Alishahi, Akram; Eftekhary, Eaman Knot Floer homology and the unknotting number. (English) Zbl 07305772 Geom. Topol. 24, No. 5, 2435-2469 (2020). MSC: 57K18 57K10 PDF BibTeX XML Cite \textit{A. Alishahi} and \textit{E. Eftekhary}, Geom. Topol. 24, No. 5, 2435--2469 (2020; Zbl 07305772) Full Text: DOI
Miyazawa, Haruko A.; Wada, Kodai; Yasuhara, Akira Generalized virtualization on welded links. (English) Zbl 07257216 J. Math. Soc. Japan 72, No. 3, 923-944 (2020). MSC: 57K12 PDF BibTeX XML Cite \textit{H. A. Miyazawa} et al., J. Math. Soc. Japan 72, No. 3, 923--944 (2020; Zbl 07257216) Full Text: DOI Euclid
Buck, Dorothy; O’Donnol, Danielle Knotting of replication intermediates is narrowly restricted. (English) Zbl 07217795 Flapan, Erica (ed.) et al., Topology and geometry of biopolymers. AMS special session on topology of biopolymers, Northeastern University, Boston, MA, USA, April 21–22, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4840-0/pbk; 978-1-4704-5456-2/ebook). Contemporary Mathematics 746, 85-100 (2020). Reviewer: Dieter Erle (Dortmund) MSC: 57K10 57Z10 57M15 92E10 05C10 92C40 PDF BibTeX XML Cite \textit{D. Buck} and \textit{D. O'Donnol}, Contemp. Math. 746, 85--100 (2020; Zbl 07217795) Full Text: DOI
Kerian, A. Raising crosscap number while lowering unknotting number. (English) Zbl 1443.57003 J. Knot Theory Ramifications 29, No. 5, Article ID 2050030, 8 p. (2020). MSC: 57K10 PDF BibTeX XML Cite \textit{A. Kerian}, J. Knot Theory Ramifications 29, No. 5, Article ID 2050030, 8 p. (2020; Zbl 1443.57003) Full Text: DOI
Shimizu, Ayaka; Takahashi, Rinno Region crossing change on spatial theta-curves. (English) Zbl 1443.57007 J. Knot Theory Ramifications 29, No. 5, Article ID 2050028, 11 p. (2020). MSC: 57K10 57M15 PDF BibTeX XML Cite \textit{A. Shimizu} and \textit{R. Takahashi}, J. Knot Theory Ramifications 29, No. 5, Article ID 2050028, 11 p. (2020; Zbl 1443.57007) Full Text: DOI
Longo, Vincent On 2-knots and connected sums with projective planes. (English) Zbl 1446.57014 Geom. Dedicata 207, 23-27 (2020). Reviewer: Inasa Nakamura (Kanazawa) MSC: 57K45 PDF BibTeX XML Cite \textit{V. Longo}, Geom. Dedicata 207, 23--27 (2020; Zbl 1446.57014) Full Text: DOI
Goodhill, Sarah; Lowrance, Adam M.; Gonzales, Valeria Munoz; Rattray, Jessica; Zeh, Amelia The multi-region index of a knot. (English) Zbl 1439.57012 J. Knot Theory Ramifications 29, No. 4, Article ID 2050022, 16 p. (2020). MSC: 57K10 PDF BibTeX XML Cite \textit{S. Goodhill} et al., J. Knot Theory Ramifications 29, No. 4, Article ID 2050022, 16 p. (2020; Zbl 1439.57012) Full Text: DOI
Livingston, Charles Signature invariants related to the unknotting number. (English) Zbl 1436.57010 Pac. J. Math. 305, No. 1, 229-250 (2020). Reviewer: Anthony Conway (Genève) MSC: 57K10 PDF BibTeX XML Cite \textit{C. Livingston}, Pac. J. Math. 305, No. 1, 229--250 (2020; Zbl 1436.57010) Full Text: DOI
Kaur, Kirandeep; Kamada, Seiichi; Kawauchi, Akio; Madeti, Prabhakar An unknotting index for virtual knots. (English) Zbl 1440.57013 Tokyo J. Math. 42, No. 2, 357-370 (2019). MSC: 57K12 PDF BibTeX XML Cite \textit{K. Kaur} et al., Tokyo J. Math. 42, No. 2, 357--370 (2019; Zbl 1440.57013) Full Text: DOI Euclid
Alishahi, Akram Unknotting number and Khovanov homology. (English) Zbl 1439.57001 Pac. J. Math. 301, No. 1, 15-29 (2019). MSC: 57K10 57K18 PDF BibTeX XML Cite \textit{A. Alishahi}, Pac. J. Math. 301, No. 1, 15--29 (2019; Zbl 1439.57001) Full Text: DOI
Girão, Darlan; Nogueira, João Miguel; Salgueiro, António On links minimizing the tunnel number. (English) Zbl 1445.57002 J. Knot Theory Ramifications 28, No. 13, Article ID 1940014, 11 p. (2019). Reviewer: Dieter Erle (Dortmund) MSC: 57K10 57M15 57M05 57K20 57K31 PDF BibTeX XML Cite \textit{D. Girão} et al., J. Knot Theory Ramifications 28, No. 13, Article ID 1940014, 11 p. (2019; Zbl 1445.57002) Full Text: DOI
McDonald, Clayton Band number and the double slice genus. (English) Zbl 1431.57008 New York J. Math. 25, 964-974 (2019). Reviewer: Dieter Erle (Dortmund) MSC: 57K10 57K45 57M12 57N37 PDF BibTeX XML Cite \textit{C. McDonald}, New York J. Math. 25, 964--974 (2019; Zbl 1431.57008) Full Text: Link arXiv
Donald, Andrew; McCoy, Duncan; Vafaee, Faramarz On L-space knots obtained from unknotting arcs in alternating diagrams. (English) Zbl 1439.57010 New York J. Math. 25, 518-540 (2019). Reviewer: Anthony Conway (Genève) MSC: 57K10 PDF BibTeX XML Cite \textit{A. Donald} et al., New York J. Math. 25, 518--540 (2019; Zbl 1439.57010) Full Text: Link arXiv
