Graef, John R.; Heidarkhani, Shapour; Kong, Lingju; Moradi, Shahin Existence results for impulsive fractional differential equations with \(p\)-Laplacian via variational methods. (English) Zbl 07547243 Math. Bohem. 147, No. 1, 95-112 (2022). MSC: 26A33 34B15 34K45 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Math. Bohem. 147, No. 1, 95--112 (2022; Zbl 07547243) Full Text: DOI OpenURL
Biranvand, Nader; Salari, Amjad; Sababe, Saeed Hashemi BVPs with the nonlinearity depending on the fractional derivative. (English) Zbl 07545959 Asian-Eur. J. Math. 15, No. 6, Article ID 2250107, 15 p. (2022). MSC: 34A08 26A33 35A15 46N20 PDF BibTeX XML Cite \textit{N. Biranvand} et al., Asian-Eur. J. Math. 15, No. 6, Article ID 2250107, 15 p. (2022; Zbl 07545959) Full Text: DOI OpenURL
Carrillo, J. A.; Delgadino, M. G.; Frank, R. L.; Lewin, M. Fast diffusion leads to partial mass concentration in Keller-Segel type stationary solutions. (English) Zbl 07544556 Math. Models Methods Appl. Sci. 32, No. 4, 831-850 (2022). MSC: 35A15 35A23 35J20 35K59 26D15 46E35 49J40 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Math. Models Methods Appl. Sci. 32, No. 4, 831--850 (2022; Zbl 07544556) Full Text: DOI OpenURL
Galántai, Aurél Convergence of the Nelder-Mead method. (English) Zbl 07540328 Numer. Algorithms 90, No. 3, 1043-1072 (2022). MSC: 65K10 90C56 PDF BibTeX XML Cite \textit{A. Galántai}, Numer. Algorithms 90, No. 3, 1043--1072 (2022; Zbl 07540328) Full Text: DOI OpenURL
Engelstein, Max; Neumayer, Robin; Spolaor, Luca Quantitative stability for minimizing Yamabe metrics. (English) Zbl 07537731 Trans. Am. Math. Soc., Ser. B 9, 395-414 (2022). MSC: 53C18 53C20 26D10 58K05 35J20 PDF BibTeX XML Cite \textit{M. Engelstein} et al., Trans. Am. Math. Soc., Ser. B 9, 395--414 (2022; Zbl 07537731) Full Text: DOI OpenURL
Wu, Pin-Xia; Yang, Qian; He, Ji-Huan Solitary waves of the variant Boussinesq-Burgers equation in a fractal-dimensional space. (English) Zbl 07537372 Fractals 30, No. 3, Article ID 2250056, 10 p. (2022). MSC: 35Qxx 35Cxx 35Rxx PDF BibTeX XML Cite \textit{P.-X. Wu} et al., Fractals 30, No. 3, Article ID 2250056, 10 p. (2022; Zbl 07537372) Full Text: DOI OpenURL
Castaing, Charles; Godet-Thobie, C.; Saïdi, Soumia On fractional evolution inclusion coupled with a time and state dependent maximal monotone operator. (English) Zbl 07536258 Set-Valued Var. Anal. 30, No. 2, 621-656 (2022). MSC: 34A60 26A33 34H05 34A08 34G25 47H10 49J52 49J53 PDF BibTeX XML Cite \textit{C. Castaing} et al., Set-Valued Var. Anal. 30, No. 2, 621--656 (2022; Zbl 07536258) Full Text: DOI OpenURL
Aravkin, Aleksandr Y.; Baraldi, Robert; Orban, Dominique A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. (English) Zbl 07535630 SIAM J. Optim. 32, No. 2, 900-929 (2022). MSC: 90C53 90C56 65K10 PDF BibTeX XML Cite \textit{A. Y. Aravkin} et al., SIAM J. Optim. 32, No. 2, 900--929 (2022; Zbl 07535630) Full Text: DOI OpenURL
Nguyen Van Thin Multiplicity and concentration of solutions to a fractional \(p\)-Laplace problem with exponential growth. (English) Zbl 07527817 Ann. Fenn. Math. 47, No. 2, 603-639 (2022). MSC: 35A15 35A23 35J35 35J61 35J92 35R11 35B25 PDF BibTeX XML Cite \textit{Nguyen Van Thin}, Ann. Fenn. Math. 47, No. 2, 603--639 (2022; Zbl 07527817) Full Text: DOI OpenURL
Kajikiya, Ryuji Boundedness of critical points in the symmetric mountain pass lemma. (English) Zbl 07523731 J. Convex Anal. 29, No. 2, 443-458 (2022). MSC: 58E05 46G05 35J20 PDF BibTeX XML Cite \textit{R. Kajikiya}, J. Convex Anal. 29, No. 2, 443--458 (2022; Zbl 07523731) Full Text: Link OpenURL
Pattnaik, Ashapurna; Padhan, Saroj Kumar; Mohapatra, R. N. Sufficient conditions for extremum of fractional variational problems. (English) Zbl 07523412 RAIRO, Oper. Res. 56, No. 2, 637-648 (2022). MSC: 26A33 58E15 34K37 49K10 49K20 35R11 PDF BibTeX XML Cite \textit{A. Pattnaik} et al., RAIRO, Oper. Res. 56, No. 2, 637--648 (2022; Zbl 07523412) Full Text: DOI OpenURL
Natali, Fábio; Le, Uyen; Pelinovsky, Dmitry E. Periodic waves in the fractional modified Korteweg-de Vries equation. (English) Zbl 07522538 J. Dyn. Differ. Equations 34, No. 2, 1601-1640 (2022); correction ibid. 34, No. 2, 1641-1642 (2022). MSC: 76B15 76M30 35Q35 35Q53 26A33 PDF BibTeX XML Cite \textit{F. Natali} et al., J. Dyn. Differ. Equations 34, No. 2, 1601--1640 (2022; Zbl 07522538) Full Text: DOI OpenURL
Guth, Philipp A.; Schillings, Claudia; Weissmann, Simon Ensemble Kalman filter for neural network-based one-shot inversion. (English) Zbl 07516521 Herzog, Roland (ed.) et al., Optimization and control for partial differential equations. Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter. Radon Ser. Comput. Appl. Math. 29, 393-418 (2022). MSC: 65N21 62F15 65N75 65K10 90C56 68T05 62M20 49N45 PDF BibTeX XML Cite \textit{P. A. Guth} et al., Radon Ser. Comput. Appl. Math. 29, 393--418 (2022; Zbl 07516521) Full Text: DOI OpenURL
