 46B20 46B06 46B28 PDF BibTeX XML Cite \textit{L. García-Lirola} and \textit{M. Raja}, Rev. Mat. Complut. 31, No. 1, 131--152 (2018; Zbl 1403.46016) Full Text: DOI arXiv
Dutta, S.; Shunmugaraj, P. Weakly compactly LUR Banach spaces. (English) Zbl 1391.46023 J. Math. Anal. Appl. 458, No. 2, 1203-1213 (2018). Reviewer: Vicente Montesinos (Valencia) MSC: 46B20 46B03 PDF BibTeX XML Cite \textit{S. Dutta} and \textit{P. Shunmugaraj}, J. Math. Anal. Appl. 458, No. 2, 1203--1213 (2018; Zbl 1391.46023) Full Text: DOI
Sahu, N. K.; Nahak, C.; Mohapatra, Ram N. Bessel sequences and frames in semi-inner product spaces. (English) Zbl 1442.42075 Giri, Debasis (ed.) et al., Mathematics and computing. Third international conference, ICMC 2017, Haldia, India, January 17–21, 2017. Proceedings. Singapore: Springer. Commun. Comput. Inf. Sci. 655, 155-169 (2017). MSC: 42C15 46B15 PDF BibTeX XML Cite \textit{N. K. Sahu} et al., Commun. Comput. Inf. Sci. 655, 155--169 (2017; Zbl 1442.42075) Full Text: DOI
Dalet, Aude; Lancien, Gilles Some properties of coarse Lipschitz maps between Banach spaces. (English) Zbl 1405.46017 North-West. Eur. J. Math. 3, 41-62 (2017). Reviewer: Gilles Godefroy (Paris) MSC: 46B80 46B06 46B85 46B03 PDF BibTeX XML Cite \textit{A. Dalet} and \textit{G. Lancien}, North-West. Eur. J. Math. 3, 41--62 (2017; Zbl 1405.46017) Full Text: arXiv Link
Bello Cruz, J. Y.; Shehu, Y. An iterative method for split inclusion problems without prior knowledge of operator norms. (English) Zbl 1380.49004 J. Fixed Point Theory Appl. 19, No. 3, 2017-2036 (2017). MSC: 49J27 49J53 65K10 49M37 90C25 47J25 PDF BibTeX XML Cite \textit{J. Y. Bello Cruz} and \textit{Y. Shehu}, J. Fixed Point Theory Appl. 19, No. 3, 2017--2036 (2017; Zbl 1380.49004) Full Text: DOI
Agud, L.; Calabuig, J. M.; Lajara, Sebastián; Sánchez-Pérez, E. A. Differentiability of \(L^p\) of a vector measure and applications to the Bishop-Phelps-Bollobás property. (English) Zbl 1387.46016 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 3, 735-751 (2017). Reviewer: Vladimir Kadets (Kharkiv) MSC: 46B20 46E30 46G10 PDF BibTeX XML Cite \textit{L. Agud} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 3, 735--751 (2017; Zbl 1387.46016) Full Text: DOI
Aron, Richard M.; Jaramillo, Jesús Angel; Le Donne, Enrico Smooth surjections and surjective restrictions. (English) Zbl 1390.46023 Ann. Acad. Sci. Fenn., Math. 42, No. 2, 525-534 (2017). Reviewer: Daniel Pellegrino (João Pessoa) MSC: 46B80 46T20 54E40 54C65 PDF BibTeX XML Cite \textit{R. M. Aron} et al., Ann. Acad. Sci. Fenn., Math. 42, No. 2, 525--534 (2017; Zbl 1390.46023) Full Text: DOI arXiv
Roydor, Jean Isomorphisms and gap theorems for Figà-Talamanca-Herz algebras. (English) Zbl 1389.46041 J. Oper. Theory 78, No. 1, 227-243 (2017). Reviewer: T.S.S.R.K. Rao (Bangalore) MSC: 46H20 43A22 46J10 47L10 47L25 PDF BibTeX XML Cite \textit{J. Roydor}, J. Oper. Theory 78, No. 1, 227--243 (2017; Zbl 1389.46041) Full Text: DOI