Kaur, K.; Prabhakar, M.; Vesnin, A. An unknotting index for virtual links. (English) Zbl 1426.57027 Topology Appl. 264, 352-368 (2019). MSC: 57K12 PDF BibTeX XML Cite \textit{K. Kaur} et al., Topology Appl. 264, 352--368 (2019; Zbl 1426.57027) Full Text: DOI
Ito, Noboru; Sakurai, Migiwa Higher-order finite type invariants of classical and virtual knots and unknotting operations. (English) Zbl 1423.57012 Topology Appl. 264, 210-222 (2019). MSC: 57M25 PDF BibTeX XML Cite \textit{N. Ito} and \textit{M. Sakurai}, Topology Appl. 264, 210--222 (2019; Zbl 1423.57012) Full Text: DOI
Wan, Liangxia New presentations of a link and virtual link. (English) Zbl 1426.57023 J. Knot Theory Ramifications 28, No. 8, Article ID 1950051, 30 p. (2019). MSC: 57K10 57K12 PDF BibTeX XML Cite \textit{L. Wan}, J. Knot Theory Ramifications 28, No. 8, Article ID 1950051, 30 p. (2019; Zbl 1426.57023) Full Text: DOI arXiv
Bettersworth, Zac; Ernst, Claus Incoherent nullification of torus knots and links. (English) Zbl 1422.57011 J. Knot Theory Ramifications 28, No. 5, Article ID 1950033, 23 p. (2019). Reviewer: Kenneth A. Perko Jr. (New York) MSC: 57M25 92E99 PDF BibTeX XML Cite \textit{Z. Bettersworth} and \textit{C. Ernst}, J. Knot Theory Ramifications 28, No. 5, Article ID 1950033, 23 p. (2019; Zbl 1422.57011) Full Text: DOI
Chen, Jie Algebraic Gordian distance. (English) Zbl 1428.57002 J. Knot Theory Ramifications 28, No. 4, Article ID 1950024, 13 p. (2019). Reviewer: Delphine Moussard (Kyoto) MSC: 57K10 PDF BibTeX XML Cite \textit{J. Chen}, J. Knot Theory Ramifications 28, No. 4, Article ID 1950024, 13 p. (2019; Zbl 1428.57002) Full Text: DOI
Ito, Noboru; Sakurai, Migiwa On \(n\)-trivialities of classical and virtual knots for some unknotting operations. (English) Zbl 1426.57035 J. Math. Soc. Japan 71, No. 1, 329-347 (2019). MSC: 57K16 57K12 PDF BibTeX XML Cite \textit{N. Ito} and \textit{M. Sakurai}, J. Math. Soc. Japan 71, No. 1, 329--347 (2019; Zbl 1426.57035) Full Text: DOI Euclid
Alishahi, Akram; Dowlin, Nathan The Lee spectral sequence, unknotting number, and the knight move conjecture. (English) Zbl 1406.57002 Topology Appl. 254, 29-38 (2019). Reviewer: Kenneth A. Perko Jr. (New York) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{A. Alishahi} and \textit{N. Dowlin}, Topology Appl. 254, 29--38 (2019; Zbl 1406.57002) Full Text: DOI arXiv
Ernst, Claus; Pham, Van Loop numbers of knots. (English) Zbl 1405.57013 J. Knot Theory Ramifications 27, No. 14, Article ID 1850075, 26 p. (2018). Reviewer: Kenneth A. Perko Jr. (New York) MSC: 57M25 PDF BibTeX XML Cite \textit{C. Ernst} and \textit{V. Pham}, J. Knot Theory Ramifications 27, No. 14, Article ID 1850075, 26 p. (2018; Zbl 1405.57013) Full Text: DOI
Ito, Noboru; Takimura, Yusuke Crosscap number and knot projections. (English) Zbl 1420.57022 Int. J. Math. 29, No. 12, Article ID 1850084, 21 p. (2018). Reviewer: Dieter Erle (Dortmund) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{N. Ito} and \textit{Y. Takimura}, Int. J. Math. 29, No. 12, Article ID 1850084, 21 p. (2018; Zbl 1420.57022) Full Text: DOI
de Mesmay, Arnaud Local and algorithmic moves of knots according to Lackenby. (Mouvements locaux et algorithmique des nœuds, d après Lackenby.) (French) Zbl 1408.57004 Gaz. Math., Soc. Math. Fr. 158, 33-41 (2018). MSC: 57M25 57-02 PDF BibTeX XML Cite \textit{A. de Mesmay}, Gaz. Math., Soc. Math. Fr. 158, 33--41 (2018; Zbl 1408.57004)
Feller, Peter; Lewark, Lukas On classical upper bounds for slice genera. (English) Zbl 1404.57008 Sel. Math., New Ser. 24, No. 5, 4885-4916 (2018). Reviewer: Khlaed Qazaqzeh (Irbed) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{P. Feller} and \textit{L. Lewark}, Sel. Math., New Ser. 24, No. 5, 4885--4916 (2018; Zbl 1404.57008) Full Text: DOI
Audoux, Benjamin; Bellingeri, Paolo; Meilhan, Jean-Baptiste; Wagner, Emmanuel Extensions of some classical local moves on knot diagrams. (English) Zbl 1406.57003 Mich. Math. J. 67, No. 3, 647-672 (2018). Reviewer: Celeste Damiani (Leeds) MSC: 57M25 57Q45 57M27 20F36 PDF BibTeX XML Cite \textit{B. Audoux} et al., Mich. Math. J. 67, No. 3, 647--672 (2018; Zbl 1406.57003) Full Text: DOI Euclid arXiv
