×

An embedded strategy for the analysis of fluid structure interaction problems. (English) Zbl 1425.74152

Summary: A Navier-Stokes solver based on Cartesian structured finite volume discretization with embedded bodies is presented. Fluid structure interaction with solid bodies is performed with an explicit partitioned strategy. The Navier-Stokes equations are solved in the whole domain via a Semi-Implicit Method for Pressure Linked Equations (SIMPLE) using a colocated finite volume scheme, stabilized via the Rhie-Chow discretization. As uniform Cartesian grids are used, the solid interface usually do not coincide with the mesh, and then a second order Immersed Boundary Method is proposed, in order to avoid the loss of precision due to the staircase representation of the surface. This fact also affects the computation of fluid forces on the solid wall and, accordingly, the results in the fluid-structure analysis. In the present work, first and second order approximations for computing the fluid forces at the interface are studied and compared. The solver is specially oriented to General Purpose Graphic Processing Units (GPGPU) hardware and the efficiency is discussed. Moreover, a novel submerged buoy experiment is also reported. The experiment consists of a sphere with positive buoyancy fully submerged in a cubic tank, subject to harmonic displacements imposed by a shake table. The sphere is attached to the bottom of the tank with a string. The position of the buoy is determined from video records with a Motion Capture algorithm. The obtained amplitude and phase curves allow a precise determination of the added mass and drag forces. Due to this aspect the experimental data can be of interest for comparison with other fluid-structure interaction codes. Finally, the numerical results are compared with the experiments, and allow the confirmation of the numerically predicted drag and added mass of the body.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65Y10 Numerical algorithms for specific classes of architectures
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

