Wang, Yue; Li, Yonghai; Meng, Xiangyun An upwind finite volume element method on a Shishkin mesh for singularly perturbed convection-diffusion problems. (English) Zbl 1522.65189 J. Comput. Appl. Math. 438, Article ID 115493, 20 p. (2024). MSC: 65N08 65N12 35B25 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Comput. Appl. Math. 438, Article ID 115493, 20 p. (2024; Zbl 1522.65189) Full Text: DOI
Li, Chang-feng; Yuan, Yi-rang; Song, Huai-ling An upwind mixed finite volume element-fractional step method and convergence analysis for three-dimensional compressible contamination treatment from nuclear waste. (English) Zbl 07767304 Acta Math. Appl. Sin., Engl. Ser. 39, No. 4, 808-829 (2023). MSC: 65M15 65N30 65N12 76S05 PDF BibTeX XML Cite \textit{C.-f. Li} et al., Acta Math. Appl. Sin., Engl. Ser. 39, No. 4, 808--829 (2023; Zbl 07767304) Full Text: DOI
John, Volker; Knobloch, Petr; Pártl, Ondřej A numerical assessment of finite element discretizations for convection-diffusion-reaction equations satisfying discrete maximum principles. (English) Zbl 07766472 Comput. Methods Appl. Math. 23, No. 4, 969-988 (2023). MSC: 65N30 PDF BibTeX XML Cite \textit{V. John} et al., Comput. Methods Appl. Math. 23, No. 4, 969--988 (2023; Zbl 07766472) Full Text: DOI
Acosta-Soba, Daniel; Guillén-González, Francisco; Rodríguez-Galván, J. Rafael An unconditionally energy stable and positive upwind DG scheme for the Keller-Segel model. (English) Zbl 1522.65165 J. Sci. Comput. 97, No. 1, Paper No. 18, 27 p. (2023). MSC: 65M60 65M06 65N30 35B09 35B44 35R09 92C17 92C15 35Q92 92-08 PDF BibTeX XML Cite \textit{D. Acosta-Soba} et al., J. Sci. Comput. 97, No. 1, Paper No. 18, 27 p. (2023; Zbl 1522.65165) Full Text: DOI arXiv OA License
Sun, Zheng; Xing, Yulong On generalized Gauss-Radau projections and optimal error estimates of upwind-biased DG methods for the linear advection equation on special simplex meshes. (English) Zbl 07698855 J. Sci. Comput. 95, No. 2, Paper No. 40, 36 p. (2023). MSC: 65M15 65M60 PDF BibTeX XML Cite \textit{Z. Sun} and \textit{Y. Xing}, J. Sci. Comput. 95, No. 2, Paper No. 40, 36 p. (2023; Zbl 07698855) Full Text: DOI
Kitzinger, Euryale; Leclercq, Tristan; Marquet, Olivier; Piot, Estelle; Sipp, Denis Attachment-line, cross-flow and Tollmien-Schlichting instabilities on swept ONERA-D and Joukowski airfoils. (English) Zbl 1509.76032 J. Fluid Mech. 957, Paper No. A29, 34 p. (2023). MSC: 76E15 76D10 76D05 76M10 PDF BibTeX XML Cite \textit{E. Kitzinger} et al., J. Fluid Mech. 957, Paper No. A29, 34 p. (2023; Zbl 1509.76032) Full Text: DOI
Bubba, Federica; Poulain, Alexandre A nonnegativity preserving scheme for the relaxed Cahn-Hilliard equation with single-well potential and degenerate mobility. (English) Zbl 1498.35548 ESAIM, Math. Model. Numer. Anal. 56, No. 5, 1741-1772 (2022). MSC: 35Q92 92C37 65M60 65M06 65N30 35K55 35K65 35K35 92-08 PDF BibTeX XML Cite \textit{F. Bubba} and \textit{A. Poulain}, ESAIM, Math. Model. Numer. Anal. 56, No. 5, 1741--1772 (2022; Zbl 1498.35548) Full Text: DOI arXiv
Liu, Mingyang; Gao, Guangjun; Khoo, Boo Cheong; He, Zhenhu; Jiang, Chen A cell-based smoothed finite element model for non-Newtonian blood flow. (English) Zbl 1510.76089 Appl. Math. Comput. 435, Article ID 127480, 22 p. (2022). MSC: 76M10 65N30 92C35 76Z05 PDF BibTeX XML Cite \textit{M. Liu} et al., Appl. Math. Comput. 435, Article ID 127480, 22 p. (2022; Zbl 1510.76089) Full Text: DOI
Li, Changfeng; Yuan, Yirang; Cheng, Aijie; Song, Huailing A conservative upwind approximation on block-centered difference for chemical oil recovery displacement problem. (English) Zbl 1513.65368 Adv. Appl. Math. Mech. 14, No. 6, 1246-1275 (2022). MSC: 65M60 65M12 65M15 65M08 65M06 65N30 65N08 76S05 76R50 76V05 74L10 35B45 26A33 35R11 PDF BibTeX XML Cite \textit{C. Li} et al., Adv. Appl. Math. Mech. 14, No. 6, 1246--1275 (2022; Zbl 1513.65368) Full Text: DOI
Rajanna, Manoj R.; Johnson, Emily L.; Codoni, David; Korobenko, Artem; Bazilevs, Yuri; Liu, Ning; Lua, Jim; Phan, Nam; Hsu, Ming-Chen Finite element methodology for modeling aircraft aerodynamics: development, simulation, and validation. (English) Zbl 1497.76053 Comput. Mech. 70, No. 3, 549-563 (2022). MSC: 76M10 76N06 PDF BibTeX XML Cite \textit{M. R. Rajanna} et al., Comput. Mech. 70, No. 3, 549--563 (2022; Zbl 1497.76053) Full Text: DOI
Tang, Qi; Chacón, Luis; Kolev, Tzanio V.; Shadid, John N.; Tang, Xian-Zhu An adaptive scalable fully implicit algorithm based on stabilized finite element for reduced visco-resistive MHD. (English) Zbl 07518056 J. Comput. Phys. 454, Article ID 110967, 32 p. (2022). MSC: 76Wxx 76Mxx 65Nxx PDF BibTeX XML Cite \textit{Q. Tang} et al., J. Comput. Phys. 454, Article ID 110967, 32 p. (2022; Zbl 07518056) Full Text: DOI arXiv
Xu, Yuan; Zhang, Qiang Superconvergence analysis of the Runge-Kutta discontinuous Galerkin method with upwind-biased numerical flux for two-dimensional linear hyperbolic equation. (English) Zbl 1499.65541 Commun. Appl. Math. Comput. 4, No. 1, 319-352 (2022). MSC: 65M60 65M12 65M15 65L06 65N30 35L02 PDF BibTeX XML Cite \textit{Y. Xu} and \textit{Q. Zhang}, Commun. Appl. Math. Comput. 4, No. 1, 319--352 (2022; Zbl 1499.65541) Full Text: DOI