Ogasa, Eiji The “unknotting number” associated with other local moves than the crossing-change. (English) Zbl 1401.57036 J. Knot Theory Ramifications 27, No. 10, Article ID 1850051, 43 p. (2018). Reviewer: Inasa Nakamura (Kanazawa) MSC: 57Q45 57M25 PDF BibTeX XML Cite \textit{E. Ogasa}, J. Knot Theory Ramifications 27, No. 10, Article ID 1850051, 43 p. (2018; Zbl 1401.57036) Full Text: DOI
Livingston, Charles Signature functions of knots. (English) Zbl 1404.57027 Proc. Am. Math. Soc. 146, No. 10, 4513-4520 (2018). Reviewer: Dieter Erle (Dortmund) MSC: 57M27 57M25 57Q60 57N70 12E05 11E39 PDF BibTeX XML Cite \textit{C. Livingston}, Proc. Am. Math. Soc. 146, No. 10, 4513--4520 (2018; Zbl 1404.57027) Full Text: DOI arXiv
Borodzik, Maciej; Hedden, Matthew The \(\Upsilon\) function of \(L\)-space knots is a Legendre transform. (English) Zbl 1411.57022 Math. Proc. Camb. Philos. Soc. 164, No. 3, 401-411 (2018). MSC: 57M27 PDF BibTeX XML Cite \textit{M. Borodzik} and \textit{M. Hedden}, Math. Proc. Camb. Philos. Soc. 164, No. 3, 401--411 (2018; Zbl 1411.57022) Full Text: DOI arXiv
Lowrance, Adam M.; Spyropoulos, Dean The Jones polynomial of an almost alternating link. (English) Zbl 1392.57006 New York J. Math. 23, 1611-1639 (2017). Reviewer: Khlaed Qazaqzeh (Irbed) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{A. M. Lowrance} and \textit{D. Spyropoulos}, New York J. Math. 23, 1611--1639 (2017; Zbl 1392.57006) Full Text: Link arXiv
Khan, Noureen A. On extended invariants of virtual pseudo prime knots. (English) Zbl 1387.57011 JP J. Geom. Topol. 20, No. 3, 273-293 (2017). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{N. A. Khan}, JP J. Geom. Topol. 20, No. 3, 273--293 (2017; Zbl 1387.57011) Full Text: DOI
Siwach, Vikash; Prabhakar, Madeti On minimal unknotting crossing data for closed toric braids. (English) Zbl 1386.57014 Kyungpook Math. J. 57, No. 2, 331-360 (2017). MSC: 57M25 PDF BibTeX XML Cite \textit{V. Siwach} and \textit{M. Prabhakar}, Kyungpook Math. J. 57, No. 2, 331--360 (2017; Zbl 1386.57014) Full Text: DOI
Ishikawa, Masaharu; Yanagi, Hirokazu Virtual unknotting numbers of certain virtual torus knots. (English) Zbl 1387.57010 J. Knot Theory Ramifications 26, No. 11, Article ID 1750070, 16 p. (2017). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{M. Ishikawa} and \textit{H. Yanagi}, J. Knot Theory Ramifications 26, No. 11, Article ID 1750070, 16 p. (2017; Zbl 1387.57010) Full Text: DOI arXiv
Kaur, K.; Kamada, S.; Kawauchi, A.; Prabhakar, M. Gauss diagrams, unknotting numbers and trivializing numbers of spatial graphs. (English) Zbl 1412.57001 Topology Appl. 230, 586-598 (2017). Reviewer: Brenda Johnson (Schenectady) MSC: 57M15 05C99 PDF BibTeX XML Cite \textit{K. Kaur} et al., Topology Appl. 230, 586--598 (2017; Zbl 1412.57001) Full Text: DOI
Ince, Kenan Untwisting information from Heegaard Floer homology. (English) Zbl 1380.57004 Algebr. Geom. Topol. 17, No. 4, 2283-2306 (2017). Reviewer: Keiji Tagami (Chiba) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{K. Ince}, Algebr. Geom. Topol. 17, No. 4, 2283--2306 (2017; Zbl 1380.57004) Full Text: DOI
Li, Zhiguo; Lei, Fengchun; Wu, Jie On the unknotting number of a welded knot. (English) Zbl 1385.57012 J. Knot Theory Ramifications 26, No. 1, Article ID 1750004, 22 p. (2017). Reviewer: Lorena Armas-Sanabria (México D. F.) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{Z. Li} et al., J. Knot Theory Ramifications 26, No. 1, Article ID 1750004, 22 p. (2017; Zbl 1385.57012) Full Text: DOI
Tanaka, Toshifumi The region index and the unknotting number of a knot. (English) Zbl 1372.57022 Topology Appl. 219, 141-151 (2017). Reviewer: Leonid Plachta (Kraków) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{T. Tanaka}, Topology Appl. 219, 141--151 (2017; Zbl 1372.57022) Full Text: DOI
McCoy, Duncan Alternating knots with unknotting number one. (English) Zbl 1353.57013 Adv. Math. 305, 757-802 (2017). Reviewer: Lee P. Neuwirth (Princeton) MSC: 57M25 57M27 57M12 57M15 52C07 PDF BibTeX XML Cite \textit{D. McCoy}, Adv. Math. 305, 757--802 (2017; Zbl 1353.57013) Full Text: DOI arXiv
Owens, Brendan; Strle, Sašo Immersed disks, slicing numbers and concordance unknotting numbers. (English) Zbl 1372.57020 Commun. Anal. Geom. 24, No. 5, 1107-1138 (2016). Reviewer: Masakazu Teragaito (Hiroshima) MSC: 57M25 57Q45 PDF BibTeX XML Cite \textit{B. Owens} and \textit{S. Strle}, Commun. Anal. Geom. 24, No. 5, 1107--1138 (2016; Zbl 1372.57020) Full Text: DOI arXiv