Chidi, Ugwunnadi Godwin Modified general iterative algorithm for an infinite family of nonexpansive mappings in Banach spaces. (English) Zbl 06737849 Afr. Mat. 28, No. 1-2, 221-235 (2017). MSC: 47H09 47J25 PDF BibTeX XML Cite \textit{U. G. Chidi}, Afr. Mat. 28, No. 1--2, 221--235 (2017; Zbl 06737849) Full Text: DOI
Kim, Jong Kyu; Salahuddin Solution sensitivity for a system of generalized nonlinear equations in Banach spaces. (English) Zbl 1377.49009 Nonlinear Funct. Anal. Appl. 22, No. 1, 1-22 (2017). Reviewer: Vasile Oproiu (Iaşi) MSC: 49J40 47H06 49Q12 PDF BibTeX XML Cite \textit{J. K. Kim} and \textit{Salahuddin}, Nonlinear Funct. Anal. Appl. 22, No. 1, 1--22 (2017; Zbl 1377.49009)
Sipoş, Andrei A note on the Mann iteration for \(k\)-strict pseudocontractions in Banach spaces. (English) Zbl 1382.47032 Numer. Funct. Anal. Optim. 38, No. 1, 80-90 (2017). MSC: 47J25 47H09 03F10 PDF BibTeX XML Cite \textit{A. Sipoş}, Numer. Funct. Anal. Optim. 38, No. 1, 80--90 (2017; Zbl 1382.47032) Full Text: DOI arXiv
Dereventsov, Anton On the generalized approximate weak Chebyshev greedy algorithm. (English) Zbl 1371.41043 Stud. Math. 237, No. 2, 153-175 (2017). Reviewer: Costică Mustăţa (Cluj-Napoca) MSC: 41A65 46B20 PDF BibTeX XML Cite \textit{A. Dereventsov}, Stud. Math. 237, No. 2, 153--175 (2017; Zbl 1371.41043) Full Text: DOI arXiv
Suyalatu On the uniformly extremely convex spaces and uniformly extremely smooth spaces. (Chinese. English summary) Zbl 1374.46013 J. Inn. Mong. Norm. Univ., Nat. Sci. 45, No. 5, 593-597 (2016). MSC: 46B20 46B10 PDF BibTeX XML Cite \textit{Suyalatu}, J. Inn. Mong. Norm. Univ., Nat. Sci. 45, No. 5, 593--597 (2016; Zbl 1374.46013)
Salahuddin; Verma, Ram U. System of nonlinear regularized nonconvex variational inequalities in Banach spaces. (English) Zbl 1358.49009 Adv. Nonlinear Var. Inequal. 19, No. 2, 27-40 (2016). MSC: 49J40 47H06 PDF BibTeX XML Cite \textit{Salahuddin} and \textit{R. U. Verma}, Adv. Nonlinear Var. Inequal. 19, No. 2, 27--40 (2016; Zbl 1358.49009)
Godefroy, Gilles On norm attaining Lipschitz maps between Banach spaces. (English) Zbl 1362.46026 Pure Appl. Funct. Anal. 1, No. 1, 39-46 (2016). Reviewer: Vladimir Kadets (Kharkiv) MSC: 46B80 46B04 46B20 PDF BibTeX XML Cite \textit{G. Godefroy}, Pure Appl. Funct. Anal. 1, No. 1, 39--46 (2016; Zbl 1362.46026) Full Text: Link
Pisier, Gilles Martingales in Banach spaces. (English) Zbl 1382.46002 Cambridge Studies in Advanced Mathematics 155. Cambridge: Cambridge University Press (ISBN 978-1-107-13724-0/hbk; 978-1-316-48058-8/ebook). xxviii, 561 p. (2016). Reviewer: Tuomas Hytönen (Helsinki) MSC: 46-02 60-02 46B09 60G42 46B22 46B70 30H10 46E40 PDF BibTeX XML Cite \textit{G. Pisier}, Martingales in Banach spaces. Cambridge: Cambridge University Press (2016; Zbl 1382.46002) Full Text: DOI
Shehu, Yekini An iterative approximation of fixed points of strictly pseudocontractive mappings in Banach spaces. (English) Zbl 1464.47045 Mat. Vesn. 67, No. 2, 79-91 (2015). MSC: 47J26 47H06 PDF BibTeX XML Cite \textit{Y. Shehu}, Mat. Vesn. 67, No. 2, 79--91 (2015; Zbl 1464.47045) Full Text: EMIS