Sweilam, Nasser H.; Assiri, Taghreed A.; Hasan, Muner M. Abou Optimal control problem of variable-order delay system of advertising procedure: numerical treatment. (English) Zbl 07512226 Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1247-1268 (2022). MSC: 49S05 26A33 49M25 65L03 91B16 91B26 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1247--1268 (2022; Zbl 07512226) Full Text: DOI OpenURL
Cresson, Jacky; Jiménez, Fernando; Ober-Blöbaum, Sina Continuous and discrete Noether’s fractional conserved quantities for restricted calculus of variations. (English) Zbl 07512089 J. Geom. Mech. 14, No. 1, 57-89 (2022). MSC: 49K21 26A33 70G65 37M15 PDF BibTeX XML Cite \textit{J. Cresson} et al., J. Geom. Mech. 14, No. 1, 57--89 (2022; Zbl 07512089) Full Text: DOI OpenURL
Su, Jiabao; Wang, Cong Weighted critical exponents of Sobolev-type embeddings for radial functions. (English) Zbl 07511752 Adv. Nonlinear Stud. 22, No. 1, 143-158 (2022). MSC: 35A23 35B33 35J20 35J62 46E35 PDF BibTeX XML Cite \textit{J. Su} and \textit{C. Wang}, Adv. Nonlinear Stud. 22, No. 1, 143--158 (2022; Zbl 07511752) Full Text: DOI OpenURL
Chada, Neil K.; Tong, Xin T. Convergence acceleration of ensemble Kalman inversion in nonlinear settings. (English) Zbl 07506850 Math. Comput. 91, No. 335, 1247-1280 (2022). MSC: 49N45 65K10 90C56 90C25 PDF BibTeX XML Cite \textit{N. K. Chada} and \textit{X. T. Tong}, Math. Comput. 91, No. 335, 1247--1280 (2022; Zbl 07506850) Full Text: DOI OpenURL
Harutyunyan, Davit; Hovsepyan, Narek On the extreme rays of the cone of \(3\times 3\) quasiconvex quadratic forms: extremal determinants versus extremal and polyconvex forms. (English) Zbl 07505276 Arch. Ration. Mech. Anal. 244, No. 1, 1-25 (2022). MSC: 74B05 74B10 74P10 26B25 49J40 35A23 35Q74 PDF BibTeX XML Cite \textit{D. Harutyunyan} and \textit{N. Hovsepyan}, Arch. Ration. Mech. Anal. 244, No. 1, 1--25 (2022; Zbl 07505276) Full Text: DOI OpenURL
Birgin, E. G.; Krejić, N.; Martínez, J. M. Inexact restoration for derivative-free expensive function minimization and applications. (English) Zbl 07503434 J. Comput. Appl. Math. 410, Article ID 114193, 15 p. (2022). MSC: 65K05 65K10 90C30 90C56 65Y20 90C90 PDF BibTeX XML Cite \textit{E. G. Birgin} et al., J. Comput. Appl. Math. 410, Article ID 114193, 15 p. (2022; Zbl 07503434) Full Text: DOI OpenURL
Emamizadeh, Behrouz; Liu, Yichen; Porru, Giovanni Overdetermined problems for \(p\)-Laplace and generalized Monge-Ampére equations. (English) Zbl 07499547 Complex Var. Elliptic Equ. 67, No. 4, 807-821 (2022). Reviewer: Antonio Greco (Cagliari) MSC: 35N25 35A23 35J96 47J20 52A40 PDF BibTeX XML Cite \textit{B. Emamizadeh} et al., Complex Var. Elliptic Equ. 67, No. 4, 807--821 (2022; Zbl 07499547) Full Text: DOI OpenURL
Dipierro, Serena; Maggi, Francesco; Valdinoci, Enrico Minimizing cones for fractional capillarity problems. (English) Zbl 1485.76023 Rev. Mat. Iberoam. 38, No. 2, 635-658 (2022). MSC: 76B45 76M30 49Q05 26A33 PDF BibTeX XML Cite \textit{S. Dipierro} et al., Rev. Mat. Iberoam. 38, No. 2, 635--658 (2022; Zbl 1485.76023) Full Text: DOI OpenURL
Ao, Weiwei; DelaTorre, Azahara; del Mar González, María Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenberg inequality. (English) Zbl 1485.35008 J. Funct. Anal. 282, No. 11, Article ID 109438, 58 p. (2022). MSC: 35A23 35B06 35J20 35R11 PDF BibTeX XML Cite \textit{W. Ao} et al., J. Funct. Anal. 282, No. 11, Article ID 109438, 58 p. (2022; Zbl 1485.35008) Full Text: DOI OpenURL
Wang, Kang-Jia; Li, Geng; Liu, Jing-Hua; Wang, Guo-Dong Solitary waves of the fractal regularized long-wave equation traveling along an unsmooth boundary. (English) Zbl 07490694 Fractals 30, No. 1, Article ID 2250008, 6 p. (2022). MSC: 35Qxx 65Mxx 65Rxx PDF BibTeX XML Cite \textit{K.-J. Wang} et al., Fractals 30, No. 1, Article ID 2250008, 6 p. (2022; Zbl 07490694) Full Text: DOI OpenURL
Bouguessa, Souad; Bouagada, Djillali; Ghezzar, Mohammed Amine Influence of discretization step on asymptotic stability of a certain class of two-dimensional continuous-discrete fractional linear systems. (English) Zbl 07490418 Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 68-77 (2022). MSC: 37M15 93D20 93C28 26A33 PDF BibTeX XML Cite \textit{S. Bouguessa} et al., Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 68--77 (2022; Zbl 07490418) Full Text: DOI OpenURL
Dovetta, Simone; Tentarelli, Lorenzo Symmetry breaking in two-dimensional square grids: persistence and failure of the dimensional crossover. (English) Zbl 07485599 J. Math. Pures Appl. (9) 160, 99-157 (2022). Reviewer: Guido Schneider (Stuttgart) MSC: 35A23 35R02 35Q40 35Q55 81Q35 49J40 PDF BibTeX XML Cite \textit{S. Dovetta} and \textit{L. Tentarelli}, J. Math. Pures Appl. (9) 160, 99--157 (2022; Zbl 07485599) Full Text: DOI arXiv OpenURL
Walther, Andrea; Weiß, Olga; Griewank, Andreas; Schmidt, Stephan Nonsmooth optimization by successive abs-linearization in function spaces. (English) Zbl 07485300 Appl. Anal. 101, No. 1, 225-240 (2022). MSC: 90C30 90C56 65K10 47N10 35Q93 PDF BibTeX XML Cite \textit{A. Walther} et al., Appl. Anal. 101, No. 1, 225--240 (2022; Zbl 07485300) Full Text: DOI OpenURL