Inoue, Ayumu; Shimizu, Ryo A subspecies of region crossing change, region freeze crossing change. (English) Zbl 1356.57010 J. Knot Theory Ramifications 25, No. 14, Article ID 1650075, 9 p. (2016). MSC: 57M25 PDF BibTeX XML Cite \textit{A. Inoue} and \textit{R. Shimizu}, J. Knot Theory Ramifications 25, No. 14, Article ID 1650075, 9 p. (2016; Zbl 1356.57010) Full Text: DOI arXiv
Vikash, S.; Madeti, P. On Arf invariant and trivializing number. (English) Zbl 1354.57019 Gongopadhyay, Krishnendu (ed.) et al., Knot theory and its applications. ICTS program knot theory and its applications (KTH-2013), IISER Mohali, India, December 10–20, 2013. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2257-8/pbk; 978-1-4704-3526-4/ebook). Contemporary Mathematics 670, 345-357 (2016). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{S. Vikash} and \textit{P. Madeti}, Contemp. Math. 670, 345--357 (2016; Zbl 1354.57019) Full Text: DOI
Kawauchi, Akio Knot theory for spatial graphs attached to a surface. (English) Zbl 1354.57010 Gongopadhyay, Krishnendu (ed.) et al., Knot theory and its applications. ICTS program knot theory and its applications (KTH-2013), IISER Mohali, India, December 10–20, 2013. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2257-8/pbk; 978-1-4704-3526-4/ebook). Contemporary Mathematics 670, 141-169 (2016). MSC: 57M15 57M25 57M10 57M27 PDF BibTeX XML Cite \textit{A. Kawauchi}, Contemp. Math. 670, 141--169 (2016; Zbl 1354.57010) Full Text: DOI
Kanenobu, Taizo Band surgery on knots and links. III. (English) Zbl 1350.57009 J. Knot Theory Ramifications 25, No. 10, Article ID 1650056, 12 p. (2016). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{T. Kanenobu}, J. Knot Theory Ramifications 25, No. 10, Article ID 1650056, 12 p. (2016; Zbl 1350.57009) Full Text: DOI
Zeković, Ana; Jablan, Slavik; Kauffman, Louis; Sazdanovic, Radmila; Stošić, Marko Unknotting and maximum unknotting numbers. (English) Zbl 1351.57015 J. Knot Theory Ramifications 25, No. 9, Article ID 1641010, 43 p. (2016). Reviewer: Kenneth A. Perko jun. (New York) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{A. Zeković} et al., J. Knot Theory Ramifications 25, No. 9, Article ID 1641010, 43 p. (2016; Zbl 1351.57015) Full Text: DOI
Kauffman, Louis H. The unknotting problem. (English) Zbl 1349.57001 Nash, John Forbes jun. (ed.) et al., Open problems in mathematics. Cham: Springer (ISBN 978-3-319-32160-8/hbk; 978-3-319-32162-2/ebook). 303-345 (2016). MSC: 57-02 57M25 57M27 PDF BibTeX XML Cite \textit{L. H. Kauffman}, in: Open problems in mathematics. Cham: Springer. 303--345 (2016; Zbl 1349.57001) Full Text: DOI
Ernst, Claus; Montemayor, Anthony Nullification numbers of knots with up to 10 crossings. (English) Zbl 1350.57006 J. Knot Theory Ramifications 25, No. 7, Article ID 1650037, 20 p. (2016). Reviewer: Dieter Erle (Dortmund) MSC: 57M25 57M27 92C40 PDF BibTeX XML Cite \textit{C. Ernst} and \textit{A. Montemayor}, J. Knot Theory Ramifications 25, No. 7, Article ID 1650037, 20 p. (2016; Zbl 1350.57006) Full Text: DOI
Ince, Kenan The untwisting number of a knot. (English) Zbl 1345.57012 Pac. J. Math. 283, No. 1, 139-156 (2016). Reviewer: Jessica Banks (Hull) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{K. Ince}, Pac. J. Math. 283, No. 1, 139--156 (2016; Zbl 1345.57012) Full Text: DOI arXiv
Koda, Yuya; Ozawa, Makoto Knot homotopy in subspaces of the 3-sphere. (English) Zbl 1336.57011 Pac. J. Math. 282, No. 2, 389-414 (2016). Reviewer: Lee P. Neuwirth (Princeton) MSC: 57M25 57M27 57N10 57Q35 PDF BibTeX XML Cite \textit{Y. Koda} and \textit{M. Ozawa}, Pac. J. Math. 282, No. 2, 389--414 (2016; Zbl 1336.57011) Full Text: DOI arXiv
Song, Hyun-Jong \((1,1)\)-decompositions of rational pretzel knots. (English) Zbl 1336.57003 East Asian Math. J. 32, No. 1, 077-084 (2016). MSC: 57M12 57M15 57M50 PDF BibTeX XML Cite \textit{H.-J. Song}, East Asian Math. J. 32, No. 1, 077--084 (2016; Zbl 1336.57003) Full Text: DOI
Crowe, Donald; Darvas, György; Huylebrouck, Dirk; Kappraff, Jay; Kauffman, Louis; Lambropoulou, Sofia; Przytycki, Jozef; Radović, Ljiljana; Sazdanovic, Radmila; De Spinadel, Vera W.; Zeković, Ana In memoriam: Slavik Jablan 1952–2015. (English) Zbl 1372.01030 Symmetry 7, No. 3, 1261-1274 (2015). MSC: 01A70 PDF BibTeX XML Cite \textit{D. Crowe} et al., Symmetry 7, No. 3, 1261--1274 (2015; Zbl 1372.01030) Full Text: DOI