Salahuddin Nonlinear regularized nonconvex random variational inequalities with fuzzy event in \(q\)-uniformly smooth Banach spaces. (English) Zbl 1360.49007 J. Appl. Funct. Anal. 10, No. 1-2, 40-52 (2015). MSC: 49J40 47H06 46S40 PDF BibTeX XML Cite \textit{Salahuddin}, J. Appl. Funct. Anal. 10, No. 1--2, 40--52 (2015; Zbl 1360.49007)
Solimini, Sergio; Tintarev, Cyril On the defect of compactness in Banach spaces. (Sur le défaut de compacité dans les espaces de Banach.) (English. French summary) Zbl 1338.46028 C. R., Math., Acad. Sci. Paris 353, No. 10, 899-903 (2015). Reviewer: Johann Langemets (Tartu) MSC: 46B50 PDF BibTeX XML Cite \textit{S. Solimini} and \textit{C. Tintarev}, C. R., Math., Acad. Sci. Paris 353, No. 10, 899--903 (2015; Zbl 1338.46028) Full Text: DOI arXiv
Ta Cong Son; Dang Hung Thang On the convergence of series of martingale differences with multidimensional indices. (English) Zbl 1323.60010 J. Korean Math. Soc. 52, No. 5, 1023-1036 (2015). MSC: 60B11 60B12 60F15 60G42 60G60 PDF BibTeX XML Cite \textit{Ta Cong Son} and \textit{Dang Hung Thang}, J. Korean Math. Soc. 52, No. 5, 1023--1036 (2015; Zbl 1323.60010) Full Text: DOI Link
Pinelis, Iosif Best possible bounds of the von Bahr-Esseen type. (English) Zbl 1319.60036 Ann. Funct. Anal. 6, No. 4, 1-29 (2015). MSC: 60E15 46B09 46B20 46B10 PDF BibTeX XML Cite \textit{I. Pinelis}, Ann. Funct. Anal. 6, No. 4, 1--29 (2015; Zbl 1319.60036) Full Text: DOI arXiv Euclid
Al-Mezel, Saleh Abdullah; Ansari, Qamrul Hasan; Ceng, Lu-Chuan Hybrid viscosity approach for hierarchical fixed-point problems. (English) Zbl 1310.47087 Appl. Anal. 94, No. 1, 2-23 (2015). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{S. A. Al-Mezel} et al., Appl. Anal. 94, No. 1, 2--23 (2015; Zbl 1310.47087) Full Text: DOI
Korytov, I. V. Uniform convexity of the weighted Sobolev space. (Russian. English summary) Zbl 07604784 Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2014, No. 6(32), 25-34 (2014). MSC: 46B20 46E35 PDF BibTeX XML Cite \textit{I. V. Korytov}, Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2014, No. 6(32), 25--34 (2014; Zbl 07604784) Full Text: MNR
Junlouchai, Prapairat; Kaewcharoen, Anchalee; Plubtieng, Somyot A generalized system of nonlinear variational inequalities in Banach spaces. (English) Zbl 1473.47023 Abstr. Appl. Anal. 2014, Article ID 869372, 10 p. (2014). MSC: 47J20 47J25 PDF BibTeX XML Cite \textit{P. Junlouchai} et al., Abstr. Appl. Anal. 2014, Article ID 869372, 10 p. (2014; Zbl 1473.47023) Full Text: DOI
Ceng, Lu-Chuan; Wen, Ching-Feng; Pang, Chin-Tzong Hierarchical fixed point problems in uniformly smooth Banach spaces. (English) Zbl 1473.47032 Abstr. Appl. Anal. 2014, Article ID 173461, 15 p. (2014). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{L.-C. Ceng} et al., Abstr. Appl. Anal. 2014, Article ID 173461, 15 p. (2014; Zbl 1473.47032) Full Text: DOI
Dang, Hung Thang; Ta, Cong Son; Tran, Manh Cuong Inequalities for sums of adapted random fields in Banach spaces and their application to strong law of large numbers. (English) Zbl 1378.60016 J. Inequal. Appl. 2014, Paper No. 446, 14 p. (2014). MSC: 60B11 60B12 60F15 60G42 60E15 PDF BibTeX XML Cite \textit{H. T. Dang} et al., J. Inequal. Appl. 2014, Paper No. 446, 14 p. (2014; Zbl 1378.60016) Full Text: DOI
