# zbMATH — the first resource for mathematics

Bound sets approach to boundary value problems for vector second-order differential inclusions. (English) Zbl 1177.34015
The paper deals with the second-order boundary value problem
$\ddot x(t)\in F(t,x(t),\dot x(t))\quad \text{for a.a.}\;t\in J, x\in S, (1)$
where $$J=[t_0,t_1]$$ is a compact interval, $$F: J\times \mathbb{R}^n\times \mathbb{R}^n \multimap \mathbb{R}^n$$ is an upper-Carathéodory mapping and $$S$$ is a subset of $$AC^1(J,\mathbb{R}^n)$$. The authors develop a continuation principle for the solvability of (1) using fixed point index arguments. The main assumption which yields the possibility to apply the continuation principle is the transversality condition which is guaranted here by means of Liapunov-like bounding functions. In addition, for the Floquet semi-linear problem
$\ddot x(t)+A(t)\dot x(t)+B(t)x(t)\in F(t,x(t),\dot x(t))\quad \text{for a.a.}\;t\in J,$
$x(t_1)=Mx(t_0),\quad \dot x(t_1)=N\dot x(t_0),$
where $$A,B:J\to \mathbb{R}^n\times \mathbb{R}^n$$ are integrable matrix functions and $$M$$ and $$N$$ are real $$n\times n$$ matrices with $$M$$ non-singular, a viability result will be obtained by means of a bound sets technique.

##### MSC:
 34A60 Ordinary differential inclusions 34B15 Nonlinear boundary value problems for ordinary differential equations 47H04 Set-valued operators 47N20 Applications of operator theory to differential and integral equations
Full Text:
##### References:
  Andres, J., Topological principles for ordinary differential equations, (), 1-101  Andres, J.; Górniewicz, L., ()  Andres, J.; Malaguti, L.; Taddei, V., Floquet boundary value problems for differential inclusions: A bound sets approach, Z. anal. anwend., 20, 709-725, (2001) · Zbl 0986.34012  Andres, J.; Malaguti, L.; Taddei, V., Bounded solutions of Carathéodory differential inclusions: A bound sets approach, Abstr. appl. anal., 9, 547-571, (2003) · Zbl 1036.34011  Andres, J.; Malaguti, L.; Taddei, V., A bounding functions approach to multivalued boundary value problems, Dynam. systems appl., 16, 37-48, (2007) · Zbl 1126.34010  Andres, J.; Sanchez, L., A note on vector boundary value problems, Int. J. non-linear differential equations, TMA, 3, 1-2, 49-58, (1997)  Aubin, J.-P.; Cellina, A., Differential inclusions, (1984), Springer Berlin  Aubin, J.-P.; Frankowska, H., Set-valued analysis, (1990), Birkhäuser Basel  Augustynowicz, A.; Dzedzej, Z.; Gelman, B.D., The solution set to BVP for some functional-differential inclusions, Set-valued anal., 6, 257-263, (1998) · Zbl 0931.34046  Bader, R.; Kryszewski, W., Fixed-point index for compositions of set-valued maps with proximally $$\infty$$-connected values on arbitrary ANR’s, Set-valued anal., 2, 458-480, (1994) · Zbl 0846.55001  Bebernes, J.W., A simple alternative problem for finding periodic solutions of second order ordinary differential systems, Proc. amer. math. soc., 42, 121-127, (1974) · Zbl 0286.34055  Bebernes, J.; Schmitt, K., Periodic boundary value problems for systems of second order differential equations, J. differential equations, 13, 32-47, (1973) · Zbl 0253.34020  Borsuk, K., Theory of retracts, Monografie matematyczne, vol. 44, (1967), PWN Warsaw · Zbl 0153.52905  De Blasi, F.S.; Pianigiani, G., Solution sets of boundary value problems for nonconvex differential inclusions, Topol. methods nonlinear anal., 1, 303-314, (1993) · Zbl 0785.34018  Deimling, K., Multivalued differential equations, (1992), Walter de Gruyter Berlin · Zbl 0760.34002  Erbe, L.; Krawcewicz, W., Nonlinear boundary value problems for differential inclusions $$y'' \in F(t, y, y^\prime)$$, Ann. polon. math., 54, 195-226, (1991) · Zbl 0731.34078  