Zeković, Ana Computation of Gordian distances and \(H_2\)-Gordian distances of knots. (English) Zbl 1437.57014 Yugosl. J. Oper. Res. 25, No. 1, 133-152 (2015). MSC: 57K10 57Z10 92D20 PDF BibTeX XML Cite \textit{A. Zeković}, Yugosl. J. Oper. Res. 25, No. 1, 133--152 (2015; Zbl 1437.57014) Full Text: DOI
Manturov, Vassily Olegovich; Nikonov, Igor Mikhailovich On braids and groups \(G_n^k\). (English) Zbl 1339.20033 J. Knot Theory Ramifications 24, No. 13, Article ID 1541009, 16 p. (2015). MSC: 20F36 57M25 57M27 20E36 PDF BibTeX XML Cite \textit{V. O. Manturov} and \textit{I. M. Nikonov}, J. Knot Theory Ramifications 24, No. 13, Article ID 1541009, 16 p. (2015; Zbl 1339.20033) Full Text: DOI arXiv
Uchida, Yoshiaki Delta-unknotting operations and ordinary unknotting operations. (English) Zbl 1330.57018 Topology Appl. 196, Part B, 1019-1022 (2015). MSC: 57M25 PDF BibTeX XML Cite \textit{Y. Uchida}, Topology Appl. 196, Part B, 1019--1022 (2015; Zbl 1330.57018) Full Text: DOI
Morimoto, Kanji On Heegaard splittings of knot exteriors with tunnel number degenerations. (English) Zbl 1342.57009 Topology Appl. 196, Part B, 719-728 (2015). Reviewer: Mario Eudave-Muñoz (México D. F.) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{K. Morimoto}, Topology Appl. 196, Part B, 719--728 (2015; Zbl 1342.57009) Full Text: DOI arXiv
Siwach, V.; Madeti, P. An unknotting sequence for torus knots. (English) Zbl 1330.57015 Topology Appl. 196, Part B, 668-674 (2015). MSC: 57M25 PDF BibTeX XML Cite \textit{V. Siwach} and \textit{P. Madeti}, Topology Appl. 196, Part B, 668--674 (2015; Zbl 1330.57015) Full Text: DOI
Siwach, V.; Madeti, P. Region unknotting number of 2-bridge knots. (English) Zbl 1327.57012 J. Knot Theory Ramifications 24, No. 11, Article ID 1550053, 20 p. (2015). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{V. Siwach} and \textit{P. Madeti}, J. Knot Theory Ramifications 24, No. 11, Article ID 1550053, 20 p. (2015; Zbl 1327.57012) Full Text: DOI
Kanenobu, Taizo; Matsumura, Satoshi Lower bound of the unknotting number of prime knots with up to 12 crossings. (English) Zbl 1337.57026 J. Knot Theory Ramifications 24, No. 10, Article ID 1540012, 9 p. (2015). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{T. Kanenobu} and \textit{S. Matsumura}, J. Knot Theory Ramifications 24, No. 10, Article ID 1540012, 9 p. (2015; Zbl 1337.57026) Full Text: DOI
Bae, Yongju; Kim, Byeorhi On unknotting operations of rotation type. (English) Zbl 1327.57006 J. Knot Theory Ramifications 24, No. 10, Article ID 1540009, 10 p. (2015). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{Y. Bae} and \textit{B. Kim}, J. Knot Theory Ramifications 24, No. 10, Article ID 1540009, 10 p. (2015; Zbl 1327.57006) Full Text: DOI
Kawauchi, Akio A chord diagram of a ribbon surface-link. (English) Zbl 1329.57031 J. Knot Theory Ramifications 24, No. 10, Article ID 1540002, 24 p. (2015). Reviewer: Inasa Nakamura (Tokyo) MSC: 57Q45 57M25 57M05 PDF BibTeX XML Cite \textit{A. Kawauchi}, J. Knot Theory Ramifications 24, No. 10, Article ID 1540002, 24 p. (2015; Zbl 1329.57031) Full Text: DOI
McCoy, Duncan Non-integer surgery and branched double covers of alternating knots. (English) Zbl 1335.57024 J. Lond. Math. Soc., II. Ser. 92, No. 2, 311-337 (2015). Reviewer: Chuichiro Hayashi (Tokyo) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{D. McCoy}, J. Lond. Math. Soc., II. Ser. 92, No. 2, 311--337 (2015; Zbl 1335.57024) Full Text: DOI arXiv
Hanaki, Ryo On scannable properties of the original knot from a knot shadow. (English) Zbl 1337.57018 Topology Appl. 194, 296-305 (2015). MSC: 57M25 PDF BibTeX XML Cite \textit{R. Hanaki}, Topology Appl. 194, 296--305 (2015; Zbl 1337.57018) Full Text: DOI
Brockway, Seph Shewell Computing the unknotting numbers of certain pretzel knots. (English) Zbl 1327.57007 Topology Appl. 194, 118-124 (2015). Reviewer: Jennifer R. Bowen (Wooster) MSC: 57M25 PDF BibTeX XML Cite \textit{S. S. Brockway}, Topology Appl. 194, 118--124 (2015; Zbl 1327.57007) Full Text: DOI arXiv
Belegradek, Igor Open aspherical manifolds not covered by the Euclidean space. (English) Zbl 1321.57027 Proc. Am. Math. Soc. 143, No. 8, 3641-3643 (2015). Reviewer: Shijie Gu (Milwaukee) MSC: 57N15 PDF BibTeX XML Cite \textit{I. Belegradek}, Proc. Am. Math. Soc. 143, No. 8, 3641--3643 (2015; Zbl 1321.57027) Full Text: DOI