FParser; CUDA; Alya
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Piperno, S.; Farhat, C., Partitioned procedures for the transient solution of coupled aeroelastic problems-Part II: energy transfer analysis and three-dimensional applications, Comput. Methods Appl. Mech. Engrg., 190, 24, 3147-3170 (2001) · Zbl 1015.74009
[2] Bazilevs, Y.; Hsu, M.; Kiendl, J.; Wüchner, R.; Bletzinger, K., 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades, Internat. J. Numer. Methods Fluids, 65, 1-3, 236-253 (2011) · Zbl 1428.76087
[3] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E., Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling, Arch. Comput. Methods Eng., 19, 2, 171-225 (2012) · Zbl 1354.92023
[4] Takizawa, K.; Tezduyar, T. E., Multiscale space-time fluid-structure interaction techniques, Comput. Mech., 48, 3, 247-267 (2011) · Zbl 1398.76128
[5] Wang, X.; Liu, W. K., Extended immersed boundary method using FEM and RKPM, Comput. Methods Appl. Mech. Engrg., 193, 12-14, 1305-1321 (2004), Meshfree Methods: Recent Advances and New Applications · Zbl 1060.74676
[6] He, T.; Zhou, D.; Bao, Y., Combined interface boundary condition method for fluid-rigid body interaction, Comput. Methods Appl. Mech. Engrg., 223-224, 0, 81-102 (2012) · Zbl 1253.74034
[7] Hesch, C.; Gil, A.; Carreño, A. A.; Bonet, J.; Betsch, P., A mortar approach for fluid-structure interaction problems: Immersed strategies for deformable and rigid bodies, Comput. Methods Appl. Mech. Engrg., 278, 853-882 (2014) · Zbl 1423.74889
[9] Rossi, R.; Idelsohn, S.; Oñate, E.; Cotela, J.; Del Pin, F., Mejora de la solución fuertemente acoplada de problemas FSI mediante una aproximación de la matriz tangente de presión, Rev. Internac. Mét. Numér. Cálc. Diseñ. Ingr., 27, 3, 165-179 (2011)
[10] Robinson-Mosher, A.; Schroeder, C.; Fedkiw, R., A symmetric positive definite formulation for monolithic fluid structure interaction, J. Comput. Phys., 230, 4, 1547-1566 (2011) · Zbl 1390.74054
[11] Hron, J.; Turek, S., A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics (2006), Springer · Zbl 1323.74086
[12] Idelsohn, S.; Oñate, E.; Pin, F. D.; Calvo, N., Fluid-structure interaction using the particle finite element method, Comput. Methods Appl. Mech. Engrg., 195, 17, 2100-2123 (2006) · Zbl 1178.76230
[13] Idelsohn, S. R.; Marti, J.; Limache, A.; Oñate, E., Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM, Comput. Methods Appl. Mech. Engrg., 197, 19, 1762-1776 (2008) · Zbl 1194.74415
[14] Corrigan, A.; Camelli, F. F.; Löhner, R.; Wallin, J., Running unstructured grid-based CFD solvers on modern graphics hardware, Internat. J. Numer. Methods Fluids, 66, 2, 221-229 (2011) · Zbl 1394.76084
[15] Corrigan, A.; Camelli, F.; Löhner, R.; Mut, F., Semi-automatic porting of a large-scale Fortran CFD code to GPUs, Internat. J. Numer. Methods Fluids, 69, 2, 314-331 (2012) · Zbl 1245.76003
[16] Vázquez, M.; Houzeaux, G.; Rubio, F.; Simarro, C., Alya multiphysics simulations on Intel’s Xeon Phi accelerators, (High Performance Computing (2014), Springer), 248-254
[17] Rossa, A. L.; Coutinho, A. L., Parallel adaptive simulation of gravity currents on the lock-exchange problem, Comput. & Fluids, 88, 0, 782-794 (2013) · Zbl 1391.76356
[18] Takizawa, K.; Tezduyar, T. E., Computational methods for parachute fluid-structure interactions, Arch. Comput. Methods Eng., 19, 1, 125-169 (2012) · Zbl 1354.76113
[19] Löhner, R.; Baum, J. D., On maximum achievable speeds for field solvers, Internat. J. Numer. Methods Heat Fluid Flow, 24, 7, 1537-1544 (2014)
[20] Storti, M. A.; Paz, R. R.; Dalcin, L. D.; Costarelli, S. D.; Idelsohn, S. R., A FFT preconditioning technique for the solution of incompressible flow on GPUs, Comput. & Fluids, 74, 44-57 (2013) · Zbl 1365.76042
[21] Costarelli, S. D.; Storti, M. A.; Paz, R. R.; Dalcin, L. D.; Idelsohn, S. R., GPGPU implementation of the BFECC algorithm for pure advection equations, Cluster Comput., 17, 2, 243-254 (2014)
[22] Sethian, J., A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci., 93, 4, 1591 (1996) · Zbl 0852.65055
[23] Peng, D.; Merriman, B.; Osher, S.; Zhao, H.; Kang, M., A PDE-based fast local level set method, J. Comput. Phys., 155, 2, 410-438 (1999) · Zbl 0964.76069
[24] Chen, S.; Merriman, B.; Osher, S.; Smereka, P., A simple level set method for solving Stefan problems, J. Comput. Phys., 135, 1, 8-29 (1997) · Zbl 0889.65133
[25] Hou, T. Y.; Li, Z.; Osher, S.; Zhao, H., A hybrid method for moving interface problems with application to the Hele-Shaw flow, J. Comput. Phys., 134, 2, 236-252 (1997) · Zbl 0888.76067
[26] Dupont, T.; Liu, Y., Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function, J. Comput. Phys., 190, 1, 311-324 (2003) · Zbl 1031.65110
[27] Dupont, T.; Liu, Y., Back and forth error compensation and correction methods for semi-Lagrangian schemes with application to level set interface computations, Math. Comp., 76, 258, 647-668 (2007) · Zbl 1116.65100
[28] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I., A hybrid particle level set method for improved interface capturing, J. Comput. Phys., 183, 1, 83-116 (2002) · Zbl 1021.76044
[29] Garelli, L.; Paz, R. R.; Storti, M. A., Fluid-structure interaction study of the start-up of a rocket engine nozzle, Comput. & Fluids, 39, 7, 1208-1218 (2010) · Zbl 1242.76098
[30] Storti, M. A.; Garelli, L.; Paz, R. R., A finite element formulation satisfying the discrete geometric conservation law based on averaged Jacobians, Internat. J. Numer. Methods Fluids, 69, 12, 1872-1890 (2012)
[31] Storti, M. A.; Nigro, N. M.; Paz, R. R.; Dalcín, L. D., Strong coupling strategy for fluid-structure interaction problems in supersonic regime via fixed point iteration, J. Sound Vib., 320, 4, 859-877 (2009)
[32] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, Adv. Appl. Mech., 28, 1-44 (1991) · Zbl 0747.76069
[33] López, E. J.; Nigro, N. M.; Storti, M. A.; Toth, J. A., A minimal element distortion strategy for computational mesh dynamics, Internat. J. Numer. Methods Engrg., 69, 9, 1898-1929 (2007) · Zbl 1194.76127
[34] Neill, D.; Livelybrooks, D.; Donnelly, R. J., A pendulum experiment on added mass and the principle of equivalence, Amer. J. Phys., 75, 3, 226-229 (2007)
[37] Fadlun, E.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 1, 35-60 (2000) · Zbl 0972.76073
[38] Rhie, C.; Chow, W., Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J., 21, 11, 1525-1532 (1983) · Zbl 0528.76044
[39] Versteeg, H. K.; Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2007), Pearson Education
[40] Patankar, S. V.; Spalding, D. B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer, 15, 10, 1787-1806 (1972) · Zbl 0246.76080
[41] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, vol. 153 (2006), Springer Science & Business Media
[42] Cruchaga, M.; Battaglia, L.; Storti, M.; D’Elía, J., Numerical modeling and experimental validation of free surface flow problems, Arch. Comput. Methods Eng., 1-31 (2014)
[43] Bearman, P.; Downie, M.; Graham, J.; Obasaju, E., Forces on cylinders in viscous oscillatory flow at low Keulegan-Carpenter numbers, J. Fluid Mech., 154, 337-356 (1985) · Zbl 0586.76051
[44] Sarpkaya, T., Force on a circular cylinder in viscous oscillatory flow at low Keulegan—Carpenter numbers, J. Fluid Mech., 165, 61-71 (1986)
[45] Lam, K.; Dai, G., Formation of vortex street and vortex pair from a circular cylinder oscillating in water, Exp. Therm Fluid Sci., 26, 8, 901-915 (2002)
[46] Lam, K.; Hu, J.; Liu, P., Vortex formation processes from an oscillating circular cylinder at high Keulegan-Carpenter numbers, Phys. Fluids, 22, 1, Article 015105 pp. (2010), (1994-present) · Zbl 1183.76292
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.