Bernini, Federico; Bieganowski, Bartosz; Secchi, Simone Semirelativistic Choquard equations with singular potentials and general nonlinearities arising from Hartree-Fock theory. (English) Zbl 1484.35344 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112738, 26 p. (2022). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35A15 35B40 35J20 58E05 26A33 35R11 PDF BibTeX XML Cite \textit{F. Bernini} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112738, 26 p. (2022; Zbl 1484.35344) Full Text: DOI arXiv OpenURL
Aouaoui, Sami; Jlel, Rahma Singular weighted sharp Trudinger-Moser inequalities defined on \(\mathbb{R}^N\) and applications to elliptic nonlinear equations. (English) Zbl 1482.35016 Discrete Contin. Dyn. Syst. 42, No. 2, 781-813 (2022). MSC: 35A23 26D15 35A21 35B33 35D30 35J20 35J62 35J75 PDF BibTeX XML Cite \textit{S. Aouaoui} and \textit{R. Jlel}, Discrete Contin. Dyn. Syst. 42, No. 2, 781--813 (2022; Zbl 1482.35016) Full Text: DOI OpenURL
Ait Mansour, Mohamed; Durea, Marius; Riahi, Hassan Strict directional solutions in vectorial problems: necessary optimality conditions. (English) Zbl 1482.58006 J. Glob. Optim. 82, No. 1, 119-138 (2022). Reviewer: Wiesław Kotarski (Sosnowiec) MSC: 58E17 54C60 46G05 90C46 90C29 PDF BibTeX XML Cite \textit{M. Ait Mansour} et al., J. Glob. Optim. 82, No. 1, 119--138 (2022; Zbl 1482.58006) Full Text: DOI OpenURL
Fărcăşeanu, Maria; Mihăilescu, Mihai On the monotonicity of the best constant of Morrey’s inequality in convex domains. (English) Zbl 1483.35007 Proc. Am. Math. Soc. 150, No. 2, 651-660 (2022). Reviewer: Meng Qu (Wuhu) MSC: 35A23 35J25 35J92 35P30 47J10 49R05 49J40 58C40 PDF BibTeX XML Cite \textit{M. Fărcăşeanu} and \textit{M. Mihăilescu}, Proc. Am. Math. Soc. 150, No. 2, 651--660 (2022; Zbl 1483.35007) Full Text: DOI OpenURL
Saidi, B.; Yacoub, Z.; Amairi, M.; Aoun, M. Constant phase based design of robust fractional PI controller for uncertain first order plus dead time systems. (English) Zbl 1480.93144 Naifar, Omar (ed.) et al., Fractional order systems – control theory and applications. Fundamentals and applications. Cham: Springer. Stud. Syst. Decis. Control 364, 159-179 (2022). MSC: 93B52 93D09 26A33 65K10 93C43 PDF BibTeX XML Cite \textit{B. Saidi} et al., Stud. Syst. Decis. Control 364, 159--179 (2022; Zbl 1480.93144) Full Text: DOI OpenURL
Adekoya, Oreoluwa; Albert, John P. Maximisers for Strichartz inequalities on the torus. (English) Zbl 1479.35026 Nonlinearity 35, No. 1, 311-342 (2022). MSC: 35A23 35A15 35Q41 35Q55 35Q60 49J20 78A60 PDF BibTeX XML Cite \textit{O. Adekoya} and \textit{J. P. Albert}, Nonlinearity 35, No. 1, 311--342 (2022; Zbl 1479.35026) Full Text: DOI arXiv OpenURL
Dou, Jingbo; Sun, Liming; Wang, Lei; Zhu, Meijun Divergent operator with degeneracy and related sharp inequalities. (English) Zbl 1479.35027 J. Funct. Anal. 282, No. 2, Article ID 109294, 85 p. (2022). MSC: 35A23 35J70 35B06 30C70 35B65 PDF BibTeX XML Cite \textit{J. Dou} et al., J. Funct. Anal. 282, No. 2, Article ID 109294, 85 p. (2022; Zbl 1479.35027) Full Text: DOI arXiv OpenURL
Batool, Safeera; Noor, Muhammad Aslam; Noor, Khalida Inayat Merit functions for absolute value variational inequalities. (English) Zbl 07533420 AIMS Math. 6, No. 11, 12133-12147 (2021). MSC: 26A33 26A51 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{S. Batool} et al., AIMS Math. 6, No. 11, 12133--12147 (2021; Zbl 07533420) Full Text: DOI OpenURL
Chu, Yu-Ming; Ali Shah, Nehad; Agarwal, Praveen; Dong Chung, Jae Analysis of fractional multi-dimensional Navier-Stokes equation. (English) Zbl 07526190 Adv. Difference Equ. 2021, Paper No. 91, 19 p. (2021). MSC: 76M20 35R11 35Q30 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Adv. Difference Equ. 2021, Paper No. 91, 19 p. (2021; Zbl 07526190) Full Text: DOI OpenURL
Malidareh, Babak Fazli Collocated meshless method for time-fractional diffusion-wave equations. (English) Zbl 07523989 J. Math. Ext. 15, No. 5, Paper No. 24, 25 p. (2021). MSC: 65M70 65K10 65D12 26A33 35R11 PDF BibTeX XML Cite \textit{B. F. Malidareh}, J. Math. Ext. 15, No. 5, Paper No. 24, 25 p. (2021; Zbl 07523989) Full Text: DOI OpenURL
Cernea, Aurelian Variational inclusions for a class of fractional differential inclusions. (English) Zbl 07523911 Rev. Roum. Math. Pures Appl. 66, No. 3-4, 639-649 (2021). MSC: 34A60 26A33 26A42 PDF BibTeX XML Cite \textit{A. Cernea}, Rev. Roum. Math. Pures Appl. 66, No. 3--4, 639--649 (2021; Zbl 07523911) OpenURL
Wu, Pin-Xia; Ling, Wei-Wei; Li, Xiu-Mei; Xie, Liang-Jin Variational principle of the one-dimensional convection-dispersion equation with fractal derivatives. (English) Zbl 07502283 Int. J. Mod. Phys. B 35, No. 19, Article ID 2150195, 10 p. (2021). MSC: 76R05 76B15 31E05 44A10 PDF BibTeX XML Cite \textit{P.-X. Wu} et al., Int. J. Mod. Phys. B 35, No. 19, Article ID 2150195, 10 p. (2021; Zbl 07502283) Full Text: DOI OpenURL