Erbe, L.; Palamides, P.K., Boundary value problems for second order differential systems, J. math. anal. appl., 127, 80-92, (1987) · Zbl 0635.34017  Erbe, L.; Tisdell, Ch.; Wong, P., On systems of boundary value problems for differential inclusions, Acta math. sinica, 23, 549-556, (2007) · Zbl 1126.34012  Fabry, C.; Habets, P., The Picard boundary value problem for nonlinear second order vector differential equations, J. differential equations, 42, 186-198, (1981) · Zbl 0439.34018  Frigon, M., Boundary and periodic value problems for systems of nonlinear second order differential equations, Topol. methods nonlinear anal., 1, 259-274, (1993) · Zbl 0790.34022  Frigon, M., Théorèmes d’existence de solutions d’inclusions différentialles, (), 51-87 · Zbl 0834.34021  Gaines, R.; Mawhin, J., Coincidence degree and nonlinear differential equations, (1977), Springer Berlin · Zbl 0339.47031  Gasiński, L.; Papageorgiou, N.S., Nonlinear second-order multivalued boundary value problems, Proc. Indian acad. sci. math. sci., 113, 293-319, (2003) · Zbl 1052.34022  Górniewicz, L., Topological fixed point theory of multivalued mappings, (1999), Kluwer Dordrecht · Zbl 0937.55001  Habets, P.; Nkashama, M.N., On periodic solutions of nonlinear second order vector differential equations, Proc. R. soc. edinb., sect. A, math., 104, 1-2, 107-125, (1986) · Zbl 0626.34040  Halidias, N.; Papageorgiou, N.S., Existence and relaxation results for nonlinear second order multivalued boundary value problems in $$R^n$$, J. differential equations, 147, 123-154, (1998) · Zbl 0912.34020  Halidias, N.; Papageorgiou, N.S., Existence of solutions for quasilinear second order differential inclusions with nonlinear boundary conditions, J. comput. appl. math., 113, 51-64, (2000) · Zbl 0941.34008  Hu, S.; Papageorgiou, N.S., ()  Hu, S.; Papageorgiu, N.S., ()  Kandilakis, D.; Papageorgiou, N.S., Existence theorems for nonlinear boundary value problems for second order differential inclusions, J. differential equations, 132, 107-125, (1996) · Zbl 0859.34011  Knobloch, H., On the existence of periodic solutions of second order vector differential equations, J. differential equations, 9, 67-85, (1971) · Zbl 0211.11801  Kyritsi, S.; Matzakos, N.; Papageorgiou, N.S., Nonlinear boundary value problems for second order differential inclusions, Czechoslovak math. J., 55, 545-579, (2005) · Zbl 1081.34020  Mawhin, J., Boundary value problems for nonlinear second order vector differential equations, J. differential equations, 16, 257-269, (1974) · Zbl 0301.34019  Mawhin, J., The bernstein – nagumo problem and two-point boundary value problems for ordinary differential equations, J. coll. math soc. J. bolyai, 30, 709-740, (1981) · Zbl 0497.34020  Miklaszewski, D., The two-point problem for nonlinear ordinary differential equations and differential inclusions, Univ. iagell acta math., 36, 127-132, (1998) · Zbl 1002.34011  Palmucci, M.; Papalini, F., Periodic and boundary value problems for second order differential inclusions, J. appl. math. stoch. anal., 14, 161-182, (2001) · Zbl 1014.34009  Schmitt, K., Periodic solutions of systems of second order differential equations, J. differential equations, 11, 180-192, (1972) · Zbl 0228.34023  Taddei, V.; Zanolin, F., Bound sets and two-points boundary value problems for second order differential equations, Georgian math. J., 14, 2, 385-402, (2007), (special issue dedicated to 70th birthday of Prof. I. Kiguradze) · Zbl 1133.34013  Vrabie, I.I., Compactness methods for nonlinear evolutions, (1990), Longman House Burn Mill, Harlow · Zbl 0842.47040  Yosida, K., Functional analysis, (1980), Springer Berlin · Zbl 0152.32102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.