Xu, Yuan; Zhao, Di; Zhang, Qiang Local error estimates for Runge-Kutta discontinuous Galerkin methods with upwind-biased numerical fluxes for a linear hyperbolic equation in one-dimension with discontinuous initial data. (English) Zbl 1491.65103 J. Sci. Comput. 91, No. 1, Paper No. 11, 30 p. (2022). MSC: 65M60 65M22 65N30 65M12 65M15 PDF BibTeX XML Cite \textit{Y. Xu} et al., J. Sci. Comput. 91, No. 1, Paper No. 11, 30 p. (2022; Zbl 1491.65103) Full Text: DOI
Riahi, M. K.; Ali, M.; Addad, Y.; Abu-Nada, E. Combined Newton-Raphson and streamlines-upwind Petrov-Galerkin iterations for nanoparticles transport in buoyancy-driven flow. (English) Zbl 1478.65087 J. Eng. Math. 132, Paper No. 22, 26 p. (2022). MSC: 65M60 65Y04 35Q35 35Q79 PDF BibTeX XML Cite \textit{M. K. Riahi} et al., J. Eng. Math. 132, Paper No. 22, 26 p. (2022; Zbl 1478.65087) Full Text: DOI arXiv
Ivanov, M. I.; Kremer, I. A.; Laevsky, Yu. M. A computational model of fluid filtration in fractured porous media. (Russian. English summary) Zbl 1507.76106 Sib. Zh. Vychisl. Mat. 24, No. 2, 145-166 (2021). MSC: 76M10 76M12 76S05 PDF BibTeX XML Cite \textit{M. I. Ivanov} et al., Sib. Zh. Vychisl. Mat. 24, No. 2, 145--166 (2021; Zbl 1507.76106) Full Text: DOI MNR
Li, Fenhong; Hu, Gang; Abdeljawad, Thabet; Abbas, Muhammad A finite point algorithm for soil water-salt movement equation. (English) Zbl 1494.76057 Adv. Difference Equ. 2021, Paper No. 179, 19 p. (2021). MSC: 76M10 65N30 65N15 PDF BibTeX XML Cite \textit{F. Li} et al., Adv. Difference Equ. 2021, Paper No. 179, 19 p. (2021; Zbl 1494.76057) Full Text: DOI
Kim, Sang Dong; Lee, Yong Hun; Shin, Byeong Chun Conservative upwind correction method for scalar linear hyperbolic equations. (English) Zbl 1476.65230 Kyungpook Math. J. 61, No. 2, 309-322 (2021). MSC: 65M55 65N30 49J20 49K20 PDF BibTeX XML Cite \textit{S. D. Kim} et al., Kyungpook Math. J. 61, No. 2, 309--322 (2021; Zbl 1476.65230) Full Text: DOI
Liu, Mingyang; Gao, Guangjun; Zhu, Huifen; Jiang, Chen; Liu, Guirong A cell-based smoothed finite element method (CS-FEM) for three-dimensional incompressible laminar flows using mixed wedge-hexahedral element. (English) Zbl 1521.76347 Eng. Anal. Bound. Elem. 133, 269-285 (2021). MSC: 76M10 65M60 76D05 PDF BibTeX XML Cite \textit{M. Liu} et al., Eng. Anal. Bound. Elem. 133, 269--285 (2021; Zbl 1521.76347) Full Text: DOI
Codoni, David; Moutsanidis, Georgios; Hsu, Ming-Chen; Bazilevs, Yuri; Johansen, Craig; Korobenko, Artem Stabilized methods for high-speed compressible flows: toward hypersonic simulations. (English) Zbl 1490.76134 Comput. Mech. 67, No. 3, 785-809 (2021). MSC: 76M10 76K05 76J20 76L05 PDF BibTeX XML Cite \textit{D. Codoni} et al., Comput. Mech. 67, No. 3, 785--809 (2021; Zbl 1490.76134) Full Text: DOI
Du, Shaohong; Lin, Runchang; Zhang, Zhimin Robust recovery-type a posteriori error estimators for streamline upwind/Petrov Galerkin discretizations for singularly perturbed problems. (English) Zbl 1478.65120 Appl. Numer. Math. 168, 23-40 (2021). MSC: 65N30 65N50 65N15 35B25 PDF BibTeX XML Cite \textit{S. Du} et al., Appl. Numer. Math. 168, 23--40 (2021; Zbl 1478.65120) Full Text: DOI arXiv
Yuan, Yirang; Li, Changfeng; Yang, Qing Mixed finite element-second order upwind fractional step difference scheme of Darcy-Forchheimer miscible displacement and its numerical analysis. (English) Zbl 1464.65190 J. Sci. Comput. 86, No. 2, Paper No. 24, 19 p. (2021). MSC: 65N30 65M06 65M15 76S05 PDF BibTeX XML Cite \textit{Y. Yuan} et al., J. Sci. Comput. 86, No. 2, Paper No. 24, 19 p. (2021; Zbl 1464.65190) Full Text: DOI
Mu, Lin; Chen, Zheng A new WENO weak Galerkin finite element method for time dependent hyperbolic equations. (English) Zbl 1459.65187 Appl. Numer. Math. 159, 106-124 (2021). MSC: 65M60 65M06 65N30 35L02 35B05 35Q53 PDF BibTeX XML Cite \textit{L. Mu} and \textit{Z. Chen}, Appl. Numer. Math. 159, 106--124 (2021; Zbl 1459.65187) Full Text: DOI
AL-Taweel, Ahmed; Mu, Lin A new upwind weak Galerkin finite element method for linear hyperbolic equations. (English) Zbl 1476.65289 J. Comput. Appl. Math. 390, Article ID 113376, 12 p. (2021). Reviewer: Jun-Qi Hu (Shanghai) MSC: 65N30 65N15 35L02 PDF BibTeX XML Cite \textit{A. AL-Taweel} and \textit{L. Mu}, J. Comput. Appl. Math. 390, Article ID 113376, 12 p. (2021; Zbl 1476.65289) Full Text: DOI
Liu, Mingyang; Gao, Guangjun; Zhu, Huifen; Jiang, Chen A cell-based smoothed finite element method stabilized by implicit SUPG/SPGP/fractional step method for incompressible flow. (English) Zbl 1464.76056 Eng. Anal. Bound. Elem. 124, 194-210 (2021). MSC: 76M10 65M60 76D05 PDF BibTeX XML Cite \textit{M. Liu} et al., Eng. Anal. Bound. Elem. 124, 194--210 (2021; Zbl 1464.76056) Full Text: DOI
Chen, Huangxin; Sun, Shuyu A new physics-preserving IMPES scheme for incompressible and immiscible two-phase flow in heterogeneous porous media. (English) Zbl 1446.65107 J. Comput. Appl. Math. 381, Article ID 113035, 19 p. (2021). MSC: 65M60 65N30 65M06 76S05 76T06 PDF BibTeX XML Cite \textit{H. Chen} and \textit{S. Sun}, J. Comput. Appl. Math. 381, Article ID 113035, 19 p. (2021; Zbl 1446.65107) Full Text: DOI arXiv