Noinakorn, Supansa; Ibrahim, Abdukarim Hassan; Abubakar, Auwal Bala; Pakkaranang, Nuttapol A three-term inertial derivative-free projection method for convex constrained monotone equations. (English) Zbl 1482.90118 Nonlinear Funct. Anal. Appl. 26, No. 4, 839-853 (2021). MSC: 90C06 90C56 65K05 65K10 PDF BibTeX XML Cite \textit{S. Noinakorn} et al., Nonlinear Funct. Anal. Appl. 26, No. 4, 839--853 (2021; Zbl 1482.90118) Full Text: Link OpenURL
Cui, Ying; Pang, Jong-Shi Modern nonconvex nondifferentiable optimization. (English) Zbl 07478423 MOS/SIAM Series on Optimization 29. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (ISBN 978-1-61197-673-1/hbk; 978-1-61197-674-8/ebook). xx, 756 p. (2021). Reviewer: Alfred Göpfert (Leipzig) MSC: 90C26 90-02 91-08 90C90 90C17 90C15 90C20 90C30 90C32 90C56 PDF BibTeX XML Cite \textit{Y. Cui} and \textit{J.-S. Pang}, Modern nonconvex nondifferentiable optimization. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (2021; Zbl 07478423) Full Text: DOI OpenURL
Mehlitz, Patrick; Zemkoho, Alain B. Sufficient optimality conditions in bilevel programming. (English) Zbl 07470616 Math. Oper. Res. 46, No. 4, 1573-1598 (2021). Reviewer: Karel Zimmermann (Praha) MSC: 90C30 90C33 90C46 49J52 49J53 PDF BibTeX XML Cite \textit{P. Mehlitz} and \textit{A. B. Zemkoho}, Math. Oper. Res. 46, No. 4, 1573--1598 (2021; Zbl 07470616) Full Text: DOI arXiv OpenURL
Liang, Yan-Hong; Wang, Guo-Dong; Wang, Kang-Jia Solitary waves of the fractal Whitham-Broer-Kaup equation in shallow water. (English) Zbl 1482.35006 GEM. Int. J. Geomath. 12, Paper No. 22, 11 p. (2021). MSC: 35A15 35R11 76B15 PDF BibTeX XML Cite \textit{Y.-H. Liang} et al., GEM. Int. J. Geomath. 12, Paper No. 22, 11 p. (2021; Zbl 1482.35006) Full Text: DOI OpenURL
Ziane, Djelloul; Hamdi, Cherif Mountassir; Belghaba, Kacem; Belgacem, Fethi Bin Muhammad An accurate method for nonlinear local fractional wave-like equations with variable coefficients. (English) Zbl 07468465 Comput. Methods Differ. Equ. 9, No. 3, 774-787 (2021). MSC: 44A05 26A33 44A20 34K37 PDF BibTeX XML Cite \textit{D. Ziane} et al., Comput. Methods Differ. Equ. 9, No. 3, 774--787 (2021; Zbl 07468465) Full Text: DOI OpenURL
Wang, Kang-Le; Wang, Hao; Muhammad, Hanif A new perspective for two different types of fractal Zakharov-Kuznetsov models. (English) Zbl 07467703 Fractals 29, No. 6, Article ID 2150168, 8 p. (2021). Reviewer: Ti-Jun Xiao (Fudan) MSC: 35Q53 35A15 26A33 35R11 PDF BibTeX XML Cite \textit{K.-L. Wang} et al., Fractals 29, No. 6, Article ID 2150168, 8 p. (2021; Zbl 07467703) Full Text: DOI OpenURL
Wang, Bingwu On directional continuity, Lipschitzian properties, and differentiability. (English) Zbl 1485.49022 Pure Appl. Funct. Anal. 6, No. 6, 1533-1543 (2021). Reviewer: Armin Hoffmann (Ilmenau) MSC: 49J50 46G05 49J53 46A17 49J52 PDF BibTeX XML Cite \textit{B. Wang}, Pure Appl. Funct. Anal. 6, No. 6, 1533--1543 (2021; Zbl 1485.49022) Full Text: Link OpenURL
Khan, Y. Fractal Lakshmanan-Porsezian-Daniel model with different forms of nonlinearity and its novel soliton solutions. (English) Zbl 1481.78023 Fractals 29, No. 2, Article ID 2150032, 13 p. (2021). MSC: 78A60 35C08 35Q55 35Q41 82D40 35A15 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Khan}, Fractals 29, No. 2, Article ID 2150032, 13 p. (2021; Zbl 1481.78023) Full Text: DOI OpenURL
Kalybay, Aigerim; Oinarov, Ryskul; Sultanaev, Yaudat Weighted differential inequality and oscillatory properties of fourth order differential equations. (English) Zbl 07465178 J. Inequal. Appl. 2021, Paper No. 199, 17 p. (2021). MSC: 26D10 34C10 26D15 34C15 PDF BibTeX XML Cite \textit{A. Kalybay} et al., J. Inequal. Appl. 2021, Paper No. 199, 17 p. (2021; Zbl 07465178) Full Text: DOI OpenURL
Dolbeault, Jean Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results. (English) Zbl 1481.35006 Milan J. Math. 89, No. 2, 355-386 (2021). MSC: 35-02 35A23 26D10 35B06 35J60 35K55 46B70 46E35 49J40 49K20 49K30 53C21 PDF BibTeX XML Cite \textit{J. Dolbeault}, Milan J. Math. 89, No. 2, 355--386 (2021; Zbl 1481.35006) Full Text: DOI arXiv OpenURL
Hajaji, Abdelmajid El; Serghini, Abdelhafid; Melliani, Said; Ghordaf, Jalila El; Hilal, Khalid A quintic spline collocation method for solving time-dependent convection-diffusion problems. (English) Zbl 07460167 Tatra Mt. Math. Publ. 80, 15-34 (2021). MSC: 41A15 65K15 90C56 PDF BibTeX XML Cite \textit{A. E. Hajaji} et al., Tatra Mt. Math. Publ. 80, 15--34 (2021; Zbl 07460167) Full Text: DOI OpenURL
Zhou, Changliang; Zhou, Chunqin Singular Moser-Trudinger inequality involving \(L^n\) norm in the entire Euclidean space. (English) Zbl 1481.35019 Commun. Math. Stat. 9, No. 4, 467-501 (2021). MSC: 35A23 35J20 35J61 PDF BibTeX XML Cite \textit{C. Zhou} and \textit{C. Zhou}, Commun. Math. Stat. 9, No. 4, 467--501 (2021; Zbl 1481.35019) Full Text: DOI OpenURL