Khan, Faizan Ahmad; Al-Mezel, Saleh A.; Kazmi, Kaleem R. A system of multi-valued variational inclusions involving \(P\)-accretive mappings in real uniformly smooth Banach spaces. (English) Zbl 1328.49005 Thai J. Math. 12, No. 3, 509-523 (2014). MSC: 49J40 49J53 47J22 47J25 47H06 47H04 65K15 PDF BibTeX XML Cite \textit{F. A. Khan} et al., Thai J. Math. 12, No. 3, 509--523 (2014; Zbl 1328.49005) Full Text: Link
Shunmugaraj, P. Convergence of slices, geometric aspects in Banach spaces and proximinality. (English) Zbl 1331.46012 Ansari, Qamrul Hasan (ed.), Nonlinear analysis. Approximation theory, optimization and applications. Contributions based on the presentations at the special session on approximation theory and optimization in the Indian Mathematical Society conference, Varanasi, India, January 12–15, 2012. New Delhi: Birkhäuser/Springer (ISBN 978-81-322-1882-1/hbk; 978-81-322-1883-8/ebook). Trends in Mathematics, 61-107 (2014). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46B20 41A65 47H08 47H04 54C60 PDF BibTeX XML Cite \textit{P. Shunmugaraj}, in: Nonlinear analysis. Approximation theory, optimization and applications. Contributions based on the presentations at the special session on approximation theory and optimization in the Indian Mathematical Society conference, Varanasi, India, January 12--15, 2012. New Delhi: Birkhäuser/Springer. 61--107 (2014; Zbl 1331.46012) Full Text: DOI
Salahuddin; Verma, Ram U. Systems of random nonlinear variational inclusions with fuzzy mappings in \(q\)-uniformly smooth Banach spaces. (English) Zbl 1321.90131 Nonlinear Funct. Anal. Appl. 19, No. 3, 455-478 (2014). MSC: 90C30 90C32 90C34 PDF BibTeX XML Cite \textit{Salahuddin} and \textit{R. U. Verma}, Nonlinear Funct. Anal. Appl. 19, No. 3, 455--478 (2014; Zbl 1321.90131)
Ajiev, S. S. Hölder analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. II. (English) Zbl 1338.46087 Eurasian Math. J. 5, No. 2, 7-51 (2014). MSC: 46T20 46B80 46E35 47L05 15A60 47J07 46L52 PDF BibTeX XML Cite \textit{S. S. Ajiev}, Eurasian Math. J. 5, No. 2, 7--51 (2014; Zbl 1338.46087) Full Text: MNR
Wang, Shuang; Qian, Dingbian A necessary and sufficient condition for the strong convergence of nonexpansive mappings in Banach spaces. (English) Zbl 1326.47100 Fixed Point Theory Appl. 2014, Paper No. 106, 12 p. (2014). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{S. Wang} and \textit{D. Qian}, Fixed Point Theory Appl. 2014, Paper No. 106, 12 p. (2014; Zbl 1326.47100) Full Text: DOI
Ajiev, S. S. Hölder analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I. (English) Zbl 1338.46086 Eurasian Math. J. 5, No. 1, 7-60 (2014). Reviewer: Vicente Montesinos (Valencia) MSC: 46T20 46B80 46E35 47L05 15A60 47J07 46L52 PDF BibTeX XML Cite \textit{S. S. Ajiev}, Eurasian Math. J. 5, No. 1, 7--60 (2014; Zbl 1338.46086) Full Text: MNR