Yuan, Yirang; Li, Changfeng; Song, Huailing A block-centered upwind approximation of the semiconductor device problem on a dynamically changing mesh. (English) Zbl 1513.65320 Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 5, 1405-1428 (2020). MSC: 65M06 65N06 65N30 82D37 80A19 PDF BibTeX XML Cite \textit{Y. Yuan} et al., Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 5, 1405--1428 (2020; Zbl 1513.65320) Full Text: DOI
Yuan, Yirang; Song, Huailing; Li, Changfeng; Sun, Tongjun An upwind mixed finite element method on changing meshes for positive semi-definite oil-water displacement of Darcy-Forchheimer flow in porous media. (English) Zbl 1488.65483 Adv. Appl. Math. Mech. 12, No. 5, 1196-1223 (2020). MSC: 65M60 65M06 65N30 65M12 65M15 76S05 76M10 76M20 35Q35 PDF BibTeX XML Cite \textit{Y. Yuan} et al., Adv. Appl. Math. Mech. 12, No. 5, 1196--1223 (2020; Zbl 1488.65483) Full Text: DOI
Álvarez Hostos, Juan C.; Cruchaga, Marcela A.; Fachinotti, Víctor D.; Zambrano Carrillo, Javier A.; Zamora, Esteban A plausible extension of standard penalty, streamline upwind and immersed boundary techniques to the improved element-free Galerkin-based solution of incompressible Navier-Stokes equations. (English) Zbl 1506.76020 Comput. Methods Appl. Mech. Eng. 372, Article ID 113380, 27 p. (2020). MSC: 76D05 76M10 65M60 PDF BibTeX XML Cite \textit{J. C. Álvarez Hostos} et al., Comput. Methods Appl. Mech. Eng. 372, Article ID 113380, 27 p. (2020; Zbl 1506.76020) Full Text: DOI
Holst, Kevin R.; Glasby, Ryan S.; Bond, Ryan B. On the effect of temporal error in high-order simulations of unsteady flows. (English) Zbl 1453.76071 J. Comput. Phys. 402, Article ID 108989, 21 p. (2020). MSC: 76M10 76N06 PDF BibTeX XML Cite \textit{K. R. Holst} et al., J. Comput. Phys. 402, Article ID 108989, 21 p. (2020; Zbl 1453.76071) Full Text: DOI
Egger, Herbert; Schöbel-Kröhn, Lukas Chemotaxis on networks: analysis and numerical approximation. (English) Zbl 1445.35199 ESAIM, Math. Model. Numer. Anal. 54, No. 4, 1339-1372 (2020). MSC: 35K45 35R02 65M60 92C17 PDF BibTeX XML Cite \textit{H. Egger} and \textit{L. Schöbel-Kröhn}, ESAIM, Math. Model. Numer. Anal. 54, No. 4, 1339--1372 (2020; Zbl 1445.35199) Full Text: DOI arXiv
Liu, Yong; Shu, Chi-Wang; Zhang, Mengping Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using \(P^k\) elements. (English) Zbl 1439.65115 ESAIM, Math. Model. Numer. Anal. 54, No. 2, 705-726 (2020). MSC: 65M60 65M15 65L06 65M06 PDF BibTeX XML Cite \textit{Y. Liu} et al., ESAIM, Math. Model. Numer. Anal. 54, No. 2, 705--726 (2020; Zbl 1439.65115) Full Text: DOI
Erath, Christoph; Schorr, Robert Stable non-symmetric coupling of the finite volume method and the boundary element method for convection-dominated parabolic-elliptic interface problems. (English) Zbl 1436.65164 Comput. Methods Appl. Math. 20, No. 2, 251-272 (2020). MSC: 65N08 65N38 65N40 65N12 65N15 65M06 65N30 65M12 65M15 35B45 82B24 PDF BibTeX XML Cite \textit{C. Erath} and \textit{R. Schorr}, Comput. Methods Appl. Math. 20, No. 2, 251--272 (2020; Zbl 1436.65164) Full Text: DOI arXiv
Liu, Minghui; Wu, Boying; Meng, Xiong Optimal error estimates of the discontinuous Galerkin method with upwind-biased fluxes for 2D linear variable coefficients hyperbolic equations. (English) Zbl 1435.65162 J. Sci. Comput. 83, No. 1, Paper No. 9, 19 p. (2020). MSC: 65M60 65M15 65L06 65M12 65M70 35F05 PDF BibTeX XML Cite \textit{M. Liu} et al., J. Sci. Comput. 83, No. 1, Paper No. 9, 19 p. (2020; Zbl 1435.65162) Full Text: DOI
Yuan, Yirang; Li, Changfeng; Song, Huailing Mixed finite volume element-upwind mixed volume element of compressible two-phase displacement and its numerical analysis. (English) Zbl 1434.65154 J. Comput. Appl. Math. 370, Article ID 112637, 11 p. (2020). MSC: 65M08 65N12 76S05 76N10 76M12 76R50 PDF BibTeX XML Cite \textit{Y. Yuan} et al., J. Comput. Appl. Math. 370, Article ID 112637, 11 p. (2020; Zbl 1434.65154) Full Text: DOI
Li, Richen; Wu, Qingbiao; Zhu, Shengfeng Proper orthogonal decomposition with SUPG-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convection-diffusion-reaction problems. (English) Zbl 1452.76094 J. Comput. Phys. 387, 280-302 (2019). MSC: 76M10 65M60 76M30 65D07 76R50 76R10 PDF BibTeX XML Cite \textit{R. Li} et al., J. Comput. Phys. 387, 280--302 (2019; Zbl 1452.76094) Full Text: DOI
Neumüller, Martin; Karabelas, Elias Generating admissible space-time meshes for moving domains in \((d + 1)\) dimensions. (English) Zbl 1452.65353 Langer, Ulrich (ed.) et al., Space-time methods. Applications to partial differential equations. Berlin: De Gruyter. Radon Ser. Comput. Appl. Math. 25, 185-206 (2019). MSC: 65N30 65L50 65M06 35R37 76D07 65F08 65M50 65M60 PDF BibTeX XML Cite \textit{M. Neumüller} and \textit{E. Karabelas}, Radon Ser. Comput. Appl. Math. 25, 185--206 (2019; Zbl 1452.65353) Full Text: DOI arXiv