Pitts, J. Brian Change in Hamiltonian general relativity with spinors. (English) Zbl 1476.83009 Found. Phys. 51, No. 6, Paper No. 109, 30 p. (2021). MSC: 83C05 83C45 83D05 81T13 53C80 PDF BibTeX XML Cite \textit{J. B. Pitts}, Found. Phys. 51, No. 6, Paper No. 109, 30 p. (2021; Zbl 1476.83009) Full Text: DOI arXiv OpenURL
Liang, Yan-Hong; Wang, Kang-Jia On a variational principle for the fractal Wu-Zhang system arising in shallow water. (English) Zbl 1479.49103 GEM. Int. J. Geomath. 12, Paper No. 8, 9 p. (2021). MSC: 49S05 76M30 49N45 PDF BibTeX XML Cite \textit{Y.-H. Liang} and \textit{K.-J. Wang}, GEM. Int. J. Geomath. 12, Paper No. 8, 9 p. (2021; Zbl 1479.49103) Full Text: DOI OpenURL
Mohanta, Kaushik; Sk, Firoj On the best constant in fractional \(p\)-Poincaré inequalities on cylindrical domains. (English) Zbl 07442503 Differ. Integral Equ. 34, No. 11-12, 691-712 (2021). MSC: 26D10 35R09 46E35 49J40 PDF BibTeX XML Cite \textit{K. Mohanta} and \textit{F. Sk}, Differ. Integral Equ. 34, No. 11--12, 691--712 (2021; Zbl 07442503) Full Text: arXiv OpenURL
Yang, Tao On doubly critical coupled systems involving fractional Laplacian with partial singular weight. (English) Zbl 1479.35931 Math. Methods Appl. Sci. 44, No. 17, 13448-13467 (2021). MSC: 35R11 35A23 35B33 35J50 35J61 PDF BibTeX XML Cite \textit{T. Yang}, Math. Methods Appl. Sci. 44, No. 17, 13448--13467 (2021; Zbl 1479.35931) Full Text: DOI arXiv OpenURL
Ding, Zhiyan; Hajaiej, Hichem On a fractional Schrödinger equation in the presence of harmonic potential. (English) Zbl 1479.35772 Electron Res. Arch. 29, No. 5, 3449-3469 (2021). MSC: 35Q55 35Q41 35B35 35A01 35J60 47J30 65M70 65M06 26A33 35R11 PDF BibTeX XML Cite \textit{Z. Ding} and \textit{H. Hajaiej}, Electron Res. Arch. 29, No. 5, 3449--3469 (2021; Zbl 1479.35772) Full Text: DOI arXiv OpenURL
Du, Lele Bounds for subcritical best Sobolev constants in \(W^{1, p}\). (English) Zbl 1479.35028 Commun. Pure Appl. Anal. 20, No. 11, 3871-3886 (2021). MSC: 35A23 35B25 35B33 35J61 46E35 PDF BibTeX XML Cite \textit{L. Du}, Commun. Pure Appl. Anal. 20, No. 11, 3871--3886 (2021; Zbl 1479.35028) Full Text: DOI OpenURL
Buchukuri, Tengiz; Duduchava, Roland Solvability and numerical approximation of the shell equation derived by the \(\Gamma\)-convergence. (English) Zbl 1484.35161 Mem. Differ. Equ. Math. Phys. 82, 39-55 (2021). Reviewer: David Kapanadze (Tbilisi) MSC: 35J05 35J20 53A05 PDF BibTeX XML Cite \textit{T. Buchukuri} and \textit{R. Duduchava}, Mem. Differ. Equ. Math. Phys. 82, 39--55 (2021; Zbl 1484.35161) Full Text: Link OpenURL
Ni, Angxiu Approximating linear response by nonintrusive shadowing algorithms. (English) Zbl 1482.65229 SIAM J. Numer. Anal. 59, No. 6, 2843-2865 (2021). MSC: 65P20 65K10 37M25 93E24 46G05 PDF BibTeX XML Cite \textit{A. Ni}, SIAM J. Numer. Anal. 59, No. 6, 2843--2865 (2021; Zbl 1482.65229) Full Text: DOI arXiv OpenURL
Bieganowski, Bartosz; Secchi, Simone Non-local to local transition for ground states of fractional Schrödinger equations on bounded domains. (English) Zbl 1477.35231 Topol. Methods Nonlinear Anal. 57, No. 2, 413-425 (2021). MSC: 35Q55 35A15 26A33 35R11 35R01 PDF BibTeX XML Cite \textit{B. Bieganowski} and \textit{S. Secchi}, Topol. Methods Nonlinear Anal. 57, No. 2, 413--425 (2021; Zbl 1477.35231) Full Text: DOI arXiv OpenURL
Kaelo, P.; Koorapetse, M.; Sam, C. R. A globally convergent derivative-free projection method for nonlinear monotone equations with applications. (English) Zbl 1476.90353 Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4335-4356 (2021). MSC: 90C56 65K05 65K10 90C06 PDF BibTeX XML Cite \textit{P. Kaelo} et al., Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4335--4356 (2021; Zbl 1476.90353) Full Text: DOI OpenURL
Anoop, T. V.; Biswas, Nirjan; Das, Ujjal Admissible function spaces for weighted Sobolev inequalities. (English) Zbl 1482.35015 Commun. Pure Appl. Anal. 20, No. 9, 3259-3297 (2021). Reviewer: José Francisco De Oliveira (Teresina) MSC: 35A23 46E35 47J30 PDF BibTeX XML Cite \textit{T. V. Anoop} et al., Commun. Pure Appl. Anal. 20, No. 9, 3259--3297 (2021; Zbl 1482.35015) Full Text: DOI arXiv OpenURL
Min, Dandan; Chen, Fangqi Variational methods to the \(p\)-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem. (English) Zbl 07414213 Fract. Calc. Appl. Anal. 24, No. 4, 1069-1093 (2021). MSC: 26A33 34A08 35A15 34B37 PDF BibTeX XML Cite \textit{D. Min} and \textit{F. Chen}, Fract. Calc. Appl. Anal. 24, No. 4, 1069--1093 (2021; Zbl 07414213) Full Text: DOI OpenURL
Rauls, Anne-Therese; Ulbrich, Stefan On the characterization of generalized derivatives for the solution operator of the bilateral obstacle problem. (English) Zbl 1484.49020 SIAM J. Control Optim. 59, No. 5, 3683-3707 (2021). MSC: 49J40 49K40 49J52 58C20 58E35 PDF BibTeX XML Cite \textit{A.-T. Rauls} and \textit{S. Ulbrich}, SIAM J. Control Optim. 59, No. 5, 3683--3707 (2021; Zbl 1484.49020) Full Text: DOI arXiv OpenURL
