×

Found 1,003 Documents (Results 1–100)

100
MathJax

Interpolated Apéry numbers, quasiperiods of modular forms, and motivic gamma functions. (English) Zbl 07377941

Novikov, Sergey (ed.) et al., Integrability, quantization, and geometry II. Quantum theories and algebraic geometry. Dedicated to the memory of Boris Dubrovin 1950–2019. Providence, RI: American Mathematical Society (AMS). Proc. Symp. Pure Math. 103, Part 2, 281-301 (2021).
MSC:  11F67 11M41
PDF BibTeX XML Cite

Periods, logarithms and multiple zeta values. (English) Zbl 1457.11115

Cheng, Shiu Yuen (ed.) et al., Proceedings of the international consortium of Chinese mathematicians, 2017. First meeting, Guangzhou, Guangdong, China, December 2017. Somerville, MA: International Press. 159-181 (2020).
MSC:  11M32 11M41
PDF BibTeX XML Cite

On mean values of multivariable complex valued multiplicative functions and applications. (English) Zbl 1471.11250

Mishou, Hidehiko (ed.) et al., Various aspects of multiple zeta functions – in honor of Professor Kohji Matsumoto’s 60th birthday. Proceedings of the international conference, Nagoya University, Nagoya, Japan August 21–25, 2020. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 84, 23-64 (2020).
Reviewer: B. Z. Moroz (Bonn)
PDF BibTeX XML Cite
Full Text: DOI Euclid

Feynman integrals and periods in configuration spaces. (English) Zbl 1456.81192

Ebrahimi-Fard, K. (ed.) et al., Amplitudes, Hodge theory and ramification. From periods and motives to Feynman amplitudes. Lectures presented at the Clay Mathematics Institute 2014 summer school, “Periods and Motives: Feynman amplitudes in the 21st century”, Madrid, Spain, June 30 – July 25, 2014. Providence, RI: American Mathematical Society (AMS); Cambridge, MA: Clay Mathematics Institute. Clay Math. Proc. 21, 35-102 (2020).
PDF BibTeX XML Cite
Full Text: DOI arXiv

Multizeta in function field arithmetic. (English) Zbl 1441.11222

Böckle, Gebhard (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. EMS Series of Congress Reports. Zürich: European Mathematical Society (EMS). 441-452 (2020).
PDF BibTeX XML Cite
Full Text: DOI

Galois covers, Grothendieck-Teichmüller theory and dessins d’enfants. Interactions between geometry, topology, number theory and algebra. Proceedings from the London Mathematical Society Midlands regional meeting and workshop, Leicester, UK, June 4–7, 2018. (English) Zbl 1459.11005

Springer Proceedings in Mathematics & Statistics 330. Cham: Springer (ISBN 978-3-030-51794-6/hbk; 978-3-030-51795-3/ebook). viii, 240 p. (2020).
PDF BibTeX XML Cite
Full Text: DOI

\(q\)-analogues of multiple zeta values and their application in renormalization. (English) Zbl 1444.81028

Burgos Gil, José Ignacio (ed.) et al., Periods in quantum field theory and arithmetic. Outcome of the “Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory”, ICMAT 2014, Madrid, Spain, September 15–19, 2014. Cham: Springer. Springer Proc. Math. Stat. 314, 293-325 (2020).
PDF BibTeX XML Cite
Full Text: DOI

Uniform approach to double shuffle and duality relations of various \(q\)-analogs of multiple zeta values via Rota-Baxter algebras. (English) Zbl 1444.81023

Burgos Gil, José Ignacio (ed.) et al., Periods in quantum field theory and arithmetic. Outcome of the “Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory”, ICMAT 2014, Madrid, Spain, September 15–19, 2014. Cham: Springer. Springer Proc. Math. Stat. 314, 259-292 (2020).
PDF BibTeX XML Cite
Full Text: DOI arXiv

A dimension conjecture for \(q\)-analogues of multiple zeta values. (English) Zbl 1444.81021

Burgos Gil, José Ignacio (ed.) et al., Periods in quantum field theory and arithmetic. Outcome of the “Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory”, ICMAT 2014, Madrid, Spain, September 15–19, 2014. Cham: Springer. Springer Proc. Math. Stat. 314, 237-258 (2020).
PDF BibTeX XML Cite
Full Text: DOI arXiv

Multiple Eisenstein series and \(q\)-analogues of multiple zeta values. (English) Zbl 1455.11123

Burgos Gil, José Ignacio (ed.) et al., Periods in quantum field theory and arithmetic. Based on the presentations at the research trimester on multiple zeta values, multiple polylogarithms, and quantum field theory, ICMAT 2014, Madrid, Spain, September 15–19, 2014. Cham: Springer. Springer Proc. Math. Stat. 314, 173-235 (2020).
MSC:  11M32 11M36 11G55
PDF BibTeX XML Cite
Full Text: DOI arXiv

Periods and superstring amplitudes. (English) Zbl 1444.81034

Burgos Gil, José Ignacio (ed.) et al., Periods in quantum field theory and arithmetic. Outcome of the “Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory”, ICMAT 2014, Madrid, Spain, September 15–19, 2014. Cham: Springer. Springer Proc. Math. Stat. 314, 45-76 (2020).
PDF BibTeX XML Cite
Full Text: DOI arXiv

Perturbative quantum field theory meets number theory. (English) Zbl 1444.81029

Burgos Gil, José Ignacio (ed.) et al., Periods in quantum field theory and arithmetic. Outcome of the “Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory”, ICMAT 2014, Madrid, Spain, September 15–19, 2014. Cham: Springer. Springer Proc. Math. Stat. 314, 1-28 (2020).
PDF BibTeX XML Cite
Full Text: DOI

Filter Results by …

Document Type

Reviewing State

all top 5

Author

all top 5

Serial

all top 5

Year of Publication

all top 3

Classification

Biographic Reference