Erath, Christoph; Praetorius, Dirk Optimal adaptivity for the SUPG finite element method. (English) Zbl 1441.65101 Comput. Methods Appl. Mech. Eng. 353, 308-327 (2019). MSC: 65N30 65N12 65N15 65N50 76M10 PDF BibTeX XML Cite \textit{C. Erath} and \textit{D. Praetorius}, Comput. Methods Appl. Mech. Eng. 353, 308--327 (2019; Zbl 1441.65101) Full Text: DOI arXiv
Chen, Huangxin; Kou, Jisheng; Sun, Shuyu; Zhang, Tao Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media. (English) Zbl 1441.76057 Comput. Methods Appl. Mech. Eng. 350, 641-663 (2019). MSC: 76M10 74S05 65M60 74F10 76S05 PDF BibTeX XML Cite \textit{H. Chen} et al., Comput. Methods Appl. Mech. Eng. 350, 641--663 (2019; Zbl 1441.76057) Full Text: DOI Link
Zhang, Lu; Hagstrom, Thomas; Appelö, Daniel An energy-based discontinuous Galerkin method for the wave equation with advection. (English) Zbl 1428.65050 SIAM J. Numer. Anal. 57, No. 5, 2469-2492 (2019). MSC: 65M60 65M12 65M15 76J20 76M22 PDF BibTeX XML Cite \textit{L. Zhang} et al., SIAM J. Numer. Anal. 57, No. 5, 2469--2492 (2019; Zbl 1428.65050) Full Text: DOI arXiv
Schorr, Robert Numerical methods for parabolic-elliptic interface problems. (English) Zbl 1479.65002 Darmstadt: TU Darmstadt, Fachbereich Mathematik (Diss.). viii, 103 p. (2019). Reviewer: Kai Schneider (Marseille) MSC: 65-02 65N30 65N38 65M06 65M60 65M08 65M12 65N12 65M38 78M10 78M15 76M10 76M15 PDF BibTeX XML Cite \textit{R. Schorr}, Numerical methods for parabolic-elliptic interface problems. Darmstadt: TU Darmstadt, Fachbereich Mathematik (Diss.) (2019; Zbl 1479.65002) Full Text: Link
Ivanov, Maksim I.; Kremer, Igor’ A.; Laevskiĭ, Yuriĭ M. On the streamline upwind scheme of solution to the filtration problem. (Russian) Zbl 1422.76126 Sib. Èlektron. Mat. Izv. 16, 757-776 (2019). MSC: 76M10 65N30 76L05 76S05 76T99 PDF BibTeX XML Cite \textit{M. I. Ivanov} et al., Sib. Èlektron. Mat. Izv. 16, 757--776 (2019; Zbl 1422.76126) Full Text: DOI
Chen, Huangxin; Fan, Xiaolin; Sun, Shuyu A fully mass-conservative iterative IMPEC method for multicomponent compressible flow in porous media. (English) Zbl 1418.65167 J. Comput. Appl. Math. 362, 1-21 (2019). MSC: 65N30 49S05 76S05 65N12 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Comput. Appl. Math. 362, 1--21 (2019; Zbl 1418.65167) Full Text: DOI Link
Gao, Yulong; Liang, Dong; Li, Yonghai Optimal weighted upwind finite volume method for convection-diffusion equations in 2D. (English) Zbl 1418.65159 J. Comput. Appl. Math. 359, 73-87 (2019). MSC: 65N08 65N12 65N15 65N30 PDF BibTeX XML Cite \textit{Y. Gao} et al., J. Comput. Appl. Math. 359, 73--87 (2019; Zbl 1418.65159) Full Text: DOI
Zhao, Di; Zhang, Qiang Local discontinuous Galerkin methods with generalized alternating numerical fluxes for two-dimensional linear Sobolev equation. (English) Zbl 1502.65155 J. Sci. Comput. 78, No. 3, 1660-1690 (2019). MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{D. Zhao} and \textit{Q. Zhang}, J. Sci. Comput. 78, No. 3, 1660--1690 (2019; Zbl 1502.65155) Full Text: DOI
Li, Jia; Zhang, Dazhi; Meng, Xiong; Wu, Boying Analysis of discontinuous Galerkin methods with upwind-biased fluxes for one dimensional linear hyperbolic equations with degenerate variable coefficients. (English) Zbl 1419.65067 J. Sci. Comput. 78, No. 3, 1305-1328 (2019). MSC: 65M60 65M12 65M15 65L06 35L80 PDF BibTeX XML Cite \textit{J. Li} et al., J. Sci. Comput. 78, No. 3, 1305--1328 (2019; Zbl 1419.65067) Full Text: DOI
Akhavan, Yousef; Liang, Dong; Chen, Michael Second order in time and space corrected explicit-implicit domain decomposition scheme for convection-diffusion equations. (English) Zbl 1415.76443 J. Comput. Appl. Math. 357, 38-55 (2019). MSC: 76M10 65M55 65M60 76S05 PDF BibTeX XML Cite \textit{Y. Akhavan} et al., J. Comput. Appl. Math. 357, 38--55 (2019; Zbl 1415.76443) Full Text: DOI
Li, Changfeng; Yuan, Yirang; Song, Huailing A mixed volume element with upwind multistep mixed volume element and convergence analysis for numerical simulation of nuclear waste contaminant disposal. (English) Zbl 1419.65094 J. Comput. Appl. Math. 356, 164-181 (2019). MSC: 65N08 65M15 65N12 76S05 65M06 65L06 80A20 PDF BibTeX XML Cite \textit{C. Li} et al., J. Comput. Appl. Math. 356, 164--181 (2019; Zbl 1419.65094) Full Text: DOI
Ke, Guoyi; Guo, Wei An alternative formulation of discontinous Galerkin schemes for solving Hamilton-Jacobi equations. (English) Zbl 1417.65173 J. Sci. Comput. 78, No. 2, 1023-1044 (2019). MSC: 65M60 65M06 35D40 35F21 35L65 PDF BibTeX XML Cite \textit{G. Ke} and \textit{W. Guo}, J. Sci. Comput. 78, No. 2, 1023--1044 (2019; Zbl 1417.65173) Full Text: DOI
Baccouch, Mahboub; Temimi, Helmi; Ben-Romdhane, Mohamed Optimal error estimates and superconvergence of an ultra weak discontinuous Galerkin method for fourth-order boundary-value problems. (English) Zbl 1434.65094 Appl. Numer. Math. 137, 91-115 (2019). MSC: 65L10 65L12 65L60 PDF BibTeX XML Cite \textit{M. Baccouch} et al., Appl. Numer. Math. 137, 91--115 (2019; Zbl 1434.65094) Full Text: DOI