Borodin, P. A. Density of a semigroup in a Banach space. (English. Russian original) Zbl 1316.46015 Izv. Math. 78, No. 6, 1079-1104 (2014); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 78, no. 6, 21-48 (2014). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46B20 41A65 46E15 PDF BibTeX XML Cite \textit{P. A. Borodin}, Izv. Math. 78, No. 6, 1079--1104 (2014; Zbl 1316.46015); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 78, no. 6, 21--48 (2014) Full Text: DOI
Fonf, Vladimir P.; Levin, Michael; Zanco, Clemente Covering \(L^p\) spaces by balls. (English) Zbl 1315.46019 J. Geom. Anal. 24, No. 4, 1891-1897 (2014). Reviewer: Vladimir Kadets (Kharkov) MSC: 46B20 46B04 PDF BibTeX XML Cite \textit{V. P. Fonf} et al., J. Geom. Anal. 24, No. 4, 1891--1897 (2014; Zbl 1315.46019) Full Text: DOI arXiv
Son, Ta Cong; Thang, Dang Hung; Dung, Le Van Complete convergence in mean for double arrays of random variables with values in Banach spaces. (English) Zbl 1324.60004 Appl. Math., Praha 59, No. 2, 177-190 (2014). Reviewer: Vakhtang V. Kvaratskhelia (Tbilisi) MSC: 60B11 60B12 60F15 60F25 PDF BibTeX XML Cite \textit{T. C. Son} et al., Appl. Math., Praha 59, No. 2, 177--190 (2014; Zbl 1324.60004) Full Text: DOI Link
Ansari, Qamrul Hasan; Balooee, Javad Iterative methods for a system of nonlinear generalized mixed implicit equilibrium problems in Banach spaces. (English) Zbl 1304.47075 J. Nonlinear Convex Anal. 15, No. 5, 867-906 (2014). Reviewer: Dumitru Motreanu (Perpignan) MSC: 47J25 47H05 47J20 49J40 PDF BibTeX XML Cite \textit{Q. H. Ansari} and \textit{J. Balooee}, J. Nonlinear Convex Anal. 15, No. 5, 867--906 (2014; Zbl 1304.47075) Full Text: Link
Pham Ky Anh; Nguyen Buong; Dang Van Hieu Parallel methods for regularizing systems of equations involving accretive operators. (English) Zbl 1297.47066 Appl. Anal. 93, No. 10, 2136-2157 (2014). MSC: 47J06 47H06 47J25 65J20 65Y05 PDF BibTeX XML Cite \textit{Pham Ky Anh} et al., Appl. Anal. 93, No. 10, 2136--2157 (2014; Zbl 1297.47066) Full Text: DOI arXiv
Freeman, D.; Odell, E.; Sari, B.; Schlumprecht, Th. Equilateral sets in uniformly smooth Banach spaces. (English) Zbl 1310.46017 Mathematika 60, No. 1, 219-231 (2014). Reviewer: Clemente Zanco (Milano) MSC: 46B20 46B04 PDF BibTeX XML Cite \textit{D. Freeman} et al., Mathematika 60, No. 1, 219--231 (2014; Zbl 1310.46017) Full Text: DOI arXiv
Saeidi, S.; Kim, D. S. Combination of the hybrid steepest-descent method and the viscosity approximation. (English) Zbl 1311.90177 J. Optim. Theory Appl. 160, No. 3, 911-930 (2014). Reviewer: Vasile Postolică (Piatra Neamt) MSC: 90C48 90C30 90C59 PDF BibTeX XML Cite \textit{S. Saeidi} and \textit{D. S. Kim}, J. Optim. Theory Appl. 160, No. 3, 911--930 (2014; Zbl 1311.90177) Full Text: DOI
Zheng, Xi Yin; Ng, Kung Fu Proximal normal cone analysis on smooth Banach spaces and applications. (English) Zbl 1297.49021 SIAM J. Optim. 24, No. 1, 363-384 (2014). Reviewer: Sorin-Mihai Grad (Chemnitz) MSC: 49J52 90C46 49K27 PDF BibTeX XML Cite \textit{X. Y. Zheng} and \textit{K. F. Ng}, SIAM J. Optim. 24, No. 1, 363--384 (2014; Zbl 1297.49021) Full Text: DOI
Cholamjiak, Prasit Approximating fixed points of a countable family of strict pseudocontractions in Banach spaces. (English) Zbl 1285.47079 Opusc. Math. 34, No. 1, 67-79 (2014). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{P. Cholamjiak}, Opusc. Math. 34, No. 1, 67--79 (2014; Zbl 1285.47079) Full Text: DOI