Pérez-Aros, Pedro; Salas, David; Vilches, Emilio Determination of convex functions via subgradients of minimal norm. (English) Zbl 1482.26018 Math. Program. 190, No. 1-2 (A), 561-583 (2021). Reviewer: Sorin-Mihai Grad (Paris) MSC: 26B25 34A60 34C12 34G20 49J40 90C56 PDF BibTeX XML Cite \textit{P. Pérez-Aros} et al., Math. Program. 190, No. 1--2 (A), 561--583 (2021; Zbl 1482.26018) Full Text: DOI OpenURL
Zhang, Youpei; Tang, Xianhua; Rădulescu, Vicenţiu Anisotropic Choquard problems with Stein-Weiss potential: nonlinear patterns and stationary waves. (English) Zbl 1475.35011 C. R., Math., Acad. Sci. Paris 359, No. 8, 959-968 (2021). MSC: 35A23 47J20 58E05 58E35 PDF BibTeX XML Cite \textit{Y. Zhang} et al., C. R., Math., Acad. Sci. Paris 359, No. 8, 959--968 (2021; Zbl 1475.35011) Full Text: DOI OpenURL
Li, Jiaojiao; Ma, Li Extremals to new Gagliardo-Nirenberg inequality and ground states. (English) Zbl 1475.35010 Appl. Math. Lett. 120, Article ID 107266, 8 p. (2021). MSC: 35A23 35Q55 35R11 PDF BibTeX XML Cite \textit{J. Li} and \textit{L. Ma}, Appl. Math. Lett. 120, Article ID 107266, 8 p. (2021; Zbl 1475.35010) Full Text: DOI OpenURL
Ledesma, César E. Torres; Bonilla, Manuel C. Montalvo Fractional Sobolev space with Riemann-Liouville fractional derivative and application to a fractional concave-convex problem. (English) Zbl 07406048 Adv. Oper. Theory 6, No. 4, Paper No. 65, 38 p. (2021). Reviewer: Javier Gallegos (Santiago de Chile) MSC: 26A33 34B15 35A15 46E35 PDF BibTeX XML Cite \textit{C. E. T. Ledesma} and \textit{M. C. M. Bonilla}, Adv. Oper. Theory 6, No. 4, Paper No. 65, 38 p. (2021; Zbl 07406048) Full Text: DOI OpenURL
Hoppe, R. H. W. On Poincaré-Friedrichs type inequalities for the broken Sobolev space \({W^{2, 1}}\). (English) Zbl 07404490 Numer. Math., Theory Methods Appl. 14, No. 1, 31-46 (2021). MSC: 65N30 68U10 35A23 46E35 65K10 PDF BibTeX XML Cite \textit{R. H. W. Hoppe}, Numer. Math., Theory Methods Appl. 14, No. 1, 31--46 (2021; Zbl 07404490) Full Text: DOI OpenURL
Zeng, Yuping; Weng, Zhifeng; Hu, Hanzhang A priori and a posteriori error estimates of a WOPSIP DG method for a simplified frictional contact problem. (Chinese. English summary) Zbl 07404381 Math. Numer. Sin. 43, No. 2, 162-176 (2021). MSC: 65N30 65N15 35A23 74M10 74M15 35Q74 PDF BibTeX XML Cite \textit{Y. Zeng} et al., Math. Numer. Sin. 43, No. 2, 162--176 (2021; Zbl 07404381) Full Text: DOI OpenURL
Daví, Fabrizio Existence, decay time and light yield for a reaction-diffusion-drift equation In the continuum physics of scintillators. (English) Zbl 07402449 Vespri, Vincenzo (ed.) et al., Harnack inequalities and nonlinear operators. Proceedings of the INdAM conference to celebrate the 70th birthday of Emmanuele DiBenedetto. Cham: Springer. Springer INdAM Ser. 46, 125-137 (2021). MSC: 35Q92 92C05 92C40 78A40 35A15 35A23 35B27 35B45 65M60 65M06 65N30 65M12 PDF BibTeX XML Cite \textit{F. Daví}, Springer INdAM Ser. 46, 125--137 (2021; Zbl 07402449) Full Text: DOI arXiv OpenURL
Wadade, Hidemitsu; Ishiwata, Michinori Vanishing-concentration-compactness alternative for critical Sobolev embedding with a general integrand in \(\mathbb{R}^2\). (English) Zbl 07388060 Calc. Var. Partial Differ. Equ. 60, No. 6, Paper No. 203, 26 p. (2021). MSC: 47J30 46E35 26D10 PDF BibTeX XML Cite \textit{H. Wadade} and \textit{M. Ishiwata}, Calc. Var. Partial Differ. Equ. 60, No. 6, Paper No. 203, 26 p. (2021; Zbl 07388060) Full Text: DOI OpenURL
Nguyen, Van Hoang The thresholds of the existence of maximizers for the critical sharp singular Moser-Trudinger inequality under constraints. (English) Zbl 1482.46043 Math. Ann. 380, No. 3-4, 1933-1958 (2021). MSC: 46E35 26D10 47J30 PDF BibTeX XML Cite \textit{V. H. Nguyen}, Math. Ann. 380, No. 3--4, 1933--1958 (2021; Zbl 1482.46043) Full Text: DOI OpenURL
Hai, Pham Viet; Rosenfeld, Joel A. The gradient descent method from the perspective of fractional calculus. (English) Zbl 07386932 Math. Methods Appl. Sci. 44, No. 7, 5520-5547 (2021). Reviewer: Juan-Enrique Martínez-Legaz (Barcelona) MSC: 65K10 90C25 26A33 34A08 PDF BibTeX XML Cite \textit{P. V. Hai} and \textit{J. A. Rosenfeld}, Math. Methods Appl. Sci. 44, No. 7, 5520--5547 (2021; Zbl 07386932) Full Text: DOI arXiv OpenURL
Censor, Yair; Garduño, Edgar; Helou, Elias S.; Herman, Gabor T. Derivative-free superiorization: principle and algorithm. (English) Zbl 07384501 Numer. Algorithms 88, No. 1, 227-248 (2021). MSC: 65K05 65K15 90C56 PDF BibTeX XML Cite \textit{Y. Censor} et al., Numer. Algorithms 88, No. 1, 227--248 (2021; Zbl 07384501) Full Text: DOI arXiv OpenURL
Lewis, Adrian S.; Tian, Tonghua The structure of conservative gradient fields. (English) Zbl 1471.49013 SIAM J. Optim. 31, No. 3, 2080-2083 (2021). MSC: 49J52 49J40 14P10 90C56 65K10 68T07 PDF BibTeX XML Cite \textit{A. S. Lewis} and \textit{T. Tian}, SIAM J. Optim. 31, No. 3, 2080--2083 (2021; Zbl 1471.49013) Full Text: DOI arXiv OpenURL