Hochbruck, Marlis; Sturm, Andreas Upwind discontinuous Galerkin space discretization and locally implicit time integration for linear Maxwell’s equations. (English) Zbl 1462.65144 Math. Comput. 88, No. 317, 1121-1153 (2019). Reviewer: Dimitra Antonopoulou (Chester) MSC: 65M60 65M12 65M15 65J10 65M06 78A25 35Q61 PDF BibTeX XML Cite \textit{M. Hochbruck} and \textit{A. Sturm}, Math. Comput. 88, No. 317, 1121--1153 (2019; Zbl 1462.65144) Full Text: DOI
Zhao, Lina; Park, Eun-Jae A priori and a posteriori error analysis of a staggered discontinuous Galerkin method for convection dominant diffusion equations. (English) Zbl 1452.65363 J. Comput. Appl. Math. 346, 63-83 (2019). MSC: 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{E.-J. Park}, J. Comput. Appl. Math. 346, 63--83 (2019; Zbl 1452.65363) Full Text: DOI
Li, Changfeng; Yuan, Yirang; Song, Huailing An upwind mixed volume element-fractional step method on a changing mesh for compressible contamination treatment from nuclear waste. (English) Zbl 1488.65344 Adv. Appl. Math. Mech. 10, No. 6, 1384-1417 (2018). MSC: 65M08 65M15 65N30 65N12 76S05 76R50 35K05 76N10 PDF BibTeX XML Cite \textit{C. Li} et al., Adv. Appl. Math. Mech. 10, No. 6, 1384--1417 (2018; Zbl 1488.65344) Full Text: DOI
Zhan, Qiwei; Sun, Qingtao; Zhuang, Mingwei; Mao, Yiqian; Ren, Qiang; Fang, Yuan; Huang, Wei-Feng; Liu, Qing Huo A new upwind flux for a jump boundary condition applied to 3D viscous fracture modeling. (English) Zbl 1439.74481 Comput. Methods Appl. Mech. Eng. 331, 456-473 (2018). MSC: 74S05 74-10 65M60 74J10 74R10 PDF BibTeX XML Cite \textit{Q. Zhan} et al., Comput. Methods Appl. Mech. Eng. 331, 456--473 (2018; Zbl 1439.74481) Full Text: DOI
Foucher, Françoise; Ibrahim, Moustafa; Saad, Mazen Convergence of a positive nonlinear control volume finite element scheme for solving an anisotropic degenerate breast cancer development model. (English) Zbl 1419.65059 Comput. Math. Appl. 76, No. 3, 551-578 (2018). MSC: 65M60 65M12 92C50 65M08 35Q92 PDF BibTeX XML Cite \textit{F. Foucher} et al., Comput. Math. Appl. 76, No. 3, 551--578 (2018; Zbl 1419.65059) Full Text: DOI
Ge, Liang; Wang, Lianhai; Chang, Yanzhen A sparse grid stochastic collocation upwind finite volume element method for the constrained optimal control problem governed by random convection diffusion equations. (English) Zbl 1407.65253 J. Sci. Comput. 77, No. 1, 524-551 (2018). MSC: 65N08 65N35 35R60 65N15 49J20 49K20 49M05 PDF BibTeX XML Cite \textit{L. Ge} et al., J. Sci. Comput. 77, No. 1, 524--551 (2018; Zbl 1407.65253) Full Text: DOI
Kao, Neo Shih-Chao; Sheu, Tony Wen-Hann Development of a finite element flow solver for solving three-dimensional incompressible Navier-Stokes solutions on multiple GPU cards. (English) Zbl 1390.76327 Comput. Fluids 167, 285-291 (2018). MSC: 76M10 65N30 65Y10 76D05 PDF BibTeX XML Cite \textit{N. S. C. Kao} and \textit{T. W. H. Sheu}, Comput. Fluids 167, 285--291 (2018; Zbl 1390.76327) Full Text: DOI
Jin, Shi; Lu, Hanqing; Pareschi, Lorenzo Efficient stochastic asymptotic-preserving implicit-explicit methods for transport equations with diffusive scalings and random inputs. (English) Zbl 1391.35307 SIAM J. Sci. Comput. 40, No. 2, A671-A696 (2018). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q20 65M60 80A20 35B40 65L06 60H15 65N06 65M75 PDF BibTeX XML Cite \textit{S. Jin} et al., SIAM J. Sci. Comput. 40, No. 2, A671--A696 (2018; Zbl 1391.35307) Full Text: DOI arXiv
Ganesan, Sashikumaar; Srivastava, Shweta ALE-SUPG finite element method for convection-diffusion problems in time-dependent domains: conservative form. (English) Zbl 1411.65127 Appl. Math. Comput. 303, 128-145 (2017). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{S. Ganesan} and \textit{S. Srivastava}, Appl. Math. Comput. 303, 128--145 (2017; Zbl 1411.65127) Full Text: DOI arXiv
Yuan, Yirang; Yang, Qing; Li, Changfeng; Sun, Tongjun A numerical approximation structured by mixed finite element and upwind fractional step difference for semiconductor device with heat conduction and its numerical analysis. (English) Zbl 1399.65272 Numer. Math., Theory Methods Appl. 10, No. 3, 541-561 (2017). MSC: 65M60 65M15 82D37 80A20 78A35 35R11 76R50 65M06 65Y10 65N30 35J62 PDF BibTeX XML Cite \textit{Y. Yuan} et al., Numer. Math., Theory Methods Appl. 10, No. 3, 541--561 (2017; Zbl 1399.65272) Full Text: DOI
Hu, Fangyuan; Matsunaga, Takuya; Tamai, Tasuku; Koshizuka, Seiichi An ALE particle method using upwind interpolation. (English) Zbl 1390.76321 Comput. Fluids 145, 21-36 (2017). MSC: 76M10 65M60 76D05 PDF BibTeX XML Cite \textit{F. Hu} et al., Comput. Fluids 145, 21--36 (2017; Zbl 1390.76321) Full Text: DOI
Minbashian, Hadi; Adibi, Hojatolah; Dehghan, Mehdi An adaptive wavelet space-time SUPG method for hyperbolic conservation laws. (English) Zbl 1383.65126 Numer. Methods Partial Differ. Equations 33, No. 6, 2062-2089 (2017). MSC: 65M60 35L65 65T60 35L67 65M12 35L05 76B15 PDF BibTeX XML Cite \textit{H. Minbashian} et al., Numer. Methods Partial Differ. Equations 33, No. 6, 2062--2089 (2017; Zbl 1383.65126) Full Text: DOI
