San Antolín, A.; Zalik, R. A. Two families of compactly supported Parseval framelets in \(L^2( \mathbb{R}^d)\). (English) Zbl 07557824 Appl. Comput. Harmon. Anal. 60, 512-527 (2022). Reviewer: Ashok Kumar Sah (New Delhi) MSC: 42C40 42A38 PDF BibTeX XML Cite \textit{A. San Antolín} and \textit{R. A. Zalik}, Appl. Comput. Harmon. Anal. 60, 512--527 (2022; Zbl 07557824) Full Text: DOI OpenURL
Shatnawi, Taqi A. M.; Shatanawi, Wasfi B-spline tight framelets for solving integral algebraic equations with weakly singular kernels. (English) Zbl 1489.65176 Nonlinear Funct. Anal. Appl. 27, No. 2, 363-379 (2022). MSC: 65R20 45D05 45F15 PDF BibTeX XML Cite \textit{T. A. M. Shatnawi} and \textit{W. Shatanawi}, Nonlinear Funct. Anal. Appl. 27, No. 2, 363--379 (2022; Zbl 1489.65176) Full Text: Link OpenURL
Malhotra, Hari Krishan; Vashisht, Lalit Kumar Unitary extension principle for nonuniform wavelet frames in \(L^2(\mathbb{R} )\). (English) Zbl 1488.42161 J. Math. Phys. Anal. Geom. 17, No. 1, 79-94 (2021). MSC: 42C40 42C15 42C30 42C05 PDF BibTeX XML Cite \textit{H. K. Malhotra} and \textit{L. K. Vashisht}, J. Math. Phys. Anal. Geom. 17, No. 1, 79--94 (2021; Zbl 1488.42161) Full Text: arXiv Link OpenURL
Ahmad, Owais; Bhat, Mohammad Younus; Sheikh, Neyaz Ahmad Construction of Parseval framelets associated with GMRA on local fields of positive characteristic. (English) Zbl 1461.42020 Numer. Funct. Anal. Optim. 42, No. 3, 344-370 (2021). MSC: 42C15 42C40 43A70 11S85 PDF BibTeX XML Cite \textit{O. Ahmad} et al., Numer. Funct. Anal. Optim. 42, No. 3, 344--370 (2021; Zbl 1461.42020) Full Text: DOI OpenURL
Charina, Maria; Conti, Costanza; Cotronei, Mariantonia; Sauer, Tomas Bivariate two-band wavelets demystified. (English) Zbl 1458.65162 Linear Algebra Appl. 608, 13-36 (2021). MSC: 65T60 65D15 42C40 PDF BibTeX XML Cite \textit{M. Charina} et al., Linear Algebra Appl. 608, 13--36 (2021; Zbl 1458.65162) Full Text: DOI OpenURL
Wang, Yu Guang; Zhuang, Xiaosheng Tight framelets and fast framelet filter bank transforms on manifolds. (English) Zbl 1447.42033 Appl. Comput. Harmon. Anal. 48, No. 1, 64-95 (2020). Reviewer: Joseph Lakey (Las Cruces) MSC: 42C15 42C40 42B05 41A55 57N99 58C35 94A12 94C15 93C55 93C95 PDF BibTeX XML Cite \textit{Y. G. Wang} and \textit{X. Zhuang}, Appl. Comput. Harmon. Anal. 48, No. 1, 64--95 (2020; Zbl 1447.42033) Full Text: DOI arXiv OpenURL
Wang, Hui; Qiu, Jinling The sufficient conditions for the existence of tight multiple periodic frames. (Chinese. English summary) Zbl 1449.42063 J. Cent. China Norm. Univ., Nat. Sci. 53, No. 6, 852-856, 863 (2019). MSC: 42C15 PDF BibTeX XML Cite \textit{H. Wang} and \textit{J. Qiu}, J. Cent. China Norm. Univ., Nat. Sci. 53, No. 6, 852--856, 863 (2019; Zbl 1449.42063) Full Text: DOI OpenURL
Christensen, Ole; Goh, Say Song The unitary extension principle on locally compact abelian groups. (English) Zbl 1440.42149 Appl. Comput. Harmon. Anal. 47, No. 1, 1-29 (2019). Reviewer: Bin Han (Edmonton) MSC: 42C15 42C40 22B05 PDF BibTeX XML Cite \textit{O. Christensen} and \textit{S. S. Goh}, Appl. Comput. Harmon. Anal. 47, No. 1, 1--29 (2019; Zbl 1440.42149) Full Text: DOI arXiv OpenURL
Mohammad, Mutaz; Lin, En-Bing Gibbs phenomenon in tight framelet expansions. (English) Zbl 07262128 Commun. Nonlinear Sci. Numer. Simul. 55, 84-92 (2018). MSC: 65-XX 42-XX PDF BibTeX XML Cite \textit{M. Mohammad} and \textit{E.-B. Lin}, Commun. Nonlinear Sci. Numer. Simul. 55, 84--92 (2018; Zbl 07262128) Full Text: DOI OpenURL
