zbMATH — the first resource for mathematics

Sensitivity for parametric vector equilibria. (English) Zbl 1149.90156
The authors consider a parametric vector equilibrium problem in topological vector spaces, or in metric spaces. They study the upper stability of the map of the solutions \(S=S(\lambda)\), providing results in the peculiar framework of generalized monotone functions. In the particular case of a single valued solution map, they provide conditions for the Hölder regularity of \(S\) in both cases when \(K\) is fixed and also when it depends on a parameter.

90C31 Sensitivity, stability, parametric optimization
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics
54C60 Set-valued maps in general topology
90C29 Multi-objective and goal programming
90C47 Minimax problems in mathematical programming
91B50 General equilibrium theory
Full Text: DOI
[1] DOI: 10.1016/j.jmaa.2004.03.014 · Zbl 1048.49004
[2] DOI: 10.1023/A:1015366419163 · Zbl 1012.90055
[3] Aubin J-P, Differential Inclusions (1984)
[4] DOI: 10.1023/A:1022603406244 · Zbl 0878.49007
[5] DOI: 10.1016/S0167-6377(03)00051-8 · Zbl 1112.90082
[6] DOI: 10.1137/1015073 · Zbl 0256.90042
[7] DOI: 10.1023/A:1014830925232 · Zbl 1003.47049
[8] Luc DT, Theory of Vector Optimization (1989)
[9] DOI: 10.1080/02331938408842947 · Zbl 0553.49007
[10] Oettli W, Acta Mathematica Vietnamica 22 pp 213– (1997)
[11] DOI: 10.1007/BF01215992 · Zbl 0821.49011
[12] DOI: 10.1006/jmaa.1997.5607 · Zbl 0906.49002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.