Anoop, T. V.; Das, Ujjal The compactness and the concentration compactness via \(P\)-capacity. (English) Zbl 1476.28001 Ann. Mat. Pura Appl. (4) 200, No. 6, 2715-2740 (2021). MSC: 28A12 28A33 35A23 35J20 46E30 46E35 PDF BibTeX XML Cite \textit{T. V. Anoop} and \textit{U. Das}, Ann. Mat. Pura Appl. (4) 200, No. 6, 2715--2740 (2021; Zbl 1476.28001) Full Text: DOI arXiv OpenURL
Bourdin, Loïc; Ferreira, Rui A. C. Legendre’s necessary condition for fractional Bolza functionals with mixed initial/final constraints. (English) Zbl 1471.49017 J. Optim. Theory Appl. 190, No. 2, 672-708 (2021). MSC: 49K05 26A33 34A08 PDF BibTeX XML Cite \textit{L. Bourdin} and \textit{R. A. C. Ferreira}, J. Optim. Theory Appl. 190, No. 2, 672--708 (2021; Zbl 1471.49017) Full Text: DOI arXiv OpenURL
Golbaghi, Fariba Kazemi; Eslahchi, M. R.; Rezghi, Mansoor Image denoising by a novel variable-order total fractional variation model. (English) Zbl 1472.94006 Math. Methods Appl. Sci. 44, No. 8, 7250-7261 (2021). Reviewer: Jaak Henno (Tallinn) MSC: 94A08 26A33 62H35 65K05 74G65 74G75 PDF BibTeX XML Cite \textit{F. K. Golbaghi} et al., Math. Methods Appl. Sci. 44, No. 8, 7250--7261 (2021; Zbl 1472.94006) Full Text: DOI OpenURL
Ferreira, Milton; Rodrigues, M. Manuela; Vieira, Nelson A fractional analysis in higher dimensions for the Sturm-Liouville problem. (English) Zbl 07382470 Fract. Calc. Appl. Anal. 24, No. 2, 585-620 (2021). MSC: 34B24 26A33 34L10 34L15 35R11 30G35 PDF BibTeX XML Cite \textit{M. Ferreira} et al., Fract. Calc. Appl. Anal. 24, No. 2, 585--620 (2021; Zbl 07382470) Full Text: DOI OpenURL
Zadorozhniy, V. G. The expectation of a solution of a linear system of differential equations with random coefficients. (English. Russian original) Zbl 1470.60170 Theory Probab. Appl. 66, No. 2, 228-244 (2021); translation from Teor. Veroyatn. Primen. 66, No. 2, 284-304 (2021). MSC: 60H10 PDF BibTeX XML Cite \textit{V. G. Zadorozhniy}, Theory Probab. Appl. 66, No. 2, 228--244 (2021; Zbl 1470.60170); translation from Teor. Veroyatn. Primen. 66, No. 2, 284--304 (2021) Full Text: DOI OpenURL
Timoumi, Mohsen Ground state solutions for a class of superquadratic fractional Hamiltonian systems. (English) Zbl 1476.37078 J. Elliptic Parabol. Equ. 7, No. 1, 171-197 (2021). MSC: 37J51 34A08 26A33 35A15 35B38 PDF BibTeX XML Cite \textit{M. Timoumi}, J. Elliptic Parabol. Equ. 7, No. 1, 171--197 (2021; Zbl 1476.37078) Full Text: DOI OpenURL
Vanterler da C. Sousa, J. Nehari manifold and bifurcation for a \(\psi \)-Hilfer fractional \(p\)-Laplacian. (English) Zbl 1475.35401 Math. Methods Appl. Sci. 44, No. 11, 9616-9628 (2021). Reviewer: Kaye Silva (Goiânia) MSC: 35R11 26A33 35A15 35J66 35B32 35J92 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa}, Math. Methods Appl. Sci. 44, No. 11, 9616--9628 (2021; Zbl 1475.35401) Full Text: DOI OpenURL
Dilmi, Mohamed; Dilmi, Mourad; Benseridi, Hamid Variational formulation and asymptotic analysis of viscoelastic problem with Riemann-Liouville fractional derivatives. (English) Zbl 1470.35391 Math. Methods Appl. Sci. 44, No. 3, 2294-2313 (2021). MSC: 35R11 35L53 35R35 74D05 PDF BibTeX XML Cite \textit{M. Dilmi} et al., Math. Methods Appl. Sci. 44, No. 3, 2294--2313 (2021; Zbl 1470.35391) Full Text: DOI OpenURL
Duc, Phung Minh; Le, Xuan Thanh A splitting subgradient algorithm for solving equilibrium problems involving the sum of two bifunctions and application to Cournot-Nash model. (English) Zbl 1472.90139 RAIRO, Oper. Res. 55, Suppl., S1395-S1410 (2021). MSC: 90C33 90C56 PDF BibTeX XML Cite \textit{P. M. Duc} and \textit{X. T. Le}, RAIRO, Oper. Res. 55, S1395--S1410 (2021; Zbl 1472.90139) Full Text: DOI OpenURL
Mederski, Jarosław; Szulkin, Andrzej A Sobolev-type inequality for the curl operator and ground states for the curl-curl equation with critical Sobolev exponent. (English) Zbl 1475.35332 Arch. Ration. Mech. Anal. 241, No. 3, 1815-1842 (2021). MSC: 35Q61 35Q30 35Q55 78A25 35J20 35B33 26D10 PDF BibTeX XML Cite \textit{J. Mederski} and \textit{A. Szulkin}, Arch. Ration. Mech. Anal. 241, No. 3, 1815--1842 (2021; Zbl 1475.35332) Full Text: DOI arXiv OpenURL
Liu, J. J.; Sun, C. L.; Yamamoto, M. Recovering the weight function in distributed order fractional equation from interior measurement. (English) Zbl 07371861 Appl. Numer. Math. 168, 84-103 (2021). MSC: 65M32 65M06 65N06 65K10 49N45 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{J. J. Liu} et al., Appl. Numer. Math. 168, 84--103 (2021; Zbl 07371861) Full Text: DOI OpenURL
Dumitrescu, Roxana; Reisinger, Christoph; Zhang, Yufei Approximation schemes for mixed optimal stopping and control problems with nonlinear expectations and jumps. (English) Zbl 07371814 Appl. Math. Optim. 83, No. 3, 1387-1429 (2021). MSC: 65M06 65M12 65Y05 62L15 60J74 93E20 93B52 91G80 35A23 35A15 35D40 PDF BibTeX XML Cite \textit{R. Dumitrescu} et al., Appl. Math. Optim. 83, No. 3, 1387--1429 (2021; Zbl 07371814) Full Text: DOI arXiv OpenURL