Sahu, D. R.; Colao, V.; Marino, G. On the convergence of approximants of pseudo-contractive semigroups in Banach spaces. (English) Zbl 1318.47075 J. Nonlinear Convex Anal. 15, No. 3, 547-556 (2014). Reviewer: Rafa Espínola (Sevilla) MSC: 47H20 47H09 PDF BibTeX XML Cite \textit{D. R. Sahu} et al., J. Nonlinear Convex Anal. 15, No. 3, 547--556 (2014; Zbl 1318.47075) Full Text: Link
Hájek, Petr; Procházka, Antonín \(C^k\)-smooth approximations of LUR norms. (English) Zbl 1290.46008 Trans. Am. Math. Soc. 366, No. 4, 1973-1992 (2014). Reviewer: Vicente Montesinos Santalucía (Valencia) MSC: 46B03 46E15 46B26 PDF BibTeX XML Cite \textit{P. Hájek} and \textit{A. Procházka}, Trans. Am. Math. Soc. 366, No. 4, 1973--1992 (2014; Zbl 1290.46008) Full Text: DOI arXiv
Ceng, Lu-Chuan; Wen, Ching-Feng Modified hybrid steepest-descent methods for general systems of variational inequalities with solutions to zeros of \(m\)-accretive operators in Banach spaces. (English) Zbl 1437.47035 Abstr. Appl. Anal. 2013, Article ID 852760, 21 p. (2013). MSC: 47J25 49J40 47H06 PDF BibTeX XML Cite \textit{L.-C. Ceng} and \textit{C.-F. Wen}, Abstr. Appl. Anal. 2013, Article ID 852760, 21 p. (2013; Zbl 1437.47035) Full Text: DOI
Gong, Qian-Fen; Wen, Dao-Jun General convergence analysis of projection methods for a system of variational inequalities in \(q\)-uniformly smooth Banach spaces. (English) Zbl 1496.47094 J. Inequal. Appl. 2013, Paper No. 481, 9 p. (2013). MSC: 47J25 47H05 49J40 PDF BibTeX XML Cite \textit{Q.-F. Gong} and \textit{D.-J. Wen}, J. Inequal. Appl. 2013, Paper No. 481, 9 p. (2013; Zbl 1496.47094) Full Text: DOI
Chen, Zhangyou A class of implicit variational inclusions system in Banach spaces. (English) Zbl 1290.49014 Nonlinear Anal. Forum 18, 105-113 (2013). MSC: 49J40 49J53 47J22 47J25 47H04 47H06 PDF BibTeX XML Cite \textit{Z. Chen}, Nonlinear Anal. Forum 18, 105--113 (2013; Zbl 1290.49014)
Ofoedu, Eric U. Iterative approximation of solutions of variational inequality problems. (English) Zbl 1366.47024 J. Niger. Math. Soc. 32, 253-279 (2013). MSC: 47J25 49J40 47H09 PDF BibTeX XML Cite \textit{E. U. Ofoedu}, J. Niger. Math. Soc. 32, 253--279 (2013; Zbl 1366.47024)
Chidume, Charles E.; Shehu, Yekini Strong convergence theorems for the approximation of fixed points of demicontinuous pseudocontractive mappings. (English) Zbl 1364.47016 J. Appl. Anal. 19, No. 2, 213-229 (2013). MSC: 47J25 47H06 47H09 PDF BibTeX XML Cite \textit{C. E. Chidume} and \textit{Y. Shehu}, J. Appl. Anal. 19, No. 2, 213--229 (2013; Zbl 1364.47016) Full Text: DOI
Son, Ta Cong; Thang, Dang Hung The Brunk-Prokhorov strong law of large numbers for fields of martingale differences taking values in a Banach space. (English) Zbl 1281.60030 Stat. Probab. Lett. 83, No. 8, 1901-1910 (2013). MSC: 60F15 60B11 60B12 60F25 60G42 PDF BibTeX XML Cite \textit{T. C. Son} and \textit{D. H. Thang}, Stat. Probab. Lett. 83, No. 8, 1901--1910 (2013; Zbl 1281.60030) Full Text: DOI