Mohammad, Mutaz; Lin, En-Bing Gibbs effects using Daubechies and Coiflet tight framelet systems. (English) Zbl 1398.42023 Kim, Yeonhyang (ed.) et al., Frames and harmonic analysis. AMS special session on frames, wavelets and Gabor systems and special session on frames, harmonic analysis, and operator theory, North Dakota State University, Fargo, ND, USA, April 16–17, 2016. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3619-3/pbk; 978-1-4704-4723-6/ebook). Contemporary Mathematics 706, 271-282 (2018). MSC: 42C15 65T60 65T40 PDF BibTeX XML Cite \textit{M. Mohammad} and \textit{E.-B. Lin}, Contemp. Math. 706, 271--282 (2018; Zbl 1398.42023) Full Text: DOI OpenURL
Massopust, Peter; Forster, Brigitte; Christensen, Ole Fractional and complex pseudo-splines and the construction of Parseval frames. (English) Zbl 1426.42027 Appl. Math. Comput. 314, 12-24 (2017). MSC: 42C15 42C40 65D07 65T60 PDF BibTeX XML Cite \textit{P. Massopust} et al., Appl. Math. Comput. 314, 12--24 (2017; Zbl 1426.42027) Full Text: DOI arXiv OpenURL
Cui, Lihong; Zhu, Ning; Wang, Youquan; Sun, Jianjun; Cen, Yigang Existence of matrix-valued multiresolution analysis-based matrix-valued tight wavelet frames. (English) Zbl 1353.42027 Numer. Funct. Anal. Optim. 37, No. 9, 1089-1106 (2016). Reviewer: Ghanshyam Bhatt (Nashville) MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{L. Cui} et al., Numer. Funct. Anal. Optim. 37, No. 9, 1089--1106 (2016; Zbl 1353.42027) Full Text: DOI OpenURL
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young On Parseval wavelet frames with two or three generators via the unitary extension principle. (English) Zbl 1295.42014 Can. Math. Bull. 57, No. 2, 254-263 (2014). Reviewer: Bin Han (Edmonton) MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{O. Christensen} et al., Can. Math. Bull. 57, No. 2, 254--263 (2014; Zbl 1295.42014) Full Text: DOI OpenURL
Charina, Maria; Putinar, Mihai; Scheiderer, Claus; Stöckler, Joachim An algebraic perspective on multivariate tight wavelet frames. (English) Zbl 1279.65146 Constr. Approx. 38, No. 2, 253-276 (2013). Reviewer: Manfred Tasche (Rostock) MSC: 65T60 42C40 42C15 14P99 11E25 90C26 90C22 PDF BibTeX XML Cite \textit{M. Charina} et al., Constr. Approx. 38, No. 2, 253--276 (2013; Zbl 1279.65146) Full Text: DOI OpenURL
Srivastava, H. M.; González, B. J.; Negrin, E. R. A characterization of the second quantization by using the Segal duality transform. (English) Zbl 1276.42012 Appl. Math. Comput. 219, No. 11, 6236-6240 (2013). MSC: 42B10 81T08 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Appl. Math. Comput. 219, No. 11, 6236--6240 (2013; Zbl 1276.42012) Full Text: DOI OpenURL
Shen, Zuowei; Xu, Zhiqiang On B-spline framelets derived from the unitary extension principle. (English) Zbl 1267.42036 SIAM J. Math. Anal. 45, No. 1, 127-151 (2013). Reviewer: Adhemar Bultheel (Leuven) MSC: 42C15 42C40 41A15 PDF BibTeX XML Cite \textit{Z. Shen} and \textit{Z. Xu}, SIAM J. Math. Anal. 45, No. 1, 127--151 (2013; Zbl 1267.42036) Full Text: DOI arXiv OpenURL
Jang, Sumi; Jeong, Byeongseon; Kim, Hong Oh Compactly supported multiwindow dual Gabor frames of rational sampling density. (English) Zbl 1262.42015 Adv. Comput. Math. 38, No. 1, 159-186 (2013). MSC: 42C15 42C20 42C40 PDF BibTeX XML Cite \textit{S. Jang} et al., Adv. Comput. Math. 38, No. 1, 159--186 (2013; Zbl 1262.42015) Full Text: DOI OpenURL