Cao, Waixiang; Shu, Chi-Wang; Zhang, Zhimin Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. (English) Zbl 1382.65274 ESAIM, Math. Model. Numer. Anal. 51, No. 6, 2213-2235 (2017). MSC: 65M12 65M60 35L80 35L20 PDF BibTeX XML Cite \textit{W. Cao} et al., ESAIM, Math. Model. Numer. Anal. 51, No. 6, 2213--2235 (2017; Zbl 1382.65274) Full Text: DOI
Chun, Sehun Method of moving frames to solve time-dependent Maxwell’s equations on anisotropic curved surfaces: applications to invisible cloak and ELF propagation. (English) Zbl 1376.78009 J. Comput. Phys. 340, 85-104 (2017). MSC: 78M10 78A45 PDF BibTeX XML Cite \textit{S. Chun}, J. Comput. Phys. 340, 85--104 (2017; Zbl 1376.78009) Full Text: DOI
Joshi, Vaibhav; Jaiman, Rajeev K. A positivity preserving variational method for multi-dimensional convection-diffusion-reaction equation. (English) Zbl 1380.65272 J. Comput. Phys. 339, 247-284 (2017). MSC: 65M60 35A15 76R50 65M12 PDF BibTeX XML Cite \textit{V. Joshi} and \textit{R. K. Jaiman}, J. Comput. Phys. 339, 247--284 (2017; Zbl 1380.65272) Full Text: DOI
Le Hardy, D.; Favennec, Y.; Rousseau, B.; Hecht, F. Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method. (English) Zbl 1380.65379 J. Comput. Phys. 334, 541-572 (2017). MSC: 65N30 35R09 PDF BibTeX XML Cite \textit{D. Le Hardy} et al., J. Comput. Phys. 334, 541--572 (2017; Zbl 1380.65379) Full Text: DOI
Yuan, Yirang; Yang, Qing; Li, Changfeng; Sun, Tongjun Numerical method of mixed finite volume-modified upwind fractional step difference for three-dimensional semiconductor device transient behavior problems. (English) Zbl 1399.65201 Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 1, 259-279 (2017). MSC: 65M08 65M60 82D37 65M06 78A25 80A20 35R11 PDF BibTeX XML Cite \textit{Y. Yuan} et al., Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 1, 259--279 (2017; Zbl 1399.65201) Full Text: DOI
Foucher, Françoise; Ibrahim, Moustafa; Saad, Mazen Analysis of a positive CVFE scheme for simulating breast cancer development, local treatment and recurrence. (English) Zbl 1371.92062 Cancès, Clément (ed.) et al., Finite volumes for complex applications VIII – methods and theoretical aspects. FVCA 8, Lille, France, June 12–16, 2017. Cham: Springer (ISBN 978-3-319-57396-0/hbk; 978-3-319-57397-7/ebook; 978-3-319-58818-6/set). Springer Proceedings in Mathematics & Statistics 199, 205-213 (2017). MSC: 92C50 65N30 PDF BibTeX XML Cite \textit{F. Foucher} et al., Springer Proc. Math. Stat. 199, 205--213 (2017; Zbl 1371.92062) Full Text: DOI
Cao, Waixiang; Li, Dongfang; Yang, Yang; Zhang, Zhimin Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. (English) Zbl 1367.65127 ESAIM, Math. Model. Numer. Anal. 51, No. 2, 467-486 (2017). Reviewer: Andreas Meister (Kassel) MSC: 65M12 65M15 65M60 35L20 PDF BibTeX XML Cite \textit{W. Cao} et al., ESAIM, Math. Model. Numer. Anal. 51, No. 2, 467--486 (2017; Zbl 1367.65127) Full Text: DOI Link
Fraysse, F.; Redondo, C.; Rubio, G.; Valero, E. Upwind methods for the Baer-Nunziato equations and higher-order reconstruction using artificial viscosity. (English) Zbl 1373.76320 J. Comput. Phys. 326, 805-827 (2016). MSC: 76T10 76-02 65M70 65M60 PDF BibTeX XML Cite \textit{F. Fraysse} et al., J. Comput. Phys. 326, 805--827 (2016; Zbl 1373.76320) Full Text: DOI
Aydın, Selçuk Han Stabilized FEM solution of variable coefficient convection-diffusion equation. (English) Zbl 1358.65070 Int. J. Appl. Math. 29, No. 3, 371-380 (2016). MSC: 65N30 35J25 65N12 35B25 PDF BibTeX XML Cite \textit{S. H. Aydın}, Int. J. Appl. Math. 29, No. 3, 371--380 (2016; Zbl 1358.65070) Full Text: DOI
Bui-Thanh, Tan Construction and analysis of HDG methods for linearized shallow water equations. (English) Zbl 1457.65098 SIAM J. Sci. Comput. 38, No. 6, A3696-A3719 (2016). MSC: 65M60 65M12 65M15 65M22 76B15 76M10 86A05 35Q35 PDF BibTeX XML Cite \textit{T. Bui-Thanh}, SIAM J. Sci. Comput. 38, No. 6, A3696--A3719 (2016; Zbl 1457.65098) Full Text: DOI
Deuring, Paul A finite element-finite volume discretization of convection-diffusion-reaction equations with nonhomogeneous mixed boundary conditions: error estimates. (A finite element-finite volume discretization of convection-diffusion-reaction equations with nonhomogeneous mixedboundary conditions: error estimates.) (English) Zbl 1355.65131 Numer. Methods Partial Differ. Equations 32, No. 6, 1591-1621 (2016). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65N30 65M08 65M15 35K57 35K20 35J25 65N08 65N15 PDF BibTeX XML Cite \textit{P. Deuring}, Numer. Methods Partial Differ. Equations 32, No. 6, 1591--1621 (2016; Zbl 1355.65131) Full Text: DOI
Shen, Hua; Wen, Chih-Yung A characteristic space-time conservation element and solution element method for conservation laws II. Multidimensional extension. (English) Zbl 1349.65483 J. Comput. Phys. 305, 775-792 (2016). MSC: 65M60 65M25 PDF BibTeX XML Cite \textit{H. Shen} and \textit{C.-Y. Wen}, J. Comput. Phys. 305, 775--792 (2016; Zbl 1349.65483) Full Text: DOI
Kamenetskiy, D. S. On the relation of the embedded discontinuous Galerkin method to the stabilized residual-based finite element methods. (English) Zbl 1346.65059 Appl. Numer. Math. 108, 271-285 (2016). MSC: 65N30 35Q30 65N12 76D05 76M10 76N15 PDF BibTeX XML Cite \textit{D. S. Kamenetskiy}, Appl. Numer. Math. 108, 271--285 (2016; Zbl 1346.65059) Full Text: DOI