Betancor, Jorge J.; Castro, Alejandro J.; Rodríguez-Mesa, Lourdes Characterization of uniformly convex and smooth Banach spaces by using Carleson measures in Bessel settings. (English) Zbl 1286.46043 J. Convex Anal. 20, No. 3, 763-811 (2013). Reviewer: Oscar Blasco (Valencia) MSC: 46E40 46B03 42A50 PDF BibTeX XML Cite \textit{J. J. Betancor} et al., J. Convex Anal. 20, No. 3, 763--811 (2013; Zbl 1286.46043) Full Text: arXiv Link
Bounkhel, M.; Alsenan, B. Implicit second order differential inclusions in reflexive smooth Banach spaces. (English) Zbl 1271.34061 Set-Valued Var. Anal. 21, No. 1, 1-16 (2013). Reviewer: N. C. Apreutesei (Iaşi) MSC: 34G25 49J53 PDF BibTeX XML Cite \textit{M. Bounkhel} and \textit{B. Alsenan}, Set-Valued Var. Anal. 21, No. 1, 1--16 (2013; Zbl 1271.34061) Full Text: DOI
Brooker, P. A. H.; Lancien, G. Three-space property for asymptotically uniformly smooth renormings. (English) Zbl 1271.46004 J. Math. Anal. Appl. 398, No. 2, 867-871 (2013). MSC: 46B03 PDF BibTeX XML Cite \textit{P. A. H. Brooker} and \textit{G. Lancien}, J. Math. Anal. Appl. 398, No. 2, 867--871 (2013; Zbl 1271.46004) Full Text: DOI arXiv
Bounkhel, Messaoud Existence results for second order convex sweeping processes in \(p\)-uniformly smooth and \(q\)-uniformly convex Banach spaces. (English) Zbl 1340.34213 Electron. J. Qual. Theory Differ. Equ. 2012, Paper No. 27, 10 p. (2012). MSC: 34G25 PDF BibTeX XML Cite \textit{M. Bounkhel}, Electron. J. Qual. Theory Differ. Equ. 2012, Paper No. 27, 10 p. (2012; Zbl 1340.34213) Full Text: DOI
Kohlenbach, U.; Leuştean, L. On the computational content of convergence proofs via Banach limits. (English) Zbl 1329.03094 Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 370, No. 1971, 3449-3463 (2012). MSC: 03F60 46S30 47H09 PDF BibTeX XML Cite \textit{U. Kohlenbach} and \textit{L. Leuştean}, Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 370, No. 1971, 3449--3463 (2012; Zbl 1329.03094) Full Text: DOI
Ahmad, Rais; Dilshad, Mohammad \(H(\cdot, \cdot)\)-\(\eta\)-cocoercive operators and variational-like inclusions in Banach spaces. (English) Zbl 1439.47034 J. Nonlinear Sci. Appl. 5, No. 5, 334-344 (2012). MSC: 47H06 47J22 47J10 47J25 PDF BibTeX XML Cite \textit{R. Ahmad} and \textit{M. Dilshad}, J. Nonlinear Sci. Appl. 5, No. 5, 334--344 (2012; Zbl 1439.47034) Full Text: DOI Link Link
Zhang, Ying; Xie, Zhiwei Explicit averaging cyclic algorithm for common fixed points of a finite family of asymptotically strictly pseudocontractive mappings in \(q\)-uniformly smooth Banach spaces. (English) Zbl 1475.47097 Fixed Point Theory Appl. 2012, Paper No. 167, 12 p. (2012). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Z. Xie}, Fixed Point Theory Appl. 2012, Paper No. 167, 12 p. (2012; Zbl 1475.47097) Full Text: DOI
Bounkhel, Messaoud Implicit differential inclusions in reflexive smooth Banach spaces. (English) Zbl 1278.34068 Proc. Am. Math. Soc. 140, No. 8, 2767-2782 (2012). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34G25 49J53 PDF BibTeX XML Cite \textit{M. Bounkhel}, Proc. Am. Math. Soc. 140, No. 8, 2767--2782 (2012; Zbl 1278.34068) Full Text: DOI