Fan, Qibin; Lu, Dayong Construction of a class of periodic tight wavelet frames. (Chinese. English summary) Zbl 1274.42089 Chin. Ann. Math., Ser. A 33, No. 3, 341-350 (2012). MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{Q. Fan} and \textit{D. Lu}, Chin. Ann. Math., Ser. A 33, No. 3, 341--350 (2012; Zbl 1274.42089) OpenURL
Stavropoulos, Theodoros The geometry of extension principles. (English) Zbl 1262.42025 Houston J. Math. 38, No. 3, 833-853 (2012). Reviewer: Qingyue Zhang (Tianjin) MSC: 42C40 42C15 94A12 PDF BibTeX XML Cite \textit{T. Stavropoulos}, Houston J. Math. 38, No. 3, 833--853 (2012; Zbl 1262.42025) Full Text: Link OpenURL
Shen, Zuowei Wavelet frames and image restorations. (English) Zbl 1228.42036 Bhatia, Rajendra (ed.) et al., Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19–27, 2010. Vol. IV: Invited lectures. Hackensack, NJ: World Scientific; New Delhi: Hindustan Book Agency (ISBN 978-981-4324-34-2/hbk; 978-81-85931-08-3/hbk; 978-981-4324-31-1/set; 978-981-4324-35-9/ebook). 2834-2863 (2011). Reviewer: Manfred Tasche (Rostock) MSC: 42C15 42C40 90C90 94A08 PDF BibTeX XML Cite \textit{Z. Shen}, in: Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19--27, 2010. Vol. IV: Invited lectures. Hackensack, NJ: World Scientific; New Delhi: Hindustan Book Agency. 2834--2863 (2011; Zbl 1228.42036) Full Text: Link OpenURL
Skopina, M. On construction of multivariate wavelet frames. (English) Zbl 1171.42021 Appl. Comput. Harmon. Anal. 27, No. 1, 55-72 (2009). Reviewer: Richard A. Zalik (Auburn University) MSC: 42C40 94A08 PDF BibTeX XML Cite \textit{M. Skopina}, Appl. Comput. Harmon. Anal. 27, No. 1, 55--72 (2009; Zbl 1171.42021) Full Text: DOI arXiv OpenURL
Alpay, D.; Dijksma, A.; Langer, H. Augmented Schur parameters for generalized Nevanlinna functions and approximation. (English) Zbl 1161.41004 Behrndt, Jussi (ed.) et al., Spectral theory in inner product spaces and applications. Papers of the 6th workshop on operator theory in Krein spaces and operator polynomials, TU Berlin, Germany, December 14–17, 2006. Basel: Birkhäuser (ISBN 978-3-7643-8910-9/hbk). Operator Theory: Advances and Applications 188, 1-30 (2009). Reviewer: Jacek Gilewicz (Marseille) MSC: 41A20 47A57 46C20 30C80 47B32 30D30 PDF BibTeX XML Cite \textit{D. Alpay} et al., Oper. Theory: Adv. Appl. 188, 1--30 (2009; Zbl 1161.41004) Full Text: DOI OpenURL
Hur, Youngmi; Ron, Amos L-CAMP: Extremely local high-performance wavelet representations in high spatial dimension. (English) Zbl 1308.94032 IEEE Trans. Inf. Theory 54, No. 5, 2196-2209 (2008). MSC: 94A12 42C40 PDF BibTeX XML Cite \textit{Y. Hur} and \textit{A. Ron}, IEEE Trans. Inf. Theory 54, No. 5, 2196--2209 (2008; Zbl 1308.94032) Full Text: DOI OpenURL
Kim, Hong Oh; Kim, Rae Young; Lim, Jae Kun Internal structure of the multiresolution analyses defined by the unitary extension principle. (English) Zbl 1161.42019 J. Approx. Theory 154, No. 2, 140-160 (2008). Reviewer: Bin Han (Edmonton) MSC: 42C40 PDF BibTeX XML Cite \textit{H. O. Kim} et al., J. Approx. Theory 154, No. 2, 140--160 (2008; Zbl 1161.42019) Full Text: DOI OpenURL
Charina, Maria; Stöckler, Joachim Tight wavelet frames for irregular multiresolution analysis. (English) Zbl 1258.42030 Appl. Comput. Harmon. Anal. 25, No. 1, 98-113 (2008). MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{M. Charina} and \textit{J. Stöckler}, Appl. Comput. Harmon. Anal. 25, No. 1, 98--113 (2008; Zbl 1258.42030) Full Text: DOI OpenURL