Adams, Colin; Capovilla-Searle, Orsola; Freeman, Jesse; Irvine, Daniel; Petti, Samantha; Vitek, Daniel; Weber, Ashley; Zhang, Sicong Bounds on übercrossing and petal numbers for knots. (English) Zbl 1316.57011 J. Knot Theory Ramifications 24, No. 2, Article ID 1550012, 16 p. (2015). Reviewer: Jessica Banks (Hull) MSC: 57M27 PDF BibTeX XML Cite \textit{C. Adams} et al., J. Knot Theory Ramifications 24, No. 2, Article ID 1550012, 16 p. (2015; Zbl 1316.57011) Full Text: DOI arXiv
Borodzik, Maciej; Friedl, Stefan The unknotting number and classical invariants. I. (English) Zbl 1318.57009 Algebr. Geom. Topol. 15, No. 1, 85-135 (2015). Reviewer: James Hebda (St. Louis) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{M. Borodzik} and \textit{S. Friedl}, Algebr. Geom. Topol. 15, No. 1, 85--135 (2015; Zbl 1318.57009) Full Text: DOI arXiv
Jablan, Slavik; Radović, Ljiljana Unknotting numbers of alternating knot and link families. (English) Zbl 1437.57007 Publ. Inst. Math., Nouv. Sér. 95(109), 87-99 (2014). MSC: 57K10 PDF BibTeX XML Cite \textit{S. Jablan} and \textit{L. Radović}, Publ. Inst. Math., Nouv. Sér. 95(109), 87--99 (2014; Zbl 1437.57007) Full Text: DOI
Abe, Tetsuya; Kanenobu, Taizo Unoriented band surgery on knots and links. (English) Zbl 1358.57010 Kobe J. Math. 31, No. 1-2, 21-44 (2014). Reviewer: Peter Feller (Chestnut Hill) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{T. Abe} and \textit{T. Kanenobu}, Kobe J. Math. 31, No. 1--2, 21--44 (2014; Zbl 1358.57010) Full Text: arXiv
Bao, Yuanyuan On knots having zero negative unknotting number. (English) Zbl 1318.57008 Indiana Univ. Math. J. 63, No. 2, 597-613 (2014). Reviewer: Michael C. Tsau (St. Louis) MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{Y. Bao}, Indiana Univ. Math. J. 63, No. 2, 597--613 (2014; Zbl 1318.57008) Full Text: DOI Link arXiv
Ma, Jiaji Unknotting numbers of some knots in 11n class. (Chinese. English summary) Zbl 1313.57003 Adv. Math., Beijing 43, No. 4, 599-602 (2014). MSC: 57M25 PDF BibTeX XML Cite \textit{J. Ma}, Adv. Math., Beijing 43, No. 4, 599--602 (2014; Zbl 1313.57003) Full Text: DOI
Borodzik, Maciej; Friedl, Stefan On the algebraic unknotting number. (English) Zbl 1322.57010 Trans. Lond. Math. Soc. 1, No. 1, 57-84 (2014). Reviewer: Dieter Erle (Dortmund) MSC: 57M27 57M25 11E39 PDF BibTeX XML Cite \textit{M. Borodzik} and \textit{S. Friedl}, Trans. Lond. Math. Soc. 1, No. 1, 57--84 (2014; Zbl 1322.57010) Full Text: DOI arXiv
Eudave-Muñoz, Mario; Ozawa, Makoto Composite tunnel number one genus two handlebody-knots. (English) Zbl 1419.57013 Bol. Soc. Mat. Mex., III. Ser. 20, No. 2, 375-390 (2014). MSC: 57M25 PDF BibTeX XML Cite \textit{M. Eudave-Muñoz} and \textit{M. Ozawa}, Bol. Soc. Mat. Mex., III. Ser. 20, No. 2, 375--390 (2014; Zbl 1419.57013) Full Text: DOI arXiv
Mishra, Rama Polynomial unknotting and singularity index. (English) Zbl 1348.57014 Kyungpook Math. J. 54, No. 2, 271-292 (2014). MSC: 57M25 14P25 PDF BibTeX XML Cite \textit{R. Mishra}, Kyungpook Math. J. 54, No. 2, 271--292 (2014; Zbl 1348.57014) Full Text: DOI
Bao, Yuanyuan A note on knots with \(\mathrm{H}(2)\)-unknotting number one. (English) Zbl 1302.57037 Osaka J. Math. 51, No. 3, 585-596 (2014). MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{Y. Bao}, Osaka J. Math. 51, No. 3, 585--596 (2014; Zbl 1302.57037) Full Text: Euclid arXiv
Shimizu, Ayaka Region crossing change is an unknotting operation. (English) Zbl 1297.57021 J. Math. Soc. Japan 66, No. 3, 693-708 (2014). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{A. Shimizu}, J. Math. Soc. Japan 66, No. 3, 693--708 (2014; Zbl 1297.57021) Full Text: DOI Euclid arXiv
Borodzik, Maciej; Friedl, Stefan The unknotting number and classical invariants. II. (English) Zbl 1300.57008 Glasg. Math. J. 56, No. 3, 657-680 (2014). Reviewer: Jonathan A. Hillman (Sydney) MSC: 57M25 PDF BibTeX XML Cite \textit{M. Borodzik} and \textit{S. Friedl}, Glasg. Math. J. 56, No. 3, 657--680 (2014; Zbl 1300.57008) Full Text: DOI arXiv
Kawauchi, Akio Splitting a 4-manifold with infinite cyclic fundamental group, revised in a definite case. (English) Zbl 1297.57006 J. Knot Theory Ramifications 23, No. 5, Article ID 1450029, 6 p. (2014). MSC: 57M10 57M35 57M50 57N13 PDF BibTeX XML Cite \textit{A. Kawauchi}, J. Knot Theory Ramifications 23, No. 5, Article ID 1450029, 6 p. (2014; Zbl 1297.57006) Full Text: DOI
Hanaki, Ryo Trivializing number of knots. (English) Zbl 1292.57004 J. Math. Soc. Japan 66, No. 2, 435-447 (2014). MSC: 57M25 57Q45 57M27 PDF BibTeX XML Cite \textit{R. Hanaki}, J. Math. Soc. Japan 66, No. 2, 435--447 (2014; Zbl 1292.57004) Full Text: DOI Euclid