Baccouch, Mahboub; Temimi, Helmi Analysis of optimal error estimates and superconvergence of the discontinuous Galerkin method for convection-diffusion problems in one space dimension. (English) Zbl 1347.65146 Int. J. Numer. Anal. Model. 13, No. 3, 403-434 (2016). MSC: 65M15 65M60 65N30 PDF BibTeX XML Cite \textit{M. Baccouch} and \textit{H. Temimi}, Int. J. Numer. Anal. Model. 13, No. 3, 403--434 (2016; Zbl 1347.65146) Full Text: Link
Wang, Da-Guo; Shui, Qing-Xiang SUPG finite element method based on penalty function for lid-driven cavity flow up to \(Re = 27500\). (English) Zbl 1342.76080 Acta Mech. Sin. 32, No. 1, 54-63 (2016). MSC: 76M10 65N30 76D05 PDF BibTeX XML Cite \textit{D.-G. Wang} and \textit{Q.-X. Shui}, Acta Mech. Sin. 32, No. 1, 54--63 (2016; Zbl 1342.76080) Full Text: DOI
Wang, Cheng; He, Mingyan; Sun, Pengtao A new combined finite element-upwind finite volume method for convection-dominated diffusion problems. (English) Zbl 1339.65208 Numer. Methods Partial Differ. Equations 32, No. 3, 799-818 (2016). MSC: 65N08 35J25 65N30 65N12 PDF BibTeX XML Cite \textit{C. Wang} et al., Numer. Methods Partial Differ. Equations 32, No. 3, 799--818 (2016; Zbl 1339.65208) Full Text: DOI
de Frutos, Javier; García-Archilla, Bosco; Novo, Julia Local error estimates for the SUPG method applied to evolutionary convection-reaction-diffusion equations. (English) Zbl 1336.65151 J. Sci. Comput. 66, No. 2, 528-554 (2016). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65M15 65M60 35B25 65M06 65M12 35K57 PDF BibTeX XML Cite \textit{J. de Frutos} et al., J. Sci. Comput. 66, No. 2, 528--554 (2016; Zbl 1336.65151) Full Text: DOI
Meng, Xiong; Shu, Chi-Wang; Wu, Boying Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. (English) Zbl 1332.65148 Math. Comput. 85, No. 299, 1225-1261 (2016). MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{X. Meng} et al., Math. Comput. 85, No. 299, 1225--1261 (2016; Zbl 1332.65148) Full Text: DOI
Liu, Wei; Huang, Jian; Long, Xiaohan Coupled nonlinear advection-diffusion-reaction system for prevention of groundwater contamination by modified upwind finite volume element method. (English) Zbl 1444.65056 Comput. Math. Appl. 69, No. 6, 477-493 (2015). MSC: 65M60 35K51 65M15 76S05 PDF BibTeX XML Cite \textit{W. Liu} et al., Comput. Math. Appl. 69, No. 6, 477--493 (2015; Zbl 1444.65056) Full Text: DOI
Giere, Swetlana; Iliescu, Traian; John, Volker; Wells, David SUPG reduced order models for convection-dominated convection-diffusion-reaction equations. (English) Zbl 1425.65111 Comput. Methods Appl. Mech. Eng. 289, 454-474 (2015). MSC: 65M60 35K20 35K57 PDF BibTeX XML Cite \textit{S. Giere} et al., Comput. Methods Appl. Mech. Eng. 289, 454--474 (2015; Zbl 1425.65111) Full Text: DOI
Tian, Hao; Ju, Lili; Du, Qiang Nonlocal convection-diffusion problems and finite element approximations. (English) Zbl 1423.74925 Comput. Methods Appl. Mech. Eng. 289, 60-78 (2015). MSC: 74S05 35B25 35J25 45K05 65N30 74A45 PDF BibTeX XML Cite \textit{H. Tian} et al., Comput. Methods Appl. Mech. Eng. 289, 60--78 (2015; Zbl 1423.74925) Full Text: DOI
Enjilela, Vali; Arefmanesh, Ali Two-step Taylor-characteristic-based MLPG method for fluid flow and heat transfer applications. (English) Zbl 1403.76043 Eng. Anal. Bound. Elem. 51, 174-190 (2015). MSC: 76M10 65M60 76D05 PDF BibTeX XML Cite \textit{V. Enjilela} and \textit{A. Arefmanesh}, Eng. Anal. Bound. Elem. 51, 174--190 (2015; Zbl 1403.76043) Full Text: DOI
Shen, Hua; Wen, Chih-Yung; Zhang, De-Liang A characteristic space-time conservation element and solution element method for conservation laws. (English) Zbl 1354.65197 J. Comput. Phys. 288, 101-118 (2015). MSC: 65M60 65M25 PDF BibTeX XML Cite \textit{H. Shen} et al., J. Comput. Phys. 288, 101--118 (2015; Zbl 1354.65197) Full Text: DOI
Bui-Thanh, Tan From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations. (English) Zbl 1349.76183 J. Comput. Phys. 295, 114-146 (2015). MSC: 76M10 74S05 65N30 35F45 35L50 76D07 76Nxx 78M25 PDF BibTeX XML Cite \textit{T. Bui-Thanh}, J. Comput. Phys. 295, 114--146 (2015; Zbl 1349.76183) Full Text: DOI
Farhloul, M.; Serghini Mounim, A.; Zine, A. On a stabilized finite element method with mesh adaptive procedure for convection-diffusion problems. (English) Zbl 1352.65496 Int. J. Appl. Math. 28, No. 6, 667-689 (2015). MSC: 65N30 65N15 65N50 PDF BibTeX XML Cite \textit{M. Farhloul} et al., Int. J. Appl. Math. 28, No. 6, 667--689 (2015; Zbl 1352.65496) Full Text: DOI
Rodionov, A. V. On correlation between the discontinuous Galerkin method and MUSCL-type schemes. (Russian. English summary) Zbl 1349.65480 Mat. Model. 27, No. 10, 96-116 (2015). Reviewer: Sergei Georgievich Zhuravlev (Moskva) MSC: 65M60 80A20 65M50 65M06 35L02 35L60 PDF BibTeX XML Cite \textit{A. V. Rodionov}, Mat. Model. 27, No. 10, 96--116 (2015; Zbl 1349.65480) Full Text: MNR