Sunthrayuth, Pongsakorn; Kumam, Poom Approximating solutions of variational inequalities on the sets of common fixed points for a semigroup of asymptotically nonexpansive mappings in Banach spaces. (English) Zbl 1264.49008 Math. Sci., Springer 6, Paper No. 20, 11 p. (2012). MSC: 49J40 47H09 47H10 47H20 47J20 47J25 PDF BibTeX XML Cite \textit{P. Sunthrayuth} and \textit{P. Kumam}, Math. Sci., Springer 6, Paper No. 20, 11 p. (2012; Zbl 1264.49008) Full Text: DOI
Hang, Nguyen Thu; Tuyen, Truong Minh A note on the paper “Regularization proximal point algorithm for common fixed points of nonexpansive mappings in Banach spaces”. (English) Zbl 1261.90089 J. Optim. Theory Appl. 155, No. 2, 723-725 (2012). MSC: 90C48 PDF BibTeX XML Cite \textit{N. T. Hang} and \textit{T. M. Tuyen}, J. Optim. Theory Appl. 155, No. 2, 723--725 (2012; Zbl 1261.90089) Full Text: DOI
Jeong, Jae Ug Sensitivity analysis for a system of extended generalized nonlinear quasi-variational inclusions in \(q\)-uniformly smooth Banach spaces. (English) Zbl 1255.49017 Int. Math. Forum 7, No. 49-52, 2465-2480 (2012). MSC: 49J40 47H05 90C33 PDF BibTeX XML Cite \textit{J. U. Jeong}, Int. Math. Forum 7, No. 49--52, 2465--2480 (2012; Zbl 1255.49017) Full Text: Link
Bounkhel, Messaoud Existence of solutions for convex sweeping processes in p-uniformly smooth and q-uniformly convex Banach spaces. (English) Zbl 1255.34059 Electron. J. Differ. Equ. 2012, Paper No. 168, 6 p. (2012). MSC: 34G25 49J53 PDF BibTeX XML Cite \textit{M. Bounkhel}, Electron. J. Differ. Equ. 2012, Paper No. 168, 6 p. (2012; Zbl 1255.34059) Full Text: EMIS
Ta Cong Son; Dang Hung Thang; Le Van Dung Rate of complete convergence for maximums of moving average sums of martingale difference fields in Banach spaces. (English) Zbl 1264.60009 Stat. Probab. Lett. 82, No. 11, 1978-1985 (2012). Reviewer: Ludwig Paditz (Dresden) MSC: 60B11 60B12 60F15 60G42 PDF BibTeX XML Cite \textit{Ta Cong Son} et al., Stat. Probab. Lett. 82, No. 11, 1978--1985 (2012; Zbl 1264.60009) Full Text: DOI
Tien, Nguyen Duy; Van Dung, Le Convergence of double series of random elements in Banach spaces. (English) Zbl 1251.60024 J. Korean Math. Soc. 49, No. 5, 1053-1064 (2012). MSC: 60F15 60B12 PDF BibTeX XML Cite \textit{N. D. Tien} and \textit{L. Van Dung}, J. Korean Math. Soc. 49, No. 5, 1053--1064 (2012; Zbl 1251.60024) Full Text: DOI
Ceng, Lu-Chuan; Wen, Ching-Feng Algorithms for general system of generalized resolvent equations with corresponding system of variational inclusions. (English) Zbl 1245.49011 J. Appl. Math. 2012, Article ID 487394, 24 p. (2012). MSC: 49J40 47J25 PDF BibTeX XML Cite \textit{L.-C. Ceng} and \textit{C.-F. Wen}, J. Appl. Math. 2012, Article ID 487394, 24 p. (2012; Zbl 1245.49011) Full Text: DOI
Fabian, Marián; Lajara, Sebastián Smooth renormings of the Lebesgue-Bochner function space \(L^1(\mu ,X)\). (English) Zbl 1262.46007 Stud. Math. 209, No. 3, 247-265 (2012). Reviewer: Vicente Montesinos Santalucía (Valencia) MSC: 46B03 46B20 46E40 PDF BibTeX XML Cite \textit{M. Fabian} and \textit{S. Lajara}, Stud. Math. 209, No. 3, 247--265 (2012; Zbl 1262.46007) Full Text: DOI