Greene, Joshua Evan Donaldson’s theorem, Heegaard Floer homology, and knots with unknotting number one. (English) Zbl 1351.57018 Adv. Math. 255, 672-705 (2014). Reviewer: Brendan Owens (Glasgow) MSC: 57M27 PDF BibTeX XML Cite \textit{J. E. Greene}, Adv. Math. 255, 672--705 (2014; Zbl 1351.57018) Full Text: DOI
Burton, Stephan D.; Purcell, Jessica S. Geodesic systems of tunnels in hyperbolic 3-manifolds. (English) Zbl 1286.57014 Algebr. Geom. Topol. 14, No. 2, 925-952 (2014). Reviewer: Bruno Zimmermann (Trieste) MSC: 57M50 57M25 30F40 PDF BibTeX XML Cite \textit{S. D. Burton} and \textit{J. S. Purcell}, Algebr. Geom. Topol. 14, No. 2, 925--952 (2014; Zbl 1286.57014) Full Text: DOI Link arXiv
Feller, Peter Gordian adjacency for torus knots. (English) Zbl 1288.57011 Algebr. Geom. Topol. 14, No. 2, 769-793 (2014). Reviewer: Jessica Banks (Oxford) MSC: 57M27 14B07 PDF BibTeX XML Cite \textit{P. Feller}, Algebr. Geom. Topol. 14, No. 2, 769--793 (2014; Zbl 1288.57011) Full Text: DOI Link arXiv
Funakoshi, Yukari Unknotting operations for fibered knots and pseudo-fiber surfaces. (English) Zbl 1292.57003 JP J. Geom. Topol. 14, No. 2, 149-172 (2013). MSC: 57M25 57M99 PDF BibTeX XML Cite \textit{Y. Funakoshi}, JP J. Geom. Topol. 14, No. 2, 149--172 (2013; Zbl 1292.57003) Full Text: Link
Kawauchi, Akio Splitting a 4-manifold with infinite cyclic fundamental group, revised. (English) Zbl 1295.57026 J. Knot Theory Ramifications 22, No. 14, Article ID 1350081, 9 p. (2013). Reviewer: Maria Rita Casali (Modena) MSC: 57N13 57M10 57M35 57Q45 PDF BibTeX XML Cite \textit{A. Kawauchi}, J. Knot Theory Ramifications 22, No. 14, Article ID 1350081, 9 p. (2013; Zbl 1295.57026) Full Text: DOI
Adams, Colin; Knudson, Karin Unknotting tunnels, bracelets and the elder sibling property for hyperbolic 3-manifolds. (English) Zbl 1286.57011 J. Aust. Math. Soc. 95, No. 1, 1-19 (2013). Reviewer: Luisa Paoluzzi (Marseille) MSC: 57M50 PDF BibTeX XML Cite \textit{C. Adams} and \textit{K. Knudson}, J. Aust. Math. Soc. 95, No. 1, 1--19 (2013; Zbl 1286.57011) Full Text: DOI arXiv
Boranda, Bianca; Traynor, Lisa; Yan, Shuning The surgery unknotting number of Legendrian links. (English) Zbl 1408.57013 Involve 6, No. 3, 273-299 (2013). MSC: 57M27 53D35 57R17 PDF BibTeX XML Cite \textit{B. Boranda} et al., Involve 6, No. 3, 273--299 (2013; Zbl 1408.57013) Full Text: DOI arXiv
Lee, Eon-Kyung; Lee, Sang-Jin Unknotting number and genus of 3-braid knots. (English) Zbl 1280.57005 J. Knot Theory Ramifications 22, No. 9, Article ID 1350047, 18 p. (2013). Reviewer: Arunima Ray (Houston) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{E.-K. Lee} and \textit{S.-J. Lee}, J. Knot Theory Ramifications 22, No. 9, Article ID 1350047, 18 p. (2013; Zbl 1280.57005) Full Text: DOI arXiv
Cheng, Zhiyun When is region crossing change an unknotting operation? (English) Zbl 1284.57004 Math. Proc. Camb. Philos. Soc. 155, No. 2, 257-269 (2013). Reviewer: Dieter Erle (Dortmund) MSC: 57M25 57M27 57M15 05C10 PDF BibTeX XML Cite \textit{Z. Cheng}, Math. Proc. Camb. Philos. Soc. 155, No. 2, 257--269 (2013; Zbl 1284.57004) Full Text: DOI arXiv
Abe, Tetsuya; Jong, In Dae; Omae, Yuka; Takeuchi, Masanori Annulus twist and diffeomorphic 4-manifolds. (English) Zbl 1290.57004 Math. Proc. Camb. Philos. Soc. 155, No. 2, 219-235 (2013). Reviewer: Claus Ernst (Bowling Green) MSC: 57M25 57N13 PDF BibTeX XML Cite \textit{T. Abe} et al., Math. Proc. Camb. Philos. Soc. 155, No. 2, 219--235 (2013; Zbl 1290.57004) Full Text: DOI arXiv
Cooper, Daryl; Futer, David; Purcell, Jessica S. Dehn filling and the geometry of unknotting tunnels. (English) Zbl 1277.57009 Geom. Topol. 17, No. 3, 1815-1876 (2013). Reviewer: Masakazu Teragaito (Hiroshima) MSC: 57M25 57M50 57R52 PDF BibTeX XML Cite \textit{D. Cooper} et al., Geom. Topol. 17, No. 3, 1815--1876 (2013; Zbl 1277.57009) Full Text: DOI arXiv
Buck, Dorothy; Gibbons, Julian; Staron, Eric Pretzel knots with unknotting number one. (English) Zbl 1275.57005 Commun. Anal. Geom. 21, No. 2, 365-408 (2013). Reviewer: Jessica Banks (Oxford) MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{D. Buck} et al., Commun. Anal. Geom. 21, No. 2, 365--408 (2013; Zbl 1275.57005) Full Text: DOI arXiv