Kalpakides, Vassilios K.; Charalambopoulos, Antonios On Hamilton’s principle for discrete and continuous systems: a convolved action principle. (English) Zbl 07371591 Rep. Math. Phys. 87, No. 2, 225-248 (2021). MSC: 70H25 49K05 49K21 49S05 26A33 35A15 PDF BibTeX XML Cite \textit{V. K. Kalpakides} and \textit{A. Charalambopoulos}, Rep. Math. Phys. 87, No. 2, 225--248 (2021; Zbl 07371591) Full Text: DOI arXiv OpenURL
Shivanian, E. To study existence of at least three weak solutions to a system of over-determined Fredholm fractional integro-differential equations. (English) Zbl 1470.45014 Commun. Nonlinear Sci. Numer. Simul. 101, Article ID 105892, 11 p. (2021). MSC: 45K05 45B05 45G15 26A33 PDF BibTeX XML Cite \textit{E. Shivanian}, Commun. Nonlinear Sci. Numer. Simul. 101, Article ID 105892, 11 p. (2021; Zbl 1470.45014) Full Text: DOI OpenURL
Buttazzo, Giuseppe; Pratelli, Aldo An application of the continuous Steiner symmetrization to Blaschke-Santaló diagrams. (English) Zbl 1467.49032 ESAIM, Control Optim. Calc. Var. 27, Paper No. 36, 13 p. (2021). MSC: 49Q10 49J45 49R05 35P15 35J25 26D10 PDF BibTeX XML Cite \textit{G. Buttazzo} and \textit{A. Pratelli}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 36, 13 p. (2021; Zbl 1467.49032) Full Text: DOI arXiv OpenURL
Bahrouni, Anouar; Ho, Ky Remarks on eigenvalue problems for fractional \(p(\cdot)\)-Laplacian. (English) Zbl 1473.35381 Asymptotic Anal. 123, No. 1-2, 139-156 (2021). MSC: 35P30 35A15 35B40 35J25 35J92 35R11 26A33 PDF BibTeX XML Cite \textit{A. Bahrouni} and \textit{K. Ho}, Asymptotic Anal. 123, No. 1--2, 139--156 (2021; Zbl 1473.35381) Full Text: DOI arXiv OpenURL
Ekeland, Ivar; Séré, Éric A surjection theorem for maps with singular perturbation and loss of derivatives. (English) Zbl 07367691 J. Eur. Math. Soc. (JEMS) 23, No. 10, 3323-3349 (2021). Reviewer: Jürgen Appell (Würzburg) MSC: 47J07 47J25 35B25 35G25 35Q55 58C15 PDF BibTeX XML Cite \textit{I. Ekeland} and \textit{É. Séré}, J. Eur. Math. Soc. (JEMS) 23, No. 10, 3323--3349 (2021; Zbl 07367691) Full Text: DOI arXiv OpenURL
Ehrhardt, Matthias J.; Roberts, Lindon Inexact derivative-free optimization for bilevel learning. (English) Zbl 07363962 J. Math. Imaging Vis. 63, No. 5, 580-600 (2021). MSC: 68-XX 94-XX 65D18 65K10 68T05 90C26 90C56 PDF BibTeX XML Cite \textit{M. J. Ehrhardt} and \textit{L. Roberts}, J. Math. Imaging Vis. 63, No. 5, 580--600 (2021; Zbl 07363962) Full Text: DOI arXiv OpenURL
Balogh, Zoltán M.; Gutiérrez, Cristian E.; Kristály, Alexandru Sobolev inequalities with jointly concave weights on convex cones. (English) Zbl 1469.35007 Proc. Lond. Math. Soc. (3) 122, No. 4, 537-568 (2021). Reviewer: Meng Qu (Wuhu) MSC: 35A23 46E35 47J20 PDF BibTeX XML Cite \textit{Z. M. Balogh} et al., Proc. Lond. Math. Soc. (3) 122, No. 4, 537--568 (2021; Zbl 1469.35007) Full Text: DOI arXiv Link OpenURL
Lazo, M. J.; Frederico, G. S. F.; Carvalho-Neto, P. M. Noether-type theorem for fractional variational problems depending on fractional derivatives of functions. (English) Zbl 1464.49015 Appl. Anal. 100, No. 8, 1727-1743 (2021). MSC: 49K21 26A33 49S05 70K99 PDF BibTeX XML Cite \textit{M. J. Lazo} et al., Appl. Anal. 100, No. 8, 1727--1743 (2021; Zbl 1464.49015) Full Text: DOI arXiv OpenURL
Keller, Matthias; Pinchover, Yehuda; Pogorzelski, Felix From Hardy to Rellich inequalities on graphs. (English) Zbl 1464.35389 Proc. Lond. Math. Soc. (3) 122, No. 3, 458-477 (2021). MSC: 35R02 35A23 39A12 26D15 31C20 35B09 35J10 58E35 PDF BibTeX XML Cite \textit{M. Keller} et al., Proc. Lond. Math. Soc. (3) 122, No. 3, 458--477 (2021; Zbl 1464.35389) Full Text: DOI arXiv OpenURL
Anh, Nguyen Le Hoang; Linh, Ha Manh Sensitivity analysis for set-valued equilibrium problems. (English) Zbl 1484.49031 Positivity 25, No. 1, 31-48 (2021). Reviewer: Radu Ioan Bot (Wien) MSC: 49J53 54C60 90C31 90C56 28B20 PDF BibTeX XML Cite \textit{N. Le H. Anh} and \textit{H. M. Linh}, Positivity 25, No. 1, 31--48 (2021; Zbl 1484.49031) Full Text: DOI OpenURL
Jiménez, Fernando; Ober-Blöbaum, Sina Fractional damping through restricted calculus of variations. (English) Zbl 1477.70031 J. Nonlinear Sci. 31, No. 2, Paper No. 46, 43 p. (2021). MSC: 70H30 70H25 26A33 37J46 49K21 49S05 65P10 PDF BibTeX XML Cite \textit{F. Jiménez} and \textit{S. Ober-Blöbaum}, J. Nonlinear Sci. 31, No. 2, Paper No. 46, 43 p. (2021; Zbl 1477.70031) Full Text: DOI arXiv OpenURL
Ziane, D.; Hamdi Cherif, M. A new analytical solution of Klein-Gordon equation with local fractional derivative. (English) Zbl 1462.35452 Asian-Eur. J. Math. 14, No. 3, Article ID 2150029, 13 p. (2021). MSC: 35R11 35A22 26A33 33E12 65L10 PDF BibTeX XML Cite \textit{D. Ziane} and \textit{M. Hamdi Cherif}, Asian-Eur. J. Math. 14, No. 3, Article ID 2150029, 13 p. (2021; Zbl 1462.35452) Full Text: DOI OpenURL
Caubet, Fabien; Dambrine, Marc; Mahadevan, Rajesh Shape derivative for some eigenvalue functionals in elasticity theory. (English) Zbl 1460.49032 SIAM J. Control Optim. 59, No. 2, 1218-1245 (2021). MSC: 49Q10 35P15 49R05 PDF BibTeX XML Cite \textit{F. Caubet} et al., SIAM J. Control Optim. 59, No. 2, 1218--1245 (2021; Zbl 1460.49032) Full Text: DOI OpenURL