Hur, Youngmi; Ron, Amos New constructions of piecewise-constant wavelets. (English) Zbl 1160.42319 ETNA, Electron. Trans. Numer. Anal. 25, 138-157 (2006). MSC: 42C40 65T60 PDF BibTeX XML Cite \textit{Y. Hur} and \textit{A. Ron}, ETNA, Electron. Trans. Numer. Anal. 25, 138--157 (2006; Zbl 1160.42319) Full Text: EuDML Link OpenURL
Kim, Hong Oh; Kim, Rae Young; Ku, Ja Seong Wavelet frames from Butterworth filters. (English) Zbl 1137.42316 Sampl. Theory Signal Image Process. 4, No. 3, 231-250 (2005). MSC: 42C40 94A12 PDF BibTeX XML Cite \textit{H. O. Kim} et al., Sampl. Theory Signal Image Process. 4, No. 3, 231--250 (2005; Zbl 1137.42316) Full Text: Link OpenURL
Daubechies, Ingrid; Han, Bin; Ron, Amos; Shen, Zuowei Framelets: MRA-based constructions of wavelet frames. (English) Zbl 1035.42031 Appl. Comput. Harmon. Anal. 14, No. 1, 1-46 (2003). Reviewer: Wojciech Czaja (Wrocław) MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{I. Daubechies} et al., Appl. Comput. Harmon. Anal. 14, No. 1, 1--46 (2003; Zbl 1035.42031) Full Text: DOI OpenURL
Petukhov, Alexander Symmetric framelets. (English) Zbl 1037.42038 Constructive Approximation 19, No. 2, 309-328 (2003). Reviewer: Wojciech Czaja (Wrocław) MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{A. Petukhov}, Constr. Approx. 19, No. 2, 309--328 (2003; Zbl 1037.42038) Full Text: DOI OpenURL
Petukhov, Alexander Framelets with many vanishing moments. (English) Zbl 1030.42029 Chui, Charles K. (ed.) et al., Approximation theory X. Wavelets, splines, and applications. Papers from the 10th international symposium, St. Louis, Mo, USA, March 26-29, 2001. Nashville, TN: Vanderbilt University Press. Innovations in Applied Mathematics. 425-432 (2002). Reviewer: Alexander Lindner (München) MSC: 42C40 PDF BibTeX XML Cite \textit{A. Petukhov}, in: Approximation theory X. Wavelets, splines, and applications. Papers from the 10th international symposium, St. Louis, Mo, USA, March 26--29, 2001. Nashville, TN: Vanderbilt University Press. 425--432 (2002; Zbl 1030.42029) OpenURL
Chui, Charles K.; He, Wenjie; Stöckler, Joachim Tight frames with maximum vanishing moments and minimum support. (English) Zbl 1039.42031 Chui, Charles K. (ed.) et al., Approximation theory X. Wavelets, splines, and applications. Papers from the 10th international symposium, St. Louis, Mo, USA, March 26–29, 2001. Nashville, TN: Vanderbilt University Press (ISBN 0-8265-1416-2/hbk). Innovations in Applied Mathematics, 187-206 (2002). MSC: 42C40 PDF BibTeX XML Cite \textit{C. K. Chui} et al., in: Approximation theory X. Wavelets, splines, and applications. Papers from the 10th international symposium, St. Louis, Mo, USA, March 26--29, 2001. Nashville, TN: Vanderbilt University Press. 187--206 (2002; Zbl 1039.42031) OpenURL
Benedetto, John J.; Treiber, Oliver M. Wavelet frames: Multiresolution analysis and extension principles. (English) Zbl 1036.42032 Debnath, Lokenath, Wavelet transforms and time-frequency signal analysis. Boston, MA: Birkhäuser (ISBN 0-8176-4104-1/hbk). Applied and Numerical Harmonic Analysis, 3-36 (2001). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 65T60 PDF BibTeX XML Cite \textit{J. J. Benedetto} and \textit{O. M. Treiber}, in: Wavelet transforms and time-frequency signal analysis. Boston, MA: Birkhäuser. 3--36 (2001; Zbl 1036.42032) OpenURL