Vikash, Siwach; Prabhakar, Madeti A sharp upper bound for region unknotting number of torus knots. (English) Zbl 1270.57034 J. Knot Theory Ramifications 22, No. 5, ID 1350019, 21 p. (2013). MSC: 57M25 57M27 PDF BibTeX XML Cite \textit{S. Vikash} and \textit{M. Prabhakar}, J. Knot Theory Ramifications 22, No. 5, ID 1350019, 21 p. (2013; Zbl 1270.57034) Full Text: DOI arXiv
Nakamura, Inasa Unknotting numbers and triple point cancelling numbers of torus-covering knots. (English) Zbl 1310.57039 J. Knot Theory Ramifications 22, No. 3, 1350010, 28 p. (2013). Reviewer: Riccardo Piergallini (Camerino) MSC: 57Q45 57Q35 PDF BibTeX XML Cite \textit{I. Nakamura}, J. Knot Theory Ramifications 22, No. 3, 1350010, 28 p. (2013; Zbl 1310.57039) Full Text: DOI arXiv
Sakurai, Migiwa An estimate of the unknotting numbers for virtual knots by forbidden moves. (English) Zbl 1271.57028 J. Knot Theory Ramifications 22, No. 3, 1350009, 10 p. (2013). MSC: 57M25 PDF BibTeX XML Cite \textit{M. Sakurai}, J. Knot Theory Ramifications 22, No. 3, 1350009, 10 p. (2013; Zbl 1271.57028) Full Text: DOI
Calcut, Jack S.; King, Henry C.; Siebenmann, Laurent C. Connected sum at infinity and Cantrell-Stallings hyperplane unknotting. (English) Zbl 1279.57016 Rocky Mt. J. Math. 42, No. 6, 1803-1862 (2012). Reviewer: Ivan Ivanšić (Zagreb) MSC: 57N50 57N37 PDF BibTeX XML Cite \textit{J. S. Calcut} et al., Rocky Mt. J. Math. 42, No. 6, 1803--1862 (2012; Zbl 1279.57016) Full Text: DOI Euclid arXiv
Goda, Hiroshi; Hayashi, Chuichiro Genus two Heegaard splittings of exteriors of 1-genus 1-bridge knots. II. (English) Zbl 1276.57018 Saitama Math. J. 29, 25-53 (2012). Reviewer: Yu Zhang (Harbin) MSC: 57N10 57M25 PDF BibTeX XML Cite \textit{H. Goda} and \textit{C. Hayashi}, Saitama Math. J. 29, 25--53 (2012; Zbl 1276.57018) Full Text: arXiv
Rathbun, Matt Tunnel one, fibered links. (English) Zbl 1270.57032 Pac. J. Math. 259, No. 2, 473-481 (2012). Reviewer: Kimihiko Motegi (Tokyo) MSC: 57M25 57N10 PDF BibTeX XML Cite \textit{M. Rathbun}, Pac. J. Math. 259, No. 2, 473--481 (2012; Zbl 1270.57032) Full Text: DOI Link arXiv
Suh, Chan-Ho Boundary-twisted normal form and the number of elementary moves to unknot. (English) Zbl 1257.57025 New York J. Math. 18, 389-408 (2012). Reviewer: Lorena Armas-Sanabria (México D. F.) MSC: 57M99 57N10 68Q25 57Q15 PDF BibTeX XML Cite \textit{C.-H. Suh}, New York J. Math. 18, 389--408 (2012; Zbl 1257.57025) Full Text: EMIS arXiv
Abe, Tetsuya; Hanaki, Ryo; Higa, Ryuji The unknotting number and band-unknotting number of a knot. (English) Zbl 1255.57002 Osaka J. Math. 49, No. 2, 523-550 (2012). Reviewer: Chuichiro Hayashi (Tokyo) MSC: 57M25 57M15 PDF BibTeX XML Cite \textit{T. Abe} et al., Osaka J. Math. 49, No. 2, 523--550 (2012; Zbl 1255.57002) Full Text: Euclid
Jablan, S. V.; Sazdanović, R. Diagrammatic knot properties and invariants. (English) Zbl 1256.57008 Kauffman, Louis H. (ed.) et al., Introductory lectures on knot theory. Selected lectures presented at the advanced school and conference on knot theory and its applications to physics and biology, ICTP, Trieste, Italy, May 11–29, 2009. Hackensack, NJ: World Scientific; Trieste: ICTP - The Abdus Salam International Centre for Theoretical Physics (ISBN 978-981-4307-99-4/hbk; 978-981-4313-00-1/ebook). Series on Knots and Everything 46, 162-186 (2012). MSC: 57M25 PDF BibTeX XML Cite \textit{S. V. Jablan} and \textit{R. Sazdanović}, Ser. Knots Everything 46, 162--186 (2012; Zbl 1256.57008) Full Text: Link
Bao, Yuanyuan \(H(2)\)-unknotting operation related to 2-bridge links. (English) Zbl 1239.57027 Topology Appl. 159, No. 8, 2158-2167 (2012). MSC: 57M27 57M25 PDF BibTeX XML Cite \textit{Y. Bao}, Topology Appl. 159, No. 8, 2158--2167 (2012; Zbl 1239.57027) Full Text: DOI arXiv
Jang, Hee Jeong; Lee, Sang Youl; Seo, Myoungsoo On the \(\Delta \)-unknotting number of Whitehead doubles of knots. (English) Zbl 1237.57005 J. Knot Theory Ramifications 21, No. 2, Article ID 1250021, 23 p. (2012). Reviewer: Jessica Banks (Oxford) MSC: 57M25 PDF BibTeX XML Cite \textit{H. J. Jang} et al., J. Knot Theory Ramifications 21, No. 2, Article ID 1250021, 23 p. (2012; Zbl 1237.57005) Full Text: DOI
Hayashi, Chuichiro; Hayashi, Miwa; Nowik, Tahl Unknotting number and number of Reidemeister moves needed for unlinking. (English) Zbl 1260.57011 Topology Appl. 159, No. 5, 1467-1474 (2012). Reviewer: Masako Kobayashi (Osaka) MSC: 57M25 PDF BibTeX XML Cite \textit{C. Hayashi} et al., Topology Appl. 159, No. 5, 1467--1474 (2012; Zbl 1260.57011) Full Text: DOI arXiv