Appelö, Daniel; Hagstrom, Thomas A new discontinuous Galerkin formulation for wave equations in second-order form. (English) Zbl 1330.65145 SIAM J. Numer. Anal. 53, No. 6, 2705-2726 (2015). MSC: 65M60 35L05 65M15 65M12 PDF BibTeX XML Cite \textit{D. Appelö} and \textit{T. Hagstrom}, SIAM J. Numer. Anal. 53, No. 6, 2705--2726 (2015; Zbl 1330.65145) Full Text: DOI Link
Deng, Quanling; Ginting, Victor Construction of locally conservative fluxes for the SUPG method. (English) Zbl 1333.65128 Numer. Methods Partial Differ. Equations 31, No. 6, 1971-1994 (2015). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N12 35J25 PDF BibTeX XML Cite \textit{Q. Deng} and \textit{V. Ginting}, Numer. Methods Partial Differ. Equations 31, No. 6, 1971--1994 (2015; Zbl 1333.65128) Full Text: DOI
Roos, Hans-Görg; Schopf, Martin Layer structure and the Galerkin finite element method for a system of weakly coupled singularly perturbed convection-diffusion equations with multiple scales. (English) Zbl 1332.65116 ESAIM, Math. Model. Numer. Anal. 49, No. 5, 1525-1547 (2015). Reviewer: Maria Gousidou-Koutita (Thessaloniki) MSC: 65L60 65L10 34E15 34A30 65L11 65L70 65L50 PDF BibTeX XML Cite \textit{H.-G. Roos} and \textit{M. Schopf}, ESAIM, Math. Model. Numer. Anal. 49, No. 5, 1525--1547 (2015; Zbl 1332.65116) Full Text: DOI Link
Hochbruck, Marlis; Pažur, Tomislav; Schulz, Andreas; Thawinan, Ekkachai; Wieners, Christian Efficient time integration for discontinuous Galerkin approximations of linear wave equations [Plenary lecture presented at the 83rd annual GAMM conference, Darmstadt, 26th – 30th March, 2012]. (English) Zbl 1322.65095 ZAMM, Z. Angew. Math. Mech. 95, No. 3, 237-259 (2015). MSC: 65M60 35L45 35L65 74J05 76Q05 78M25 PDF BibTeX XML Cite \textit{M. Hochbruck} et al., ZAMM, Z. Angew. Math. Mech. 95, No. 3, 237--259 (2015; Zbl 1322.65095) Full Text: DOI
He, Mingyan; Sun, Pengtao; Wang, Cheng; Huang, Ziping A two-grid combined finite element-upwind finite volume method for a nonlinear convection-dominated diffusion reaction equation. (English) Zbl 1320.65174 J. Comput. Appl. Math. 288, 223-232 (2015). MSC: 65N30 65N08 65N15 35K57 PDF BibTeX XML Cite \textit{M. He} et al., J. Comput. Appl. Math. 288, 223--232 (2015; Zbl 1320.65174) Full Text: DOI
Becker, Roland; Capatina, Daniela; Luce, Robert; Trujillo, David Stabilized finite element formulation with domain decomposition for incompressible flows. (English) Zbl 1323.35127 SIAM J. Sci. Comput. 37, No. 3, A1270-A1296 (2015). Reviewer: Cheng He (Beijing) MSC: 35Q30 35Q31 65M12 65M60 65N12 65N30 76B99 76D05 65N55 PDF BibTeX XML Cite \textit{R. Becker} et al., SIAM J. Sci. Comput. 37, No. 3, A1270--A1296 (2015; Zbl 1323.35127) Full Text: DOI
Deuring, Paul; Eymard, Robert; Mildner, Marcus \(L^2\)-stability independent of diffusion for a finite element-finite volume discretization of a linear convection-diffusion equation. (English) Zbl 1312.65158 SIAM J. Numer. Anal. 53, No. 1, 508-526 (2015). MSC: 65M60 65M08 65M12 76M10 76M12 PDF BibTeX XML Cite \textit{P. Deuring} et al., SIAM J. Numer. Anal. 53, No. 1, 508--526 (2015; Zbl 1312.65158) Full Text: DOI
Jeon, Youngmok Hybridized SUPG and upwind numerical schemes for convection dominated diffusion problems. (English) Zbl 1297.65134 J. Comput. Appl. Math. 275, 91-99 (2015). MSC: 65N12 65N30 PDF BibTeX XML Cite \textit{Y. Jeon}, J. Comput. Appl. Math. 275, 91--99 (2015; Zbl 1297.65134) Full Text: DOI
Luostari, Teemu; Huttunen, Tomi; Monk, Peter The ultra weak variational formulation of thin clamped plate problems. (English) Zbl 1349.74330 J. Comput. Phys. 260, 85-106 (2014). MSC: 74S05 65N30 74K20 PDF BibTeX XML Cite \textit{T. Luostari} et al., J. Comput. Phys. 260, 85--106 (2014; Zbl 1349.74330) Full Text: DOI
Sun, Pengtao A Dirichlet/Robin iteration-by-subdomain method for an anisotropic, nonisothermal two-phase transport model of PEM fuel cell with micro-porous layer. (English) Zbl 1321.80006 J. Comput. Appl. Math. 270, 241-256 (2014). MSC: 80M10 65N30 65N08 80A32 PDF BibTeX XML Cite \textit{P. Sun}, J. Comput. Appl. Math. 270, 241--256 (2014; Zbl 1321.80006) Full Text: DOI
John, Volker; Schumacher, Liesel A study of isogeometric analysis for scalar convection-diffusion equations. (English) Zbl 1311.65146 Appl. Math. Lett. 27, 43-48 (2014). MSC: 65N30 76M10 PDF BibTeX XML Cite \textit{V. John} and \textit{L. Schumacher}, Appl. Math. Lett. 27, 43--48 (2014; Zbl 1311.65146) Full Text: DOI
Karper, Trygve K. Convergent finite differences for 1D viscous isentropic flow in Eulerian coordinates. (English) Zbl 1304.35494 Discrete Contin. Dyn. Syst., Ser. S 7, No. 5, 993-1023 (2014). MSC: 35Q30 65M12 76M20 65M06 65M60 PDF BibTeX XML Cite \textit{T. K. Karper}, Discrete Contin. Dyn. Syst., Ser. S 7, No. 5, 993--1023 (2014; Zbl 1304.35494) Full Text: DOI arXiv
de Frutos, Javier; García-Archilla, Bosco; John, Volker; Novo, Julia An adaptive SUPG method for evolutionary convection-diffusion equations. (English) Zbl 1296.76090 Comput. Methods Appl. Mech. Eng. 273, 219-237 (2014). MSC: 76M10 65M60 35K57 35K20 PDF BibTeX XML Cite \textit{J. de Frutos} et al., Comput. Methods Appl. Mech. Eng. 273, 219--237 (2014; Zbl 1296.76090